Network analysis reveals strongly localized impacts of El Niño

Climatic conditions influence the culture and economy of societies and the performance of economies. Specifically, El Niño as an extreme climate event is known to have notable effects on health, agriculture, industry, and conflict. Here, we construct directed and weighted climate networks based on n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2017-07, Vol.114 (29), p.7543-7548
Hauptverfasser: Fan, Jingfang, Meng, Jun, Ashkenazy, Yosef, Havlin, Shlomo, Schellnhuber, Hans Joachim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7548
container_issue 29
container_start_page 7543
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 114
creator Fan, Jingfang
Meng, Jun
Ashkenazy, Yosef
Havlin, Shlomo
Schellnhuber, Hans Joachim
description Climatic conditions influence the culture and economy of societies and the performance of economies. Specifically, El Niño as an extreme climate event is known to have notable effects on health, agriculture, industry, and conflict. Here, we construct directed and weighted climate networks based on near-surface air temperature to investigate the global impacts of El Niño and La Niña. We find that regions that are characterized by higher positive/negative network “in”-weighted links are exhibiting stronger correlations with the El Niño basin and are warmer/cooler during El Niño/La Niña periods. In contrast to non-El Niño periods, these stronger in-weighted activities are found to be concentrated in very localized areas, whereas a large fraction of the globe is not influenced by the events. The regions of localized activity vary from one El Niño (La Niña) event to another; still, some El Niño (La Niña) events are more similar to each other. We quantify this similarity using network community structure. The results and methodology reported here may be used to improve the understanding and prediction of El Niño/La Niña events and also may be applied in the investigation of other climate variables.
doi_str_mv 10.1073/pnas.1701214114
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5530664</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26486657</jstor_id><sourcerecordid>26486657</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-3b7e7f23521f4597f15d256e0a8e5aa21e1d9fd6683b57130e0854bf3a4459ee3</originalsourceid><addsrcrecordid>eNpd0ctuEzEUBmALUdFQWLMCjcSGzTTn-D4bEIrSi1SVDawtZ-ZMmeCMgz0pCm_FM_BiTJS2aVl5cT7_ss_P2BuEUwQjpuve51M0gBwlonzGJggVllpW8JxNALgpreTymL3MeQkAlbLwgh1zq40EsBP26ZqGXzH9KHzvwzZ3uUh0Sz7kIg8p9jdhW4RY-9D9pqboVmtfD7mIbTEPxXX39098xY7aUdPru_OEfTubf51dlFdfzi9nn6_KWkE1lGJhyLRcKI6tVJVpUTVcaQJvSXnPkbCp2kZrKxbKoAACq-SiFV6OnEicsI_73PVmsaKmpn5IPrh16lY-bV30nXs66bvv7ibeOqUEaC3HgA93ASn-3FAe3KrLNYXge4qb7LBCZS23Ekf6_j-6jJs07menpJZKGNwFTveqTjHnRO3DYxDcrhy3K8cdyhlvvHv8hwd_38YI3u7BMg8xHeZaWq2VEf8AKW6VDg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1946453714</pqid></control><display><type>article</type><title>Network analysis reveals strongly localized impacts of El Niño</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Fan, Jingfang ; Meng, Jun ; Ashkenazy, Yosef ; Havlin, Shlomo ; Schellnhuber, Hans Joachim</creator><creatorcontrib>Fan, Jingfang ; Meng, Jun ; Ashkenazy, Yosef ; Havlin, Shlomo ; Schellnhuber, Hans Joachim</creatorcontrib><description>Climatic conditions influence the culture and economy of societies and the performance of economies. Specifically, El Niño as an extreme climate event is known to have notable effects on health, agriculture, industry, and conflict. Here, we construct directed and weighted climate networks based on near-surface air temperature to investigate the global impacts of El Niño and La Niña. We find that regions that are characterized by higher positive/negative network “in”-weighted links are exhibiting stronger correlations with the El Niño basin and are warmer/cooler during El Niño/La Niña periods. In contrast to non-El Niño periods, these stronger in-weighted activities are found to be concentrated in very localized areas, whereas a large fraction of the globe is not influenced by the events. The regions of localized activity vary from one El Niño (La Niña) event to another; still, some El Niño (La Niña) events are more similar to each other. We quantify this similarity using network community structure. The results and methodology reported here may be used to improve the understanding and prediction of El Niño/La Niña events and also may be applied in the investigation of other climate variables.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1701214114</identifier><identifier>PMID: 28674008</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Agricultural industry ; Air temperature ; Climate ; Climatic conditions ; Community structure ; El Nino ; Impact analysis ; La Nina ; Network analysis ; Ocean currents ; Physical Sciences</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2017-07, Vol.114 (29), p.7543-7548</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Jul 18, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-3b7e7f23521f4597f15d256e0a8e5aa21e1d9fd6683b57130e0854bf3a4459ee3</citedby><cites>FETCH-LOGICAL-c509t-3b7e7f23521f4597f15d256e0a8e5aa21e1d9fd6683b57130e0854bf3a4459ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26486657$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26486657$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28674008$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fan, Jingfang</creatorcontrib><creatorcontrib>Meng, Jun</creatorcontrib><creatorcontrib>Ashkenazy, Yosef</creatorcontrib><creatorcontrib>Havlin, Shlomo</creatorcontrib><creatorcontrib>Schellnhuber, Hans Joachim</creatorcontrib><title>Network analysis reveals strongly localized impacts of El Niño</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Climatic conditions influence the culture and economy of societies and the performance of economies. Specifically, El Niño as an extreme climate event is known to have notable effects on health, agriculture, industry, and conflict. Here, we construct directed and weighted climate networks based on near-surface air temperature to investigate the global impacts of El Niño and La Niña. We find that regions that are characterized by higher positive/negative network “in”-weighted links are exhibiting stronger correlations with the El Niño basin and are warmer/cooler during El Niño/La Niña periods. In contrast to non-El Niño periods, these stronger in-weighted activities are found to be concentrated in very localized areas, whereas a large fraction of the globe is not influenced by the events. The regions of localized activity vary from one El Niño (La Niña) event to another; still, some El Niño (La Niña) events are more similar to each other. We quantify this similarity using network community structure. The results and methodology reported here may be used to improve the understanding and prediction of El Niño/La Niña events and also may be applied in the investigation of other climate variables.</description><subject>Agricultural industry</subject><subject>Air temperature</subject><subject>Climate</subject><subject>Climatic conditions</subject><subject>Community structure</subject><subject>El Nino</subject><subject>Impact analysis</subject><subject>La Nina</subject><subject>Network analysis</subject><subject>Ocean currents</subject><subject>Physical Sciences</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpd0ctuEzEUBmALUdFQWLMCjcSGzTTn-D4bEIrSi1SVDawtZ-ZMmeCMgz0pCm_FM_BiTJS2aVl5cT7_ss_P2BuEUwQjpuve51M0gBwlonzGJggVllpW8JxNALgpreTymL3MeQkAlbLwgh1zq40EsBP26ZqGXzH9KHzvwzZ3uUh0Sz7kIg8p9jdhW4RY-9D9pqboVmtfD7mIbTEPxXX39098xY7aUdPru_OEfTubf51dlFdfzi9nn6_KWkE1lGJhyLRcKI6tVJVpUTVcaQJvSXnPkbCp2kZrKxbKoAACq-SiFV6OnEicsI_73PVmsaKmpn5IPrh16lY-bV30nXs66bvv7ibeOqUEaC3HgA93ASn-3FAe3KrLNYXge4qb7LBCZS23Ekf6_j-6jJs07menpJZKGNwFTveqTjHnRO3DYxDcrhy3K8cdyhlvvHv8hwd_38YI3u7BMg8xHeZaWq2VEf8AKW6VDg</recordid><startdate>20170718</startdate><enddate>20170718</enddate><creator>Fan, Jingfang</creator><creator>Meng, Jun</creator><creator>Ashkenazy, Yosef</creator><creator>Havlin, Shlomo</creator><creator>Schellnhuber, Hans Joachim</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170718</creationdate><title>Network analysis reveals strongly localized impacts of El Niño</title><author>Fan, Jingfang ; Meng, Jun ; Ashkenazy, Yosef ; Havlin, Shlomo ; Schellnhuber, Hans Joachim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-3b7e7f23521f4597f15d256e0a8e5aa21e1d9fd6683b57130e0854bf3a4459ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Agricultural industry</topic><topic>Air temperature</topic><topic>Climate</topic><topic>Climatic conditions</topic><topic>Community structure</topic><topic>El Nino</topic><topic>Impact analysis</topic><topic>La Nina</topic><topic>Network analysis</topic><topic>Ocean currents</topic><topic>Physical Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Jingfang</creatorcontrib><creatorcontrib>Meng, Jun</creatorcontrib><creatorcontrib>Ashkenazy, Yosef</creatorcontrib><creatorcontrib>Havlin, Shlomo</creatorcontrib><creatorcontrib>Schellnhuber, Hans Joachim</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Jingfang</au><au>Meng, Jun</au><au>Ashkenazy, Yosef</au><au>Havlin, Shlomo</au><au>Schellnhuber, Hans Joachim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Network analysis reveals strongly localized impacts of El Niño</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2017-07-18</date><risdate>2017</risdate><volume>114</volume><issue>29</issue><spage>7543</spage><epage>7548</epage><pages>7543-7548</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Climatic conditions influence the culture and economy of societies and the performance of economies. Specifically, El Niño as an extreme climate event is known to have notable effects on health, agriculture, industry, and conflict. Here, we construct directed and weighted climate networks based on near-surface air temperature to investigate the global impacts of El Niño and La Niña. We find that regions that are characterized by higher positive/negative network “in”-weighted links are exhibiting stronger correlations with the El Niño basin and are warmer/cooler during El Niño/La Niña periods. In contrast to non-El Niño periods, these stronger in-weighted activities are found to be concentrated in very localized areas, whereas a large fraction of the globe is not influenced by the events. The regions of localized activity vary from one El Niño (La Niña) event to another; still, some El Niño (La Niña) events are more similar to each other. We quantify this similarity using network community structure. The results and methodology reported here may be used to improve the understanding and prediction of El Niño/La Niña events and also may be applied in the investigation of other climate variables.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>28674008</pmid><doi>10.1073/pnas.1701214114</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2017-07, Vol.114 (29), p.7543-7548
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5530664
source Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Agricultural industry
Air temperature
Climate
Climatic conditions
Community structure
El Nino
Impact analysis
La Nina
Network analysis
Ocean currents
Physical Sciences
title Network analysis reveals strongly localized impacts of El Niño
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A24%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Network%20analysis%20reveals%20strongly%20localized%20impacts%20of%20El%20Ni%C3%B1o&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Fan,%20Jingfang&rft.date=2017-07-18&rft.volume=114&rft.issue=29&rft.spage=7543&rft.epage=7548&rft.pages=7543-7548&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1701214114&rft_dat=%3Cjstor_pubme%3E26486657%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1946453714&rft_id=info:pmid/28674008&rft_jstor_id=26486657&rfr_iscdi=true