Observing a quantum Maxwell demon at work

In apparent contradiction to the laws of thermodynamics, Maxwell’s demon is able to cyclically extract work from a system in contact with a thermal bath, exploiting the information about its microstate. The resolution of this paradox required the insight that an intimate relationship exists between...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2017-07, Vol.114 (29), p.7561-7564
Hauptverfasser: Cottet, Nathanaël, Jezouin, Sébastien, Bretheau, Landry, Campagne-Ibarcq, Philippe, Ficheux, Quentin, Anders, Janet, Auffèves, Alexia, Azouit, Rémi, Rouchon, Pierre, Huard, Benjamin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7564
container_issue 29
container_start_page 7561
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 114
creator Cottet, Nathanaël
Jezouin, Sébastien
Bretheau, Landry
Campagne-Ibarcq, Philippe
Ficheux, Quentin
Anders, Janet
Auffèves, Alexia
Azouit, Rémi
Rouchon, Pierre
Huard, Benjamin
description In apparent contradiction to the laws of thermodynamics, Maxwell’s demon is able to cyclically extract work from a system in contact with a thermal bath, exploiting the information about its microstate. The resolution of this paradox required the insight that an intimate relationship exists between information and thermodynamics. Here, we realize a Maxwell demon experiment that tracks the state of each constituent in both the classical and quantum regimes. The demon is a microwave cavity that encodes quantum information about a superconducting qubit and converts information into work by powering up a propagating microwave pulse by stimulated emission. Thanks to the high level of control of superconducting circuits, we directly measure the extracted work and quantify the entropy remaining in the demon’s memory. This experiment provides an enlightening illustration of the interplay of thermodynamics with quantum information.
doi_str_mv 10.1073/pnas.1704827114
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5530687</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26486660</jstor_id><sourcerecordid>26486660</sourcerecordid><originalsourceid>FETCH-LOGICAL-c543t-868160dcda77d49bac688805c220fe2722d749d6e9bde4bb68b80fcd18a6af043</originalsourceid><addsrcrecordid>eNpdkctPxCAQh4nR6Po4e9I08aKH6kDpQC8mxvhK1njRM6GFatdtWaFd9b-Xzfo-EZhvfjB8hOxSOKYgspNZp8MxFcAlE5TyFTKiUNAUeQGrZATARCo54xtkM4QJABS5hHWywSQKHncjcnRXBuvnTfeY6ORl0F0_tMmtfnu102libOu6RPfJq_PP22St1tNgdz7XLfJweXF_fp2O765uzs_GaZXzrE8lSopgKqOFMLwodYVSSsgrxqC2TDBmBC8M2qI0lpclylJCXRkqNeoaeLZFTpe5s6Fsrals13s9VTPftNq_K6cb9bfSNU_q0c1VnmeAUsSAo2XA07-267OxWpwBRYYF0jmN7OHnZd69DDb0qm1CFWfXnXVDULSguZSUA4vowT904gbfxa-IFEee51FApE6WVOVdCN7W3y-goBbK1EKZ-lEWO_Z_z_vNfzmKwN4SmITe-Z86comIkH0AZj2aPQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1946455114</pqid></control><display><type>article</type><title>Observing a quantum Maxwell demon at work</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Cottet, Nathanaël ; Jezouin, Sébastien ; Bretheau, Landry ; Campagne-Ibarcq, Philippe ; Ficheux, Quentin ; Anders, Janet ; Auffèves, Alexia ; Azouit, Rémi ; Rouchon, Pierre ; Huard, Benjamin</creator><creatorcontrib>Cottet, Nathanaël ; Jezouin, Sébastien ; Bretheau, Landry ; Campagne-Ibarcq, Philippe ; Ficheux, Quentin ; Anders, Janet ; Auffèves, Alexia ; Azouit, Rémi ; Rouchon, Pierre ; Huard, Benjamin</creatorcontrib><description>In apparent contradiction to the laws of thermodynamics, Maxwell’s demon is able to cyclically extract work from a system in contact with a thermal bath, exploiting the information about its microstate. The resolution of this paradox required the insight that an intimate relationship exists between information and thermodynamics. Here, we realize a Maxwell demon experiment that tracks the state of each constituent in both the classical and quantum regimes. The demon is a microwave cavity that encodes quantum information about a superconducting qubit and converts information into work by powering up a propagating microwave pulse by stimulated emission. Thanks to the high level of control of superconducting circuits, we directly measure the extracted work and quantify the entropy remaining in the demon’s memory. This experiment provides an enlightening illustration of the interplay of thermodynamics with quantum information.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1704827114</identifier><identifier>PMID: 28674009</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Emissions control ; Entropy ; Physical Sciences ; Physics ; Pulse propagation ; Quantum phenomena ; Quantum Physics ; Qubits (quantum computing) ; Stimulated emission ; Superconductivity ; Thermodynamics</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2017-07, Vol.114 (29), p.7561-7564</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Jul 18, 2017</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c543t-868160dcda77d49bac688805c220fe2722d749d6e9bde4bb68b80fcd18a6af043</citedby><cites>FETCH-LOGICAL-c543t-868160dcda77d49bac688805c220fe2722d749d6e9bde4bb68b80fcd18a6af043</cites><orcidid>0000-0002-9848-3658 ; 0000-0001-6160-5634 ; 0000-0003-1300-8186 ; 0000-0001-5628-934X ; 0000-0002-7981-4861 ; 0000-0001-9039-3810</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26486660$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26486660$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28674009$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01626961$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Cottet, Nathanaël</creatorcontrib><creatorcontrib>Jezouin, Sébastien</creatorcontrib><creatorcontrib>Bretheau, Landry</creatorcontrib><creatorcontrib>Campagne-Ibarcq, Philippe</creatorcontrib><creatorcontrib>Ficheux, Quentin</creatorcontrib><creatorcontrib>Anders, Janet</creatorcontrib><creatorcontrib>Auffèves, Alexia</creatorcontrib><creatorcontrib>Azouit, Rémi</creatorcontrib><creatorcontrib>Rouchon, Pierre</creatorcontrib><creatorcontrib>Huard, Benjamin</creatorcontrib><title>Observing a quantum Maxwell demon at work</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>In apparent contradiction to the laws of thermodynamics, Maxwell’s demon is able to cyclically extract work from a system in contact with a thermal bath, exploiting the information about its microstate. The resolution of this paradox required the insight that an intimate relationship exists between information and thermodynamics. Here, we realize a Maxwell demon experiment that tracks the state of each constituent in both the classical and quantum regimes. The demon is a microwave cavity that encodes quantum information about a superconducting qubit and converts information into work by powering up a propagating microwave pulse by stimulated emission. Thanks to the high level of control of superconducting circuits, we directly measure the extracted work and quantify the entropy remaining in the demon’s memory. This experiment provides an enlightening illustration of the interplay of thermodynamics with quantum information.</description><subject>Emissions control</subject><subject>Entropy</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Pulse propagation</subject><subject>Quantum phenomena</subject><subject>Quantum Physics</subject><subject>Qubits (quantum computing)</subject><subject>Stimulated emission</subject><subject>Superconductivity</subject><subject>Thermodynamics</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdkctPxCAQh4nR6Po4e9I08aKH6kDpQC8mxvhK1njRM6GFatdtWaFd9b-Xzfo-EZhvfjB8hOxSOKYgspNZp8MxFcAlE5TyFTKiUNAUeQGrZATARCo54xtkM4QJABS5hHWywSQKHncjcnRXBuvnTfeY6ORl0F0_tMmtfnu102libOu6RPfJq_PP22St1tNgdz7XLfJweXF_fp2O765uzs_GaZXzrE8lSopgKqOFMLwodYVSSsgrxqC2TDBmBC8M2qI0lpclylJCXRkqNeoaeLZFTpe5s6Fsrals13s9VTPftNq_K6cb9bfSNU_q0c1VnmeAUsSAo2XA07-267OxWpwBRYYF0jmN7OHnZd69DDb0qm1CFWfXnXVDULSguZSUA4vowT904gbfxa-IFEee51FApE6WVOVdCN7W3y-goBbK1EKZ-lEWO_Z_z_vNfzmKwN4SmITe-Z86comIkH0AZj2aPQ</recordid><startdate>20170718</startdate><enddate>20170718</enddate><creator>Cottet, Nathanaël</creator><creator>Jezouin, Sébastien</creator><creator>Bretheau, Landry</creator><creator>Campagne-Ibarcq, Philippe</creator><creator>Ficheux, Quentin</creator><creator>Anders, Janet</creator><creator>Auffèves, Alexia</creator><creator>Azouit, Rémi</creator><creator>Rouchon, Pierre</creator><creator>Huard, Benjamin</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9848-3658</orcidid><orcidid>https://orcid.org/0000-0001-6160-5634</orcidid><orcidid>https://orcid.org/0000-0003-1300-8186</orcidid><orcidid>https://orcid.org/0000-0001-5628-934X</orcidid><orcidid>https://orcid.org/0000-0002-7981-4861</orcidid><orcidid>https://orcid.org/0000-0001-9039-3810</orcidid></search><sort><creationdate>20170718</creationdate><title>Observing a quantum Maxwell demon at work</title><author>Cottet, Nathanaël ; Jezouin, Sébastien ; Bretheau, Landry ; Campagne-Ibarcq, Philippe ; Ficheux, Quentin ; Anders, Janet ; Auffèves, Alexia ; Azouit, Rémi ; Rouchon, Pierre ; Huard, Benjamin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c543t-868160dcda77d49bac688805c220fe2722d749d6e9bde4bb68b80fcd18a6af043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Emissions control</topic><topic>Entropy</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Pulse propagation</topic><topic>Quantum phenomena</topic><topic>Quantum Physics</topic><topic>Qubits (quantum computing)</topic><topic>Stimulated emission</topic><topic>Superconductivity</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cottet, Nathanaël</creatorcontrib><creatorcontrib>Jezouin, Sébastien</creatorcontrib><creatorcontrib>Bretheau, Landry</creatorcontrib><creatorcontrib>Campagne-Ibarcq, Philippe</creatorcontrib><creatorcontrib>Ficheux, Quentin</creatorcontrib><creatorcontrib>Anders, Janet</creatorcontrib><creatorcontrib>Auffèves, Alexia</creatorcontrib><creatorcontrib>Azouit, Rémi</creatorcontrib><creatorcontrib>Rouchon, Pierre</creatorcontrib><creatorcontrib>Huard, Benjamin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cottet, Nathanaël</au><au>Jezouin, Sébastien</au><au>Bretheau, Landry</au><au>Campagne-Ibarcq, Philippe</au><au>Ficheux, Quentin</au><au>Anders, Janet</au><au>Auffèves, Alexia</au><au>Azouit, Rémi</au><au>Rouchon, Pierre</au><au>Huard, Benjamin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Observing a quantum Maxwell demon at work</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2017-07-18</date><risdate>2017</risdate><volume>114</volume><issue>29</issue><spage>7561</spage><epage>7564</epage><pages>7561-7564</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>In apparent contradiction to the laws of thermodynamics, Maxwell’s demon is able to cyclically extract work from a system in contact with a thermal bath, exploiting the information about its microstate. The resolution of this paradox required the insight that an intimate relationship exists between information and thermodynamics. Here, we realize a Maxwell demon experiment that tracks the state of each constituent in both the classical and quantum regimes. The demon is a microwave cavity that encodes quantum information about a superconducting qubit and converts information into work by powering up a propagating microwave pulse by stimulated emission. Thanks to the high level of control of superconducting circuits, we directly measure the extracted work and quantify the entropy remaining in the demon’s memory. This experiment provides an enlightening illustration of the interplay of thermodynamics with quantum information.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>28674009</pmid><doi>10.1073/pnas.1704827114</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-9848-3658</orcidid><orcidid>https://orcid.org/0000-0001-6160-5634</orcidid><orcidid>https://orcid.org/0000-0003-1300-8186</orcidid><orcidid>https://orcid.org/0000-0001-5628-934X</orcidid><orcidid>https://orcid.org/0000-0002-7981-4861</orcidid><orcidid>https://orcid.org/0000-0001-9039-3810</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2017-07, Vol.114 (29), p.7561-7564
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5530687
source Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Emissions control
Entropy
Physical Sciences
Physics
Pulse propagation
Quantum phenomena
Quantum Physics
Qubits (quantum computing)
Stimulated emission
Superconductivity
Thermodynamics
title Observing a quantum Maxwell demon at work
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T00%3A45%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Observing%20a%20quantum%20Maxwell%20demon%20at%20work&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Cottet,%20Nathana%C3%ABl&rft.date=2017-07-18&rft.volume=114&rft.issue=29&rft.spage=7561&rft.epage=7564&rft.pages=7561-7564&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1704827114&rft_dat=%3Cjstor_pubme%3E26486660%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1946455114&rft_id=info:pmid/28674009&rft_jstor_id=26486660&rfr_iscdi=true