Observing a quantum Maxwell demon at work
In apparent contradiction to the laws of thermodynamics, Maxwell’s demon is able to cyclically extract work from a system in contact with a thermal bath, exploiting the information about its microstate. The resolution of this paradox required the insight that an intimate relationship exists between...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2017-07, Vol.114 (29), p.7561-7564 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7564 |
---|---|
container_issue | 29 |
container_start_page | 7561 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 114 |
creator | Cottet, Nathanaël Jezouin, Sébastien Bretheau, Landry Campagne-Ibarcq, Philippe Ficheux, Quentin Anders, Janet Auffèves, Alexia Azouit, Rémi Rouchon, Pierre Huard, Benjamin |
description | In apparent contradiction to the laws of thermodynamics, Maxwell’s demon is able to cyclically extract work from a system in contact with a thermal bath, exploiting the information about its microstate. The resolution of this paradox required the insight that an intimate relationship exists between information and thermodynamics. Here, we realize a Maxwell demon experiment that tracks the state of each constituent in both the classical and quantum regimes. The demon is a microwave cavity that encodes quantum information about a superconducting qubit and converts information into work by powering up a propagating microwave pulse by stimulated emission. Thanks to the high level of control of superconducting circuits, we directly measure the extracted work and quantify the entropy remaining in the demon’s memory. This experiment provides an enlightening illustration of the interplay of thermodynamics with quantum information. |
doi_str_mv | 10.1073/pnas.1704827114 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5530687</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26486660</jstor_id><sourcerecordid>26486660</sourcerecordid><originalsourceid>FETCH-LOGICAL-c543t-868160dcda77d49bac688805c220fe2722d749d6e9bde4bb68b80fcd18a6af043</originalsourceid><addsrcrecordid>eNpdkctPxCAQh4nR6Po4e9I08aKH6kDpQC8mxvhK1njRM6GFatdtWaFd9b-Xzfo-EZhvfjB8hOxSOKYgspNZp8MxFcAlE5TyFTKiUNAUeQGrZATARCo54xtkM4QJABS5hHWywSQKHncjcnRXBuvnTfeY6ORl0F0_tMmtfnu102libOu6RPfJq_PP22St1tNgdz7XLfJweXF_fp2O765uzs_GaZXzrE8lSopgKqOFMLwodYVSSsgrxqC2TDBmBC8M2qI0lpclylJCXRkqNeoaeLZFTpe5s6Fsrals13s9VTPftNq_K6cb9bfSNU_q0c1VnmeAUsSAo2XA07-267OxWpwBRYYF0jmN7OHnZd69DDb0qm1CFWfXnXVDULSguZSUA4vowT904gbfxa-IFEee51FApE6WVOVdCN7W3y-goBbK1EKZ-lEWO_Z_z_vNfzmKwN4SmITe-Z86comIkH0AZj2aPQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1946455114</pqid></control><display><type>article</type><title>Observing a quantum Maxwell demon at work</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Cottet, Nathanaël ; Jezouin, Sébastien ; Bretheau, Landry ; Campagne-Ibarcq, Philippe ; Ficheux, Quentin ; Anders, Janet ; Auffèves, Alexia ; Azouit, Rémi ; Rouchon, Pierre ; Huard, Benjamin</creator><creatorcontrib>Cottet, Nathanaël ; Jezouin, Sébastien ; Bretheau, Landry ; Campagne-Ibarcq, Philippe ; Ficheux, Quentin ; Anders, Janet ; Auffèves, Alexia ; Azouit, Rémi ; Rouchon, Pierre ; Huard, Benjamin</creatorcontrib><description>In apparent contradiction to the laws of thermodynamics, Maxwell’s demon is able to cyclically extract work from a system in contact with a thermal bath, exploiting the information about its microstate. The resolution of this paradox required the insight that an intimate relationship exists between information and thermodynamics. Here, we realize a Maxwell demon experiment that tracks the state of each constituent in both the classical and quantum regimes. The demon is a microwave cavity that encodes quantum information about a superconducting qubit and converts information into work by powering up a propagating microwave pulse by stimulated emission. Thanks to the high level of control of superconducting circuits, we directly measure the extracted work and quantify the entropy remaining in the demon’s memory. This experiment provides an enlightening illustration of the interplay of thermodynamics with quantum information.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1704827114</identifier><identifier>PMID: 28674009</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Emissions control ; Entropy ; Physical Sciences ; Physics ; Pulse propagation ; Quantum phenomena ; Quantum Physics ; Qubits (quantum computing) ; Stimulated emission ; Superconductivity ; Thermodynamics</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2017-07, Vol.114 (29), p.7561-7564</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Jul 18, 2017</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c543t-868160dcda77d49bac688805c220fe2722d749d6e9bde4bb68b80fcd18a6af043</citedby><cites>FETCH-LOGICAL-c543t-868160dcda77d49bac688805c220fe2722d749d6e9bde4bb68b80fcd18a6af043</cites><orcidid>0000-0002-9848-3658 ; 0000-0001-6160-5634 ; 0000-0003-1300-8186 ; 0000-0001-5628-934X ; 0000-0002-7981-4861 ; 0000-0001-9039-3810</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26486660$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26486660$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28674009$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01626961$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Cottet, Nathanaël</creatorcontrib><creatorcontrib>Jezouin, Sébastien</creatorcontrib><creatorcontrib>Bretheau, Landry</creatorcontrib><creatorcontrib>Campagne-Ibarcq, Philippe</creatorcontrib><creatorcontrib>Ficheux, Quentin</creatorcontrib><creatorcontrib>Anders, Janet</creatorcontrib><creatorcontrib>Auffèves, Alexia</creatorcontrib><creatorcontrib>Azouit, Rémi</creatorcontrib><creatorcontrib>Rouchon, Pierre</creatorcontrib><creatorcontrib>Huard, Benjamin</creatorcontrib><title>Observing a quantum Maxwell demon at work</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>In apparent contradiction to the laws of thermodynamics, Maxwell’s demon is able to cyclically extract work from a system in contact with a thermal bath, exploiting the information about its microstate. The resolution of this paradox required the insight that an intimate relationship exists between information and thermodynamics. Here, we realize a Maxwell demon experiment that tracks the state of each constituent in both the classical and quantum regimes. The demon is a microwave cavity that encodes quantum information about a superconducting qubit and converts information into work by powering up a propagating microwave pulse by stimulated emission. Thanks to the high level of control of superconducting circuits, we directly measure the extracted work and quantify the entropy remaining in the demon’s memory. This experiment provides an enlightening illustration of the interplay of thermodynamics with quantum information.</description><subject>Emissions control</subject><subject>Entropy</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Pulse propagation</subject><subject>Quantum phenomena</subject><subject>Quantum Physics</subject><subject>Qubits (quantum computing)</subject><subject>Stimulated emission</subject><subject>Superconductivity</subject><subject>Thermodynamics</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdkctPxCAQh4nR6Po4e9I08aKH6kDpQC8mxvhK1njRM6GFatdtWaFd9b-Xzfo-EZhvfjB8hOxSOKYgspNZp8MxFcAlE5TyFTKiUNAUeQGrZATARCo54xtkM4QJABS5hHWywSQKHncjcnRXBuvnTfeY6ORl0F0_tMmtfnu102libOu6RPfJq_PP22St1tNgdz7XLfJweXF_fp2O765uzs_GaZXzrE8lSopgKqOFMLwodYVSSsgrxqC2TDBmBC8M2qI0lpclylJCXRkqNeoaeLZFTpe5s6Fsrals13s9VTPftNq_K6cb9bfSNU_q0c1VnmeAUsSAo2XA07-267OxWpwBRYYF0jmN7OHnZd69DDb0qm1CFWfXnXVDULSguZSUA4vowT904gbfxa-IFEee51FApE6WVOVdCN7W3y-goBbK1EKZ-lEWO_Z_z_vNfzmKwN4SmITe-Z86comIkH0AZj2aPQ</recordid><startdate>20170718</startdate><enddate>20170718</enddate><creator>Cottet, Nathanaël</creator><creator>Jezouin, Sébastien</creator><creator>Bretheau, Landry</creator><creator>Campagne-Ibarcq, Philippe</creator><creator>Ficheux, Quentin</creator><creator>Anders, Janet</creator><creator>Auffèves, Alexia</creator><creator>Azouit, Rémi</creator><creator>Rouchon, Pierre</creator><creator>Huard, Benjamin</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9848-3658</orcidid><orcidid>https://orcid.org/0000-0001-6160-5634</orcidid><orcidid>https://orcid.org/0000-0003-1300-8186</orcidid><orcidid>https://orcid.org/0000-0001-5628-934X</orcidid><orcidid>https://orcid.org/0000-0002-7981-4861</orcidid><orcidid>https://orcid.org/0000-0001-9039-3810</orcidid></search><sort><creationdate>20170718</creationdate><title>Observing a quantum Maxwell demon at work</title><author>Cottet, Nathanaël ; Jezouin, Sébastien ; Bretheau, Landry ; Campagne-Ibarcq, Philippe ; Ficheux, Quentin ; Anders, Janet ; Auffèves, Alexia ; Azouit, Rémi ; Rouchon, Pierre ; Huard, Benjamin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c543t-868160dcda77d49bac688805c220fe2722d749d6e9bde4bb68b80fcd18a6af043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Emissions control</topic><topic>Entropy</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Pulse propagation</topic><topic>Quantum phenomena</topic><topic>Quantum Physics</topic><topic>Qubits (quantum computing)</topic><topic>Stimulated emission</topic><topic>Superconductivity</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cottet, Nathanaël</creatorcontrib><creatorcontrib>Jezouin, Sébastien</creatorcontrib><creatorcontrib>Bretheau, Landry</creatorcontrib><creatorcontrib>Campagne-Ibarcq, Philippe</creatorcontrib><creatorcontrib>Ficheux, Quentin</creatorcontrib><creatorcontrib>Anders, Janet</creatorcontrib><creatorcontrib>Auffèves, Alexia</creatorcontrib><creatorcontrib>Azouit, Rémi</creatorcontrib><creatorcontrib>Rouchon, Pierre</creatorcontrib><creatorcontrib>Huard, Benjamin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cottet, Nathanaël</au><au>Jezouin, Sébastien</au><au>Bretheau, Landry</au><au>Campagne-Ibarcq, Philippe</au><au>Ficheux, Quentin</au><au>Anders, Janet</au><au>Auffèves, Alexia</au><au>Azouit, Rémi</au><au>Rouchon, Pierre</au><au>Huard, Benjamin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Observing a quantum Maxwell demon at work</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2017-07-18</date><risdate>2017</risdate><volume>114</volume><issue>29</issue><spage>7561</spage><epage>7564</epage><pages>7561-7564</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>In apparent contradiction to the laws of thermodynamics, Maxwell’s demon is able to cyclically extract work from a system in contact with a thermal bath, exploiting the information about its microstate. The resolution of this paradox required the insight that an intimate relationship exists between information and thermodynamics. Here, we realize a Maxwell demon experiment that tracks the state of each constituent in both the classical and quantum regimes. The demon is a microwave cavity that encodes quantum information about a superconducting qubit and converts information into work by powering up a propagating microwave pulse by stimulated emission. Thanks to the high level of control of superconducting circuits, we directly measure the extracted work and quantify the entropy remaining in the demon’s memory. This experiment provides an enlightening illustration of the interplay of thermodynamics with quantum information.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>28674009</pmid><doi>10.1073/pnas.1704827114</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-9848-3658</orcidid><orcidid>https://orcid.org/0000-0001-6160-5634</orcidid><orcidid>https://orcid.org/0000-0003-1300-8186</orcidid><orcidid>https://orcid.org/0000-0001-5628-934X</orcidid><orcidid>https://orcid.org/0000-0002-7981-4861</orcidid><orcidid>https://orcid.org/0000-0001-9039-3810</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2017-07, Vol.114 (29), p.7561-7564 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5530687 |
source | Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Emissions control Entropy Physical Sciences Physics Pulse propagation Quantum phenomena Quantum Physics Qubits (quantum computing) Stimulated emission Superconductivity Thermodynamics |
title | Observing a quantum Maxwell demon at work |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T00%3A45%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Observing%20a%20quantum%20Maxwell%20demon%20at%20work&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Cottet,%20Nathana%C3%ABl&rft.date=2017-07-18&rft.volume=114&rft.issue=29&rft.spage=7561&rft.epage=7564&rft.pages=7561-7564&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1704827114&rft_dat=%3Cjstor_pubme%3E26486660%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1946455114&rft_id=info:pmid/28674009&rft_jstor_id=26486660&rfr_iscdi=true |