An improved model of motion-related signal changes in fMRI

Head motion is a significant source of noise in the estimation of functional connectivity from resting-state functional MRI (rs-fMRI). Current strategies to reduce this noise include image realignment, censoring time points corrupted by motion, and including motion realignment parameters and their d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Fla.), 2017-01, Vol.144 (Pt A), p.74-82
Hauptverfasser: Patriat, Rémi, Reynolds, Richard C., Birn, Rasmus M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Head motion is a significant source of noise in the estimation of functional connectivity from resting-state functional MRI (rs-fMRI). Current strategies to reduce this noise include image realignment, censoring time points corrupted by motion, and including motion realignment parameters and their derivatives as additional nuisance regressors in the general linear model. However, this nuisance regression approach assumes that the motion-induced signal changes are linearly related to the estimated realignment parameters, which is not always the case. In this study we develop an improved model of motion-related signal changes, where nuisance regressors are formed by first rotating and translating a single brain volume according to the estimated motion, re-registering the data, and then performing a principal components analysis (PCA) on the resultant time series of both moved and re-registered data. We show that these “Motion Simulated (MotSim)” regressors account for significantly greater fraction of variance, result in higher temporal signal-to-noise, and lead to functional connectivity estimates that are less affected by motion compared to the most common current approach of using the realignment parameters and their derivatives as nuisance regressors. This improvement should lead to more accurate estimates of functional connectivity, particularly in populations where motion is prevalent, such as patients and young children. •Motion is a significant problem in fMRI.•We develop a new technique, MotSim, to more accurately model motion related signals.•This technique simulates the signal changes that the estimated motion would produce.•MotSim model accounts for significantly more variance than common current approaches.
ISSN:1053-8119
1095-9572
DOI:10.1016/j.neuroimage.2016.08.051