Warfarin traps human vitamin K epoxide reductase in an intermediate state during electron transfer
Mass spectrometry and biochemical analyses reveal that the major form of VKOR found in cells features a disulfide bond between Cys51 and Cys132, and this intermediate is the target of the anticoagulant drug warfarin. Although warfarin is the most widely used anticoagulant worldwide, the mechanism by...
Gespeichert in:
Veröffentlicht in: | Nature structural & molecular biology 2017-01, Vol.24 (1), p.69-76 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 76 |
---|---|
container_issue | 1 |
container_start_page | 69 |
container_title | Nature structural & molecular biology |
container_volume | 24 |
creator | Shen, Guomin Cui, Weidong Zhang, Hao Zhou, Fengbo Huang, Wei Liu, Qian Yang, Yihu Li, Shuang Bowman, Gregory R Sadler, J Evan Gross, Michael L Li, Weikai |
description | Mass spectrometry and biochemical analyses reveal that the major form of VKOR found in cells features a disulfide bond between Cys51 and Cys132, and this intermediate is the target of the anticoagulant drug warfarin.
Although warfarin is the most widely used anticoagulant worldwide, the mechanism by which warfarin inhibits its target, human vitamin K epoxide reductase (hVKOR), remains unclear. Here we show that warfarin blocks a dynamic electron-transfer process in hVKOR. A major fraction of cellular hVKOR is in an intermediate redox state containing a Cys51-Cys132 disulfide, a characteristic accommodated by a four-transmembrane-helix structure of hVKOR. Warfarin selectively inhibits this major cellular form of hVKOR, whereas disruption of the Cys51-Cys132 disulfide impairs warfarin binding and causes warfarin resistance. Relying on binding interactions identified by cysteine alkylation footprinting and mass spectrometry coupled with mutagenesis analysis, we conducted structure simulations, which revealed a closed warfarin-binding pocket stabilized by the Cys51-Cys132 linkage. Understanding the selective warfarin inhibition of a specific redox state of hVKOR should enable the rational design of drugs that exploit the redox chemistry and associated conformational changes in hVKOR. |
doi_str_mv | 10.1038/nsmb.3333 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5533293</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A476586062</galeid><sourcerecordid>A476586062</sourcerecordid><originalsourceid>FETCH-LOGICAL-c665t-9fe856794493f323cab5f843a5fb4042fb000494502d3176996ab8f513de0d483</originalsourceid><addsrcrecordid>eNptkl1rFDEUhgdRbK1e-Adk0BsVds1MPja5EUrxo1gQ_MDLkMmcbFNmkm2SKfXfe8ata1ebQBJOnvPm5PBW1dOGLBtC5ZuQx25JcdyrDhvO-EIpye_vzooeVI9yviCk5XxFH1YH7Uo1Ei8Pq-6HSc4kH-qSzCbX59NoQn3lixkx9qmGTbz2PdQJ-skWk6HGMBI-FEgj9N4UqHOZ135CmXUNA9iS4m_BkB2kx9UDZ4YMT272o-r7-3ffTj4uzj5_OD05PltYIXhZKAeSi5ViTFFHW2pNx51k1HDXMcJa1xFCmGKctD1tVkIpYTrpeEN7ID2T9Kh6u9XdTB1WZiFgBYPeJD-a9FNH4_X-TfDneh2vNOeUtoqiwPOtQMzF62x9AXtuYwj4Id0wQYniCL28eSXFywly0aPPFobBBIhT1o0UkjaMi1nvxT_oRZxSwB4ghY-2kgn1l1qbAbQPLmJxdhbVx2wluBREtEgt76Bw9jB6rBGcx_hewqu9BGQKXJe1mXLWp1-_3MnaFHNO4HZNa4ieHaZnh-nZYcg-u93lHfnHUgi83gJ5M_sB0q1f_6f2CyUE2IM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1855328469</pqid></control><display><type>article</type><title>Warfarin traps human vitamin K epoxide reductase in an intermediate state during electron transfer</title><source>MEDLINE</source><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Shen, Guomin ; Cui, Weidong ; Zhang, Hao ; Zhou, Fengbo ; Huang, Wei ; Liu, Qian ; Yang, Yihu ; Li, Shuang ; Bowman, Gregory R ; Sadler, J Evan ; Gross, Michael L ; Li, Weikai</creator><creatorcontrib>Shen, Guomin ; Cui, Weidong ; Zhang, Hao ; Zhou, Fengbo ; Huang, Wei ; Liu, Qian ; Yang, Yihu ; Li, Shuang ; Bowman, Gregory R ; Sadler, J Evan ; Gross, Michael L ; Li, Weikai ; Washington Univ., St. Louis, MO (United States)</creatorcontrib><description>Mass spectrometry and biochemical analyses reveal that the major form of VKOR found in cells features a disulfide bond between Cys51 and Cys132, and this intermediate is the target of the anticoagulant drug warfarin.
Although warfarin is the most widely used anticoagulant worldwide, the mechanism by which warfarin inhibits its target, human vitamin K epoxide reductase (hVKOR), remains unclear. Here we show that warfarin blocks a dynamic electron-transfer process in hVKOR. A major fraction of cellular hVKOR is in an intermediate redox state containing a Cys51-Cys132 disulfide, a characteristic accommodated by a four-transmembrane-helix structure of hVKOR. Warfarin selectively inhibits this major cellular form of hVKOR, whereas disruption of the Cys51-Cys132 disulfide impairs warfarin binding and causes warfarin resistance. Relying on binding interactions identified by cysteine alkylation footprinting and mass spectrometry coupled with mutagenesis analysis, we conducted structure simulations, which revealed a closed warfarin-binding pocket stabilized by the Cys51-Cys132 linkage. Understanding the selective warfarin inhibition of a specific redox state of hVKOR should enable the rational design of drugs that exploit the redox chemistry and associated conformational changes in hVKOR.</description><identifier>ISSN: 1545-9993</identifier><identifier>EISSN: 1545-9985</identifier><identifier>DOI: 10.1038/nsmb.3333</identifier><identifier>PMID: 27918545</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>60 APPLIED LIFE SCIENCES ; 631/154 ; 631/1647/296 ; 631/45/173 ; 631/535 ; 631/92/607/1168 ; Anticoagulants ; Biocatalysis ; Biochemistry ; Biological Microscopy ; Catalytic Domain ; drug discovery ; Drug metabolism ; Drug therapy ; Electron transport ; Electrons ; enzyme mechanisms ; Genetic aspects ; Health aspects ; HEK293 Cells ; Humans ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Life Sciences ; Mass spectrometry ; Membrane Biology ; Molecular biology ; Molecular Docking Simulation ; Oxidation-Reduction ; Oxidative stress ; Oxidoreductases ; Patient outcomes ; Properties ; Protein Binding ; Protein Structure ; structural biology ; Thromboembolism ; Vitamin K 1 - analogs & derivatives ; Vitamin K 1 - chemistry ; Vitamin K 2 - chemistry ; Vitamin K Epoxide Reductases - antagonists & inhibitors ; Vitamin K Epoxide Reductases - chemistry ; Vitamins ; Warfarin ; Warfarin - chemistry</subject><ispartof>Nature structural & molecular biology, 2017-01, Vol.24 (1), p.69-76</ispartof><rights>Springer Nature America, Inc. 2016</rights><rights>COPYRIGHT 2017 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jan 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c665t-9fe856794493f323cab5f843a5fb4042fb000494502d3176996ab8f513de0d483</citedby><cites>FETCH-LOGICAL-c665t-9fe856794493f323cab5f843a5fb4042fb000494502d3176996ab8f513de0d483</cites><orcidid>0000-0002-6129-6410 ; 0000000261296410</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27918545$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1463095$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Shen, Guomin</creatorcontrib><creatorcontrib>Cui, Weidong</creatorcontrib><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Zhou, Fengbo</creatorcontrib><creatorcontrib>Huang, Wei</creatorcontrib><creatorcontrib>Liu, Qian</creatorcontrib><creatorcontrib>Yang, Yihu</creatorcontrib><creatorcontrib>Li, Shuang</creatorcontrib><creatorcontrib>Bowman, Gregory R</creatorcontrib><creatorcontrib>Sadler, J Evan</creatorcontrib><creatorcontrib>Gross, Michael L</creatorcontrib><creatorcontrib>Li, Weikai</creatorcontrib><creatorcontrib>Washington Univ., St. Louis, MO (United States)</creatorcontrib><title>Warfarin traps human vitamin K epoxide reductase in an intermediate state during electron transfer</title><title>Nature structural & molecular biology</title><addtitle>Nat Struct Mol Biol</addtitle><addtitle>Nat Struct Mol Biol</addtitle><description>Mass spectrometry and biochemical analyses reveal that the major form of VKOR found in cells features a disulfide bond between Cys51 and Cys132, and this intermediate is the target of the anticoagulant drug warfarin.
Although warfarin is the most widely used anticoagulant worldwide, the mechanism by which warfarin inhibits its target, human vitamin K epoxide reductase (hVKOR), remains unclear. Here we show that warfarin blocks a dynamic electron-transfer process in hVKOR. A major fraction of cellular hVKOR is in an intermediate redox state containing a Cys51-Cys132 disulfide, a characteristic accommodated by a four-transmembrane-helix structure of hVKOR. Warfarin selectively inhibits this major cellular form of hVKOR, whereas disruption of the Cys51-Cys132 disulfide impairs warfarin binding and causes warfarin resistance. Relying on binding interactions identified by cysteine alkylation footprinting and mass spectrometry coupled with mutagenesis analysis, we conducted structure simulations, which revealed a closed warfarin-binding pocket stabilized by the Cys51-Cys132 linkage. Understanding the selective warfarin inhibition of a specific redox state of hVKOR should enable the rational design of drugs that exploit the redox chemistry and associated conformational changes in hVKOR.</description><subject>60 APPLIED LIFE SCIENCES</subject><subject>631/154</subject><subject>631/1647/296</subject><subject>631/45/173</subject><subject>631/535</subject><subject>631/92/607/1168</subject><subject>Anticoagulants</subject><subject>Biocatalysis</subject><subject>Biochemistry</subject><subject>Biological Microscopy</subject><subject>Catalytic Domain</subject><subject>drug discovery</subject><subject>Drug metabolism</subject><subject>Drug therapy</subject><subject>Electron transport</subject><subject>Electrons</subject><subject>enzyme mechanisms</subject><subject>Genetic aspects</subject><subject>Health aspects</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Life Sciences</subject><subject>Mass spectrometry</subject><subject>Membrane Biology</subject><subject>Molecular biology</subject><subject>Molecular Docking Simulation</subject><subject>Oxidation-Reduction</subject><subject>Oxidative stress</subject><subject>Oxidoreductases</subject><subject>Patient outcomes</subject><subject>Properties</subject><subject>Protein Binding</subject><subject>Protein Structure</subject><subject>structural biology</subject><subject>Thromboembolism</subject><subject>Vitamin K 1 - analogs & derivatives</subject><subject>Vitamin K 1 - chemistry</subject><subject>Vitamin K 2 - chemistry</subject><subject>Vitamin K Epoxide Reductases - antagonists & inhibitors</subject><subject>Vitamin K Epoxide Reductases - chemistry</subject><subject>Vitamins</subject><subject>Warfarin</subject><subject>Warfarin - chemistry</subject><issn>1545-9993</issn><issn>1545-9985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkl1rFDEUhgdRbK1e-Adk0BsVds1MPja5EUrxo1gQ_MDLkMmcbFNmkm2SKfXfe8ata1ebQBJOnvPm5PBW1dOGLBtC5ZuQx25JcdyrDhvO-EIpye_vzooeVI9yviCk5XxFH1YH7Uo1Ei8Pq-6HSc4kH-qSzCbX59NoQn3lixkx9qmGTbz2PdQJ-skWk6HGMBI-FEgj9N4UqHOZ135CmXUNA9iS4m_BkB2kx9UDZ4YMT272o-r7-3ffTj4uzj5_OD05PltYIXhZKAeSi5ViTFFHW2pNx51k1HDXMcJa1xFCmGKctD1tVkIpYTrpeEN7ID2T9Kh6u9XdTB1WZiFgBYPeJD-a9FNH4_X-TfDneh2vNOeUtoqiwPOtQMzF62x9AXtuYwj4Id0wQYniCL28eSXFywly0aPPFobBBIhT1o0UkjaMi1nvxT_oRZxSwB4ghY-2kgn1l1qbAbQPLmJxdhbVx2wluBREtEgt76Bw9jB6rBGcx_hewqu9BGQKXJe1mXLWp1-_3MnaFHNO4HZNa4ieHaZnh-nZYcg-u93lHfnHUgi83gJ5M_sB0q1f_6f2CyUE2IM</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Shen, Guomin</creator><creator>Cui, Weidong</creator><creator>Zhang, Hao</creator><creator>Zhou, Fengbo</creator><creator>Huang, Wei</creator><creator>Liu, Qian</creator><creator>Yang, Yihu</creator><creator>Li, Shuang</creator><creator>Bowman, Gregory R</creator><creator>Sadler, J Evan</creator><creator>Gross, Michael L</creator><creator>Li, Weikai</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6129-6410</orcidid><orcidid>https://orcid.org/0000000261296410</orcidid></search><sort><creationdate>20170101</creationdate><title>Warfarin traps human vitamin K epoxide reductase in an intermediate state during electron transfer</title><author>Shen, Guomin ; Cui, Weidong ; Zhang, Hao ; Zhou, Fengbo ; Huang, Wei ; Liu, Qian ; Yang, Yihu ; Li, Shuang ; Bowman, Gregory R ; Sadler, J Evan ; Gross, Michael L ; Li, Weikai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c665t-9fe856794493f323cab5f843a5fb4042fb000494502d3176996ab8f513de0d483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>60 APPLIED LIFE SCIENCES</topic><topic>631/154</topic><topic>631/1647/296</topic><topic>631/45/173</topic><topic>631/535</topic><topic>631/92/607/1168</topic><topic>Anticoagulants</topic><topic>Biocatalysis</topic><topic>Biochemistry</topic><topic>Biological Microscopy</topic><topic>Catalytic Domain</topic><topic>drug discovery</topic><topic>Drug metabolism</topic><topic>Drug therapy</topic><topic>Electron transport</topic><topic>Electrons</topic><topic>enzyme mechanisms</topic><topic>Genetic aspects</topic><topic>Health aspects</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Life Sciences</topic><topic>Mass spectrometry</topic><topic>Membrane Biology</topic><topic>Molecular biology</topic><topic>Molecular Docking Simulation</topic><topic>Oxidation-Reduction</topic><topic>Oxidative stress</topic><topic>Oxidoreductases</topic><topic>Patient outcomes</topic><topic>Properties</topic><topic>Protein Binding</topic><topic>Protein Structure</topic><topic>structural biology</topic><topic>Thromboembolism</topic><topic>Vitamin K 1 - analogs & derivatives</topic><topic>Vitamin K 1 - chemistry</topic><topic>Vitamin K 2 - chemistry</topic><topic>Vitamin K Epoxide Reductases - antagonists & inhibitors</topic><topic>Vitamin K Epoxide Reductases - chemistry</topic><topic>Vitamins</topic><topic>Warfarin</topic><topic>Warfarin - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Guomin</creatorcontrib><creatorcontrib>Cui, Weidong</creatorcontrib><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Zhou, Fengbo</creatorcontrib><creatorcontrib>Huang, Wei</creatorcontrib><creatorcontrib>Liu, Qian</creatorcontrib><creatorcontrib>Yang, Yihu</creatorcontrib><creatorcontrib>Li, Shuang</creatorcontrib><creatorcontrib>Bowman, Gregory R</creatorcontrib><creatorcontrib>Sadler, J Evan</creatorcontrib><creatorcontrib>Gross, Michael L</creatorcontrib><creatorcontrib>Li, Weikai</creatorcontrib><creatorcontrib>Washington Univ., St. Louis, MO (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature structural & molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Guomin</au><au>Cui, Weidong</au><au>Zhang, Hao</au><au>Zhou, Fengbo</au><au>Huang, Wei</au><au>Liu, Qian</au><au>Yang, Yihu</au><au>Li, Shuang</au><au>Bowman, Gregory R</au><au>Sadler, J Evan</au><au>Gross, Michael L</au><au>Li, Weikai</au><aucorp>Washington Univ., St. Louis, MO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Warfarin traps human vitamin K epoxide reductase in an intermediate state during electron transfer</atitle><jtitle>Nature structural & molecular biology</jtitle><stitle>Nat Struct Mol Biol</stitle><addtitle>Nat Struct Mol Biol</addtitle><date>2017-01-01</date><risdate>2017</risdate><volume>24</volume><issue>1</issue><spage>69</spage><epage>76</epage><pages>69-76</pages><issn>1545-9993</issn><eissn>1545-9985</eissn><abstract>Mass spectrometry and biochemical analyses reveal that the major form of VKOR found in cells features a disulfide bond between Cys51 and Cys132, and this intermediate is the target of the anticoagulant drug warfarin.
Although warfarin is the most widely used anticoagulant worldwide, the mechanism by which warfarin inhibits its target, human vitamin K epoxide reductase (hVKOR), remains unclear. Here we show that warfarin blocks a dynamic electron-transfer process in hVKOR. A major fraction of cellular hVKOR is in an intermediate redox state containing a Cys51-Cys132 disulfide, a characteristic accommodated by a four-transmembrane-helix structure of hVKOR. Warfarin selectively inhibits this major cellular form of hVKOR, whereas disruption of the Cys51-Cys132 disulfide impairs warfarin binding and causes warfarin resistance. Relying on binding interactions identified by cysteine alkylation footprinting and mass spectrometry coupled with mutagenesis analysis, we conducted structure simulations, which revealed a closed warfarin-binding pocket stabilized by the Cys51-Cys132 linkage. Understanding the selective warfarin inhibition of a specific redox state of hVKOR should enable the rational design of drugs that exploit the redox chemistry and associated conformational changes in hVKOR.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>27918545</pmid><doi>10.1038/nsmb.3333</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-6129-6410</orcidid><orcidid>https://orcid.org/0000000261296410</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-9993 |
ispartof | Nature structural & molecular biology, 2017-01, Vol.24 (1), p.69-76 |
issn | 1545-9993 1545-9985 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5533293 |
source | MEDLINE; Nature; Alma/SFX Local Collection |
subjects | 60 APPLIED LIFE SCIENCES 631/154 631/1647/296 631/45/173 631/535 631/92/607/1168 Anticoagulants Biocatalysis Biochemistry Biological Microscopy Catalytic Domain drug discovery Drug metabolism Drug therapy Electron transport Electrons enzyme mechanisms Genetic aspects Health aspects HEK293 Cells Humans INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Life Sciences Mass spectrometry Membrane Biology Molecular biology Molecular Docking Simulation Oxidation-Reduction Oxidative stress Oxidoreductases Patient outcomes Properties Protein Binding Protein Structure structural biology Thromboembolism Vitamin K 1 - analogs & derivatives Vitamin K 1 - chemistry Vitamin K 2 - chemistry Vitamin K Epoxide Reductases - antagonists & inhibitors Vitamin K Epoxide Reductases - chemistry Vitamins Warfarin Warfarin - chemistry |
title | Warfarin traps human vitamin K epoxide reductase in an intermediate state during electron transfer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A22%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Warfarin%20traps%20human%20vitamin%20K%20epoxide%20reductase%20in%20an%20intermediate%20state%20during%20electron%20transfer&rft.jtitle=Nature%20structural%20&%20molecular%20biology&rft.au=Shen,%20Guomin&rft.aucorp=Washington%20Univ.,%20St.%20Louis,%20MO%20(United%20States)&rft.date=2017-01-01&rft.volume=24&rft.issue=1&rft.spage=69&rft.epage=76&rft.pages=69-76&rft.issn=1545-9993&rft.eissn=1545-9985&rft_id=info:doi/10.1038/nsmb.3333&rft_dat=%3Cgale_pubme%3EA476586062%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1855328469&rft_id=info:pmid/27918545&rft_galeid=A476586062&rfr_iscdi=true |