Warfarin traps human vitamin K epoxide reductase in an intermediate state during electron transfer

Mass spectrometry and biochemical analyses reveal that the major form of VKOR found in cells features a disulfide bond between Cys51 and Cys132, and this intermediate is the target of the anticoagulant drug warfarin. Although warfarin is the most widely used anticoagulant worldwide, the mechanism by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature structural & molecular biology 2017-01, Vol.24 (1), p.69-76
Hauptverfasser: Shen, Guomin, Cui, Weidong, Zhang, Hao, Zhou, Fengbo, Huang, Wei, Liu, Qian, Yang, Yihu, Li, Shuang, Bowman, Gregory R, Sadler, J Evan, Gross, Michael L, Li, Weikai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 76
container_issue 1
container_start_page 69
container_title Nature structural & molecular biology
container_volume 24
creator Shen, Guomin
Cui, Weidong
Zhang, Hao
Zhou, Fengbo
Huang, Wei
Liu, Qian
Yang, Yihu
Li, Shuang
Bowman, Gregory R
Sadler, J Evan
Gross, Michael L
Li, Weikai
description Mass spectrometry and biochemical analyses reveal that the major form of VKOR found in cells features a disulfide bond between Cys51 and Cys132, and this intermediate is the target of the anticoagulant drug warfarin. Although warfarin is the most widely used anticoagulant worldwide, the mechanism by which warfarin inhibits its target, human vitamin K epoxide reductase (hVKOR), remains unclear. Here we show that warfarin blocks a dynamic electron-transfer process in hVKOR. A major fraction of cellular hVKOR is in an intermediate redox state containing a Cys51-Cys132 disulfide, a characteristic accommodated by a four-transmembrane-helix structure of hVKOR. Warfarin selectively inhibits this major cellular form of hVKOR, whereas disruption of the Cys51-Cys132 disulfide impairs warfarin binding and causes warfarin resistance. Relying on binding interactions identified by cysteine alkylation footprinting and mass spectrometry coupled with mutagenesis analysis, we conducted structure simulations, which revealed a closed warfarin-binding pocket stabilized by the Cys51-Cys132 linkage. Understanding the selective warfarin inhibition of a specific redox state of hVKOR should enable the rational design of drugs that exploit the redox chemistry and associated conformational changes in hVKOR.
doi_str_mv 10.1038/nsmb.3333
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5533293</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A476586062</galeid><sourcerecordid>A476586062</sourcerecordid><originalsourceid>FETCH-LOGICAL-c665t-9fe856794493f323cab5f843a5fb4042fb000494502d3176996ab8f513de0d483</originalsourceid><addsrcrecordid>eNptkl1rFDEUhgdRbK1e-Adk0BsVds1MPja5EUrxo1gQ_MDLkMmcbFNmkm2SKfXfe8ata1ebQBJOnvPm5PBW1dOGLBtC5ZuQx25JcdyrDhvO-EIpye_vzooeVI9yviCk5XxFH1YH7Uo1Ei8Pq-6HSc4kH-qSzCbX59NoQn3lixkx9qmGTbz2PdQJ-skWk6HGMBI-FEgj9N4UqHOZ135CmXUNA9iS4m_BkB2kx9UDZ4YMT272o-r7-3ffTj4uzj5_OD05PltYIXhZKAeSi5ViTFFHW2pNx51k1HDXMcJa1xFCmGKctD1tVkIpYTrpeEN7ID2T9Kh6u9XdTB1WZiFgBYPeJD-a9FNH4_X-TfDneh2vNOeUtoqiwPOtQMzF62x9AXtuYwj4Id0wQYniCL28eSXFywly0aPPFobBBIhT1o0UkjaMi1nvxT_oRZxSwB4ghY-2kgn1l1qbAbQPLmJxdhbVx2wluBREtEgt76Bw9jB6rBGcx_hewqu9BGQKXJe1mXLWp1-_3MnaFHNO4HZNa4ieHaZnh-nZYcg-u93lHfnHUgi83gJ5M_sB0q1f_6f2CyUE2IM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1855328469</pqid></control><display><type>article</type><title>Warfarin traps human vitamin K epoxide reductase in an intermediate state during electron transfer</title><source>MEDLINE</source><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Shen, Guomin ; Cui, Weidong ; Zhang, Hao ; Zhou, Fengbo ; Huang, Wei ; Liu, Qian ; Yang, Yihu ; Li, Shuang ; Bowman, Gregory R ; Sadler, J Evan ; Gross, Michael L ; Li, Weikai</creator><creatorcontrib>Shen, Guomin ; Cui, Weidong ; Zhang, Hao ; Zhou, Fengbo ; Huang, Wei ; Liu, Qian ; Yang, Yihu ; Li, Shuang ; Bowman, Gregory R ; Sadler, J Evan ; Gross, Michael L ; Li, Weikai ; Washington Univ., St. Louis, MO (United States)</creatorcontrib><description>Mass spectrometry and biochemical analyses reveal that the major form of VKOR found in cells features a disulfide bond between Cys51 and Cys132, and this intermediate is the target of the anticoagulant drug warfarin. Although warfarin is the most widely used anticoagulant worldwide, the mechanism by which warfarin inhibits its target, human vitamin K epoxide reductase (hVKOR), remains unclear. Here we show that warfarin blocks a dynamic electron-transfer process in hVKOR. A major fraction of cellular hVKOR is in an intermediate redox state containing a Cys51-Cys132 disulfide, a characteristic accommodated by a four-transmembrane-helix structure of hVKOR. Warfarin selectively inhibits this major cellular form of hVKOR, whereas disruption of the Cys51-Cys132 disulfide impairs warfarin binding and causes warfarin resistance. Relying on binding interactions identified by cysteine alkylation footprinting and mass spectrometry coupled with mutagenesis analysis, we conducted structure simulations, which revealed a closed warfarin-binding pocket stabilized by the Cys51-Cys132 linkage. Understanding the selective warfarin inhibition of a specific redox state of hVKOR should enable the rational design of drugs that exploit the redox chemistry and associated conformational changes in hVKOR.</description><identifier>ISSN: 1545-9993</identifier><identifier>EISSN: 1545-9985</identifier><identifier>DOI: 10.1038/nsmb.3333</identifier><identifier>PMID: 27918545</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>60 APPLIED LIFE SCIENCES ; 631/154 ; 631/1647/296 ; 631/45/173 ; 631/535 ; 631/92/607/1168 ; Anticoagulants ; Biocatalysis ; Biochemistry ; Biological Microscopy ; Catalytic Domain ; drug discovery ; Drug metabolism ; Drug therapy ; Electron transport ; Electrons ; enzyme mechanisms ; Genetic aspects ; Health aspects ; HEK293 Cells ; Humans ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Life Sciences ; Mass spectrometry ; Membrane Biology ; Molecular biology ; Molecular Docking Simulation ; Oxidation-Reduction ; Oxidative stress ; Oxidoreductases ; Patient outcomes ; Properties ; Protein Binding ; Protein Structure ; structural biology ; Thromboembolism ; Vitamin K 1 - analogs &amp; derivatives ; Vitamin K 1 - chemistry ; Vitamin K 2 - chemistry ; Vitamin K Epoxide Reductases - antagonists &amp; inhibitors ; Vitamin K Epoxide Reductases - chemistry ; Vitamins ; Warfarin ; Warfarin - chemistry</subject><ispartof>Nature structural &amp; molecular biology, 2017-01, Vol.24 (1), p.69-76</ispartof><rights>Springer Nature America, Inc. 2016</rights><rights>COPYRIGHT 2017 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jan 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c665t-9fe856794493f323cab5f843a5fb4042fb000494502d3176996ab8f513de0d483</citedby><cites>FETCH-LOGICAL-c665t-9fe856794493f323cab5f843a5fb4042fb000494502d3176996ab8f513de0d483</cites><orcidid>0000-0002-6129-6410 ; 0000000261296410</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27918545$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1463095$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Shen, Guomin</creatorcontrib><creatorcontrib>Cui, Weidong</creatorcontrib><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Zhou, Fengbo</creatorcontrib><creatorcontrib>Huang, Wei</creatorcontrib><creatorcontrib>Liu, Qian</creatorcontrib><creatorcontrib>Yang, Yihu</creatorcontrib><creatorcontrib>Li, Shuang</creatorcontrib><creatorcontrib>Bowman, Gregory R</creatorcontrib><creatorcontrib>Sadler, J Evan</creatorcontrib><creatorcontrib>Gross, Michael L</creatorcontrib><creatorcontrib>Li, Weikai</creatorcontrib><creatorcontrib>Washington Univ., St. Louis, MO (United States)</creatorcontrib><title>Warfarin traps human vitamin K epoxide reductase in an intermediate state during electron transfer</title><title>Nature structural &amp; molecular biology</title><addtitle>Nat Struct Mol Biol</addtitle><addtitle>Nat Struct Mol Biol</addtitle><description>Mass spectrometry and biochemical analyses reveal that the major form of VKOR found in cells features a disulfide bond between Cys51 and Cys132, and this intermediate is the target of the anticoagulant drug warfarin. Although warfarin is the most widely used anticoagulant worldwide, the mechanism by which warfarin inhibits its target, human vitamin K epoxide reductase (hVKOR), remains unclear. Here we show that warfarin blocks a dynamic electron-transfer process in hVKOR. A major fraction of cellular hVKOR is in an intermediate redox state containing a Cys51-Cys132 disulfide, a characteristic accommodated by a four-transmembrane-helix structure of hVKOR. Warfarin selectively inhibits this major cellular form of hVKOR, whereas disruption of the Cys51-Cys132 disulfide impairs warfarin binding and causes warfarin resistance. Relying on binding interactions identified by cysteine alkylation footprinting and mass spectrometry coupled with mutagenesis analysis, we conducted structure simulations, which revealed a closed warfarin-binding pocket stabilized by the Cys51-Cys132 linkage. Understanding the selective warfarin inhibition of a specific redox state of hVKOR should enable the rational design of drugs that exploit the redox chemistry and associated conformational changes in hVKOR.</description><subject>60 APPLIED LIFE SCIENCES</subject><subject>631/154</subject><subject>631/1647/296</subject><subject>631/45/173</subject><subject>631/535</subject><subject>631/92/607/1168</subject><subject>Anticoagulants</subject><subject>Biocatalysis</subject><subject>Biochemistry</subject><subject>Biological Microscopy</subject><subject>Catalytic Domain</subject><subject>drug discovery</subject><subject>Drug metabolism</subject><subject>Drug therapy</subject><subject>Electron transport</subject><subject>Electrons</subject><subject>enzyme mechanisms</subject><subject>Genetic aspects</subject><subject>Health aspects</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Life Sciences</subject><subject>Mass spectrometry</subject><subject>Membrane Biology</subject><subject>Molecular biology</subject><subject>Molecular Docking Simulation</subject><subject>Oxidation-Reduction</subject><subject>Oxidative stress</subject><subject>Oxidoreductases</subject><subject>Patient outcomes</subject><subject>Properties</subject><subject>Protein Binding</subject><subject>Protein Structure</subject><subject>structural biology</subject><subject>Thromboembolism</subject><subject>Vitamin K 1 - analogs &amp; derivatives</subject><subject>Vitamin K 1 - chemistry</subject><subject>Vitamin K 2 - chemistry</subject><subject>Vitamin K Epoxide Reductases - antagonists &amp; inhibitors</subject><subject>Vitamin K Epoxide Reductases - chemistry</subject><subject>Vitamins</subject><subject>Warfarin</subject><subject>Warfarin - chemistry</subject><issn>1545-9993</issn><issn>1545-9985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkl1rFDEUhgdRbK1e-Adk0BsVds1MPja5EUrxo1gQ_MDLkMmcbFNmkm2SKfXfe8ata1ebQBJOnvPm5PBW1dOGLBtC5ZuQx25JcdyrDhvO-EIpye_vzooeVI9yviCk5XxFH1YH7Uo1Ei8Pq-6HSc4kH-qSzCbX59NoQn3lixkx9qmGTbz2PdQJ-skWk6HGMBI-FEgj9N4UqHOZ135CmXUNA9iS4m_BkB2kx9UDZ4YMT272o-r7-3ffTj4uzj5_OD05PltYIXhZKAeSi5ViTFFHW2pNx51k1HDXMcJa1xFCmGKctD1tVkIpYTrpeEN7ID2T9Kh6u9XdTB1WZiFgBYPeJD-a9FNH4_X-TfDneh2vNOeUtoqiwPOtQMzF62x9AXtuYwj4Id0wQYniCL28eSXFywly0aPPFobBBIhT1o0UkjaMi1nvxT_oRZxSwB4ghY-2kgn1l1qbAbQPLmJxdhbVx2wluBREtEgt76Bw9jB6rBGcx_hewqu9BGQKXJe1mXLWp1-_3MnaFHNO4HZNa4ieHaZnh-nZYcg-u93lHfnHUgi83gJ5M_sB0q1f_6f2CyUE2IM</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Shen, Guomin</creator><creator>Cui, Weidong</creator><creator>Zhang, Hao</creator><creator>Zhou, Fengbo</creator><creator>Huang, Wei</creator><creator>Liu, Qian</creator><creator>Yang, Yihu</creator><creator>Li, Shuang</creator><creator>Bowman, Gregory R</creator><creator>Sadler, J Evan</creator><creator>Gross, Michael L</creator><creator>Li, Weikai</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6129-6410</orcidid><orcidid>https://orcid.org/0000000261296410</orcidid></search><sort><creationdate>20170101</creationdate><title>Warfarin traps human vitamin K epoxide reductase in an intermediate state during electron transfer</title><author>Shen, Guomin ; Cui, Weidong ; Zhang, Hao ; Zhou, Fengbo ; Huang, Wei ; Liu, Qian ; Yang, Yihu ; Li, Shuang ; Bowman, Gregory R ; Sadler, J Evan ; Gross, Michael L ; Li, Weikai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c665t-9fe856794493f323cab5f843a5fb4042fb000494502d3176996ab8f513de0d483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>60 APPLIED LIFE SCIENCES</topic><topic>631/154</topic><topic>631/1647/296</topic><topic>631/45/173</topic><topic>631/535</topic><topic>631/92/607/1168</topic><topic>Anticoagulants</topic><topic>Biocatalysis</topic><topic>Biochemistry</topic><topic>Biological Microscopy</topic><topic>Catalytic Domain</topic><topic>drug discovery</topic><topic>Drug metabolism</topic><topic>Drug therapy</topic><topic>Electron transport</topic><topic>Electrons</topic><topic>enzyme mechanisms</topic><topic>Genetic aspects</topic><topic>Health aspects</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Life Sciences</topic><topic>Mass spectrometry</topic><topic>Membrane Biology</topic><topic>Molecular biology</topic><topic>Molecular Docking Simulation</topic><topic>Oxidation-Reduction</topic><topic>Oxidative stress</topic><topic>Oxidoreductases</topic><topic>Patient outcomes</topic><topic>Properties</topic><topic>Protein Binding</topic><topic>Protein Structure</topic><topic>structural biology</topic><topic>Thromboembolism</topic><topic>Vitamin K 1 - analogs &amp; derivatives</topic><topic>Vitamin K 1 - chemistry</topic><topic>Vitamin K 2 - chemistry</topic><topic>Vitamin K Epoxide Reductases - antagonists &amp; inhibitors</topic><topic>Vitamin K Epoxide Reductases - chemistry</topic><topic>Vitamins</topic><topic>Warfarin</topic><topic>Warfarin - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Guomin</creatorcontrib><creatorcontrib>Cui, Weidong</creatorcontrib><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Zhou, Fengbo</creatorcontrib><creatorcontrib>Huang, Wei</creatorcontrib><creatorcontrib>Liu, Qian</creatorcontrib><creatorcontrib>Yang, Yihu</creatorcontrib><creatorcontrib>Li, Shuang</creatorcontrib><creatorcontrib>Bowman, Gregory R</creatorcontrib><creatorcontrib>Sadler, J Evan</creatorcontrib><creatorcontrib>Gross, Michael L</creatorcontrib><creatorcontrib>Li, Weikai</creatorcontrib><creatorcontrib>Washington Univ., St. Louis, MO (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature structural &amp; molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Guomin</au><au>Cui, Weidong</au><au>Zhang, Hao</au><au>Zhou, Fengbo</au><au>Huang, Wei</au><au>Liu, Qian</au><au>Yang, Yihu</au><au>Li, Shuang</au><au>Bowman, Gregory R</au><au>Sadler, J Evan</au><au>Gross, Michael L</au><au>Li, Weikai</au><aucorp>Washington Univ., St. Louis, MO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Warfarin traps human vitamin K epoxide reductase in an intermediate state during electron transfer</atitle><jtitle>Nature structural &amp; molecular biology</jtitle><stitle>Nat Struct Mol Biol</stitle><addtitle>Nat Struct Mol Biol</addtitle><date>2017-01-01</date><risdate>2017</risdate><volume>24</volume><issue>1</issue><spage>69</spage><epage>76</epage><pages>69-76</pages><issn>1545-9993</issn><eissn>1545-9985</eissn><abstract>Mass spectrometry and biochemical analyses reveal that the major form of VKOR found in cells features a disulfide bond between Cys51 and Cys132, and this intermediate is the target of the anticoagulant drug warfarin. Although warfarin is the most widely used anticoagulant worldwide, the mechanism by which warfarin inhibits its target, human vitamin K epoxide reductase (hVKOR), remains unclear. Here we show that warfarin blocks a dynamic electron-transfer process in hVKOR. A major fraction of cellular hVKOR is in an intermediate redox state containing a Cys51-Cys132 disulfide, a characteristic accommodated by a four-transmembrane-helix structure of hVKOR. Warfarin selectively inhibits this major cellular form of hVKOR, whereas disruption of the Cys51-Cys132 disulfide impairs warfarin binding and causes warfarin resistance. Relying on binding interactions identified by cysteine alkylation footprinting and mass spectrometry coupled with mutagenesis analysis, we conducted structure simulations, which revealed a closed warfarin-binding pocket stabilized by the Cys51-Cys132 linkage. Understanding the selective warfarin inhibition of a specific redox state of hVKOR should enable the rational design of drugs that exploit the redox chemistry and associated conformational changes in hVKOR.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>27918545</pmid><doi>10.1038/nsmb.3333</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-6129-6410</orcidid><orcidid>https://orcid.org/0000000261296410</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1545-9993
ispartof Nature structural & molecular biology, 2017-01, Vol.24 (1), p.69-76
issn 1545-9993
1545-9985
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5533293
source MEDLINE; Nature; Alma/SFX Local Collection
subjects 60 APPLIED LIFE SCIENCES
631/154
631/1647/296
631/45/173
631/535
631/92/607/1168
Anticoagulants
Biocatalysis
Biochemistry
Biological Microscopy
Catalytic Domain
drug discovery
Drug metabolism
Drug therapy
Electron transport
Electrons
enzyme mechanisms
Genetic aspects
Health aspects
HEK293 Cells
Humans
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Life Sciences
Mass spectrometry
Membrane Biology
Molecular biology
Molecular Docking Simulation
Oxidation-Reduction
Oxidative stress
Oxidoreductases
Patient outcomes
Properties
Protein Binding
Protein Structure
structural biology
Thromboembolism
Vitamin K 1 - analogs & derivatives
Vitamin K 1 - chemistry
Vitamin K 2 - chemistry
Vitamin K Epoxide Reductases - antagonists & inhibitors
Vitamin K Epoxide Reductases - chemistry
Vitamins
Warfarin
Warfarin - chemistry
title Warfarin traps human vitamin K epoxide reductase in an intermediate state during electron transfer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A22%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Warfarin%20traps%20human%20vitamin%20K%20epoxide%20reductase%20in%20an%20intermediate%20state%20during%20electron%20transfer&rft.jtitle=Nature%20structural%20&%20molecular%20biology&rft.au=Shen,%20Guomin&rft.aucorp=Washington%20Univ.,%20St.%20Louis,%20MO%20(United%20States)&rft.date=2017-01-01&rft.volume=24&rft.issue=1&rft.spage=69&rft.epage=76&rft.pages=69-76&rft.issn=1545-9993&rft.eissn=1545-9985&rft_id=info:doi/10.1038/nsmb.3333&rft_dat=%3Cgale_pubme%3EA476586062%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1855328469&rft_id=info:pmid/27918545&rft_galeid=A476586062&rfr_iscdi=true