Impact of Chromogranin A deficiency on catecholamine storage, catecholamine granule morphology and chromaffin cell energy metabolism in vivo

Chromogranin A (CgA) is a prohormone and granulogenic factor in neuroendocrine tissues with a regulated secretory pathway. The impact of CgA depletion on secretory granule formation has been previously demonstrated in cell culture. However, studies linking the structural effects of CgA deficiency wi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell and tissue research 2016-03, Vol.363 (3), p.693-712
Hauptverfasser: Pasqua, Teresa, Mahata, Sumana, Bandyopadhyay, Gautam K., Biswas, Angshuman, Perkins, Guy A., Sinha-Hikim, Amiya P., Goldstein, David S., Eiden, Lee E., Mahata, Sushil K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 712
container_issue 3
container_start_page 693
container_title Cell and tissue research
container_volume 363
creator Pasqua, Teresa
Mahata, Sumana
Bandyopadhyay, Gautam K.
Biswas, Angshuman
Perkins, Guy A.
Sinha-Hikim, Amiya P.
Goldstein, David S.
Eiden, Lee E.
Mahata, Sushil K.
description Chromogranin A (CgA) is a prohormone and granulogenic factor in neuroendocrine tissues with a regulated secretory pathway. The impact of CgA depletion on secretory granule formation has been previously demonstrated in cell culture. However, studies linking the structural effects of CgA deficiency with secretory performance and cell metabolism in the adrenomedullary chromaffin cells in vivo have not previously been reported. Adrenomedullary content of the secreted adrenal catecholamines norepinephrine (NE) and epinephrine (EPI) was decreased 30–40 % in Chga-KO mice. Quantification of NE and EPI-storing dense core (DC) vesicles (DCV) revealed decreased DCV numbers in chromaffin cells in Chga-KO mice. For both cell types, the DCV diameter in Chga-KO mice was less (100–200 nm) than in WT mice (200–350 nm). The volume density of the vesicle and vesicle number was also lower in Chga-KO mice. Chga-KO mice showed an ~47 % increase in DCV/DC ratio, implying vesicle swelling due to increased osmotically active free catecholamines. Upon challenge with 2 U/kg insulin, there was a diminution in adrenomedullary EPI, no change in NE and a very large increase in the EPI and NE precursor dopamine (DA), consistent with increased catecholamine biosynthesis during prolonged secretion. We found dilated mitochondrial cristae, endoplasmic reticulum and Golgi complex, as well as increased synaptic mitochondria, synaptic vesicles and glycogen granules in Chga-KO mice compared to WT mice, suggesting that decreased granulogenesis and catecholamine storage in CgA-deficient mouse adrenal medulla is compensated by increased VMAT-dependent catecholamine update into storage vesicles, at the expense of enhanced energy expenditure by the chromaffin cell.
doi_str_mv 10.1007/s00441-015-2316-3
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5529139</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A443758546</galeid><sourcerecordid>A443758546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c728t-d8e2689b906bc40187d6a636a8d71300e16ec11011cb98986eb3ee1505e3f4223</originalsourceid><addsrcrecordid>eNp9kt-K1DAUxoso7rj6AN5oQBAv7JqTtEl7szAM_llY8EIXvAuZ9LSTpU3GpB2Yd_ChTZ11mVlEchE45_t-4Zx8WfYS6AVQKj9ESosCcgplzjiInD_KFlBwltNKVo-zBeWU5VKIH2fZsxhvKYVCiPppdsZEKVnJ60X262rYajMS35LVJvjBd0E768iSNNhaY9GZPfGOGD2i2fheD9YhiaMPusP3D8qzd-qRDD5sU9F3e6JdQ8wM1m2bsAb7nqDDkFoDjnrtexsHkjo7u_PPsyet7iO-uLvPs5tPH7-vvuTXXz9frZbXuZGsGvOmQiaqel1TsTYFhUo2QgsudNVI4JQiCDQAFMCs66quBK45IpS0RN4WjPHz7PLA3U7rARuDbgy6V9tgBx32ymurTjvOblTnd6osWQ28ToB3d4Dgf04YRzXYOM-mHfopKpBCUiF5IZL0zQPprZ-CS-MllQSakHCk6nSPyrrWp3fNDFXLouCyrMo_rIt_qNJpcLDGu_RjqX5ieHtk2KDux030_TRa7-KpEA5CE3yMAdv7ZQBVc9bUIWsqZU3NWVM8eV4db_He8TdcScAOgpharsNwNPp_qK8PplZ7pbtgo7r5xiiIlF4hRVnz39yn6EU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1771055216</pqid></control><display><type>article</type><title>Impact of Chromogranin A deficiency on catecholamine storage, catecholamine granule morphology and chromaffin cell energy metabolism in vivo</title><source>MEDLINE</source><source>Springer Journals</source><creator>Pasqua, Teresa ; Mahata, Sumana ; Bandyopadhyay, Gautam K. ; Biswas, Angshuman ; Perkins, Guy A. ; Sinha-Hikim, Amiya P. ; Goldstein, David S. ; Eiden, Lee E. ; Mahata, Sushil K.</creator><creatorcontrib>Pasqua, Teresa ; Mahata, Sumana ; Bandyopadhyay, Gautam K. ; Biswas, Angshuman ; Perkins, Guy A. ; Sinha-Hikim, Amiya P. ; Goldstein, David S. ; Eiden, Lee E. ; Mahata, Sushil K.</creatorcontrib><description>Chromogranin A (CgA) is a prohormone and granulogenic factor in neuroendocrine tissues with a regulated secretory pathway. The impact of CgA depletion on secretory granule formation has been previously demonstrated in cell culture. However, studies linking the structural effects of CgA deficiency with secretory performance and cell metabolism in the adrenomedullary chromaffin cells in vivo have not previously been reported. Adrenomedullary content of the secreted adrenal catecholamines norepinephrine (NE) and epinephrine (EPI) was decreased 30–40 % in Chga-KO mice. Quantification of NE and EPI-storing dense core (DC) vesicles (DCV) revealed decreased DCV numbers in chromaffin cells in Chga-KO mice. For both cell types, the DCV diameter in Chga-KO mice was less (100–200 nm) than in WT mice (200–350 nm). The volume density of the vesicle and vesicle number was also lower in Chga-KO mice. Chga-KO mice showed an ~47 % increase in DCV/DC ratio, implying vesicle swelling due to increased osmotically active free catecholamines. Upon challenge with 2 U/kg insulin, there was a diminution in adrenomedullary EPI, no change in NE and a very large increase in the EPI and NE precursor dopamine (DA), consistent with increased catecholamine biosynthesis during prolonged secretion. We found dilated mitochondrial cristae, endoplasmic reticulum and Golgi complex, as well as increased synaptic mitochondria, synaptic vesicles and glycogen granules in Chga-KO mice compared to WT mice, suggesting that decreased granulogenesis and catecholamine storage in CgA-deficient mouse adrenal medulla is compensated by increased VMAT-dependent catecholamine update into storage vesicles, at the expense of enhanced energy expenditure by the chromaffin cell.</description><identifier>ISSN: 0302-766X</identifier><identifier>EISSN: 1432-0878</identifier><identifier>DOI: 10.1007/s00441-015-2316-3</identifier><identifier>PMID: 26572539</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adrenal Glands - drug effects ; Adrenal Glands - metabolism ; Animals ; Biomedical and Life Sciences ; Biomedicine ; Blotting, Western ; Catecholamines ; Catecholamines - metabolism ; Cellular biology ; Chromaffin Granules - drug effects ; Chromaffin Granules - metabolism ; Chromaffin Granules - ultrastructure ; Chromogranin A - deficiency ; Chromogranin A - metabolism ; Dopamine - metabolism ; Endocytosis - drug effects ; Endoplasmic Reticulum - metabolism ; Endoplasmic Reticulum - ultrastructure ; Energy Metabolism - drug effects ; Epinephrine - metabolism ; Exocytosis - drug effects ; Glucose - metabolism ; Glycogen ; Glycogen - metabolism ; Golgi Apparatus - drug effects ; Golgi Apparatus - metabolism ; Human Genetics ; Humans ; Insulin - pharmacology ; Metabolism ; Mice, Inbred C57BL ; Mice, Knockout ; Mitochondria - drug effects ; Mitochondria - metabolism ; Mitochondrial DNA ; Molecular Medicine ; Morphology ; Norepinephrine - metabolism ; Proteins ; Proteomics ; Regular Article ; Splanchnic Nerves - drug effects ; Splanchnic Nerves - metabolism ; Synaptic Vesicles - drug effects ; Synaptic Vesicles - metabolism</subject><ispartof>Cell and tissue research, 2016-03, Vol.363 (3), p.693-712</ispartof><rights>Springer-Verlag Berlin Heidelberg 2015</rights><rights>COPYRIGHT 2016 Springer</rights><rights>Springer-Verlag Berlin Heidelberg 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c728t-d8e2689b906bc40187d6a636a8d71300e16ec11011cb98986eb3ee1505e3f4223</citedby><cites>FETCH-LOGICAL-c728t-d8e2689b906bc40187d6a636a8d71300e16ec11011cb98986eb3ee1505e3f4223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00441-015-2316-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00441-015-2316-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,315,781,785,886,27929,27930,41493,42562,51324</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26572539$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pasqua, Teresa</creatorcontrib><creatorcontrib>Mahata, Sumana</creatorcontrib><creatorcontrib>Bandyopadhyay, Gautam K.</creatorcontrib><creatorcontrib>Biswas, Angshuman</creatorcontrib><creatorcontrib>Perkins, Guy A.</creatorcontrib><creatorcontrib>Sinha-Hikim, Amiya P.</creatorcontrib><creatorcontrib>Goldstein, David S.</creatorcontrib><creatorcontrib>Eiden, Lee E.</creatorcontrib><creatorcontrib>Mahata, Sushil K.</creatorcontrib><title>Impact of Chromogranin A deficiency on catecholamine storage, catecholamine granule morphology and chromaffin cell energy metabolism in vivo</title><title>Cell and tissue research</title><addtitle>Cell Tissue Res</addtitle><addtitle>Cell Tissue Res</addtitle><description>Chromogranin A (CgA) is a prohormone and granulogenic factor in neuroendocrine tissues with a regulated secretory pathway. The impact of CgA depletion on secretory granule formation has been previously demonstrated in cell culture. However, studies linking the structural effects of CgA deficiency with secretory performance and cell metabolism in the adrenomedullary chromaffin cells in vivo have not previously been reported. Adrenomedullary content of the secreted adrenal catecholamines norepinephrine (NE) and epinephrine (EPI) was decreased 30–40 % in Chga-KO mice. Quantification of NE and EPI-storing dense core (DC) vesicles (DCV) revealed decreased DCV numbers in chromaffin cells in Chga-KO mice. For both cell types, the DCV diameter in Chga-KO mice was less (100–200 nm) than in WT mice (200–350 nm). The volume density of the vesicle and vesicle number was also lower in Chga-KO mice. Chga-KO mice showed an ~47 % increase in DCV/DC ratio, implying vesicle swelling due to increased osmotically active free catecholamines. Upon challenge with 2 U/kg insulin, there was a diminution in adrenomedullary EPI, no change in NE and a very large increase in the EPI and NE precursor dopamine (DA), consistent with increased catecholamine biosynthesis during prolonged secretion. We found dilated mitochondrial cristae, endoplasmic reticulum and Golgi complex, as well as increased synaptic mitochondria, synaptic vesicles and glycogen granules in Chga-KO mice compared to WT mice, suggesting that decreased granulogenesis and catecholamine storage in CgA-deficient mouse adrenal medulla is compensated by increased VMAT-dependent catecholamine update into storage vesicles, at the expense of enhanced energy expenditure by the chromaffin cell.</description><subject>Adrenal Glands - drug effects</subject><subject>Adrenal Glands - metabolism</subject><subject>Animals</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Blotting, Western</subject><subject>Catecholamines</subject><subject>Catecholamines - metabolism</subject><subject>Cellular biology</subject><subject>Chromaffin Granules - drug effects</subject><subject>Chromaffin Granules - metabolism</subject><subject>Chromaffin Granules - ultrastructure</subject><subject>Chromogranin A - deficiency</subject><subject>Chromogranin A - metabolism</subject><subject>Dopamine - metabolism</subject><subject>Endocytosis - drug effects</subject><subject>Endoplasmic Reticulum - metabolism</subject><subject>Endoplasmic Reticulum - ultrastructure</subject><subject>Energy Metabolism - drug effects</subject><subject>Epinephrine - metabolism</subject><subject>Exocytosis - drug effects</subject><subject>Glucose - metabolism</subject><subject>Glycogen</subject><subject>Glycogen - metabolism</subject><subject>Golgi Apparatus - drug effects</subject><subject>Golgi Apparatus - metabolism</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Insulin - pharmacology</subject><subject>Metabolism</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Mitochondria - drug effects</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondrial DNA</subject><subject>Molecular Medicine</subject><subject>Morphology</subject><subject>Norepinephrine - metabolism</subject><subject>Proteins</subject><subject>Proteomics</subject><subject>Regular Article</subject><subject>Splanchnic Nerves - drug effects</subject><subject>Splanchnic Nerves - metabolism</subject><subject>Synaptic Vesicles - drug effects</subject><subject>Synaptic Vesicles - metabolism</subject><issn>0302-766X</issn><issn>1432-0878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kt-K1DAUxoso7rj6AN5oQBAv7JqTtEl7szAM_llY8EIXvAuZ9LSTpU3GpB2Yd_ChTZ11mVlEchE45_t-4Zx8WfYS6AVQKj9ESosCcgplzjiInD_KFlBwltNKVo-zBeWU5VKIH2fZsxhvKYVCiPppdsZEKVnJ60X262rYajMS35LVJvjBd0E768iSNNhaY9GZPfGOGD2i2fheD9YhiaMPusP3D8qzd-qRDD5sU9F3e6JdQ8wM1m2bsAb7nqDDkFoDjnrtexsHkjo7u_PPsyet7iO-uLvPs5tPH7-vvuTXXz9frZbXuZGsGvOmQiaqel1TsTYFhUo2QgsudNVI4JQiCDQAFMCs66quBK45IpS0RN4WjPHz7PLA3U7rARuDbgy6V9tgBx32ymurTjvOblTnd6osWQ28ToB3d4Dgf04YRzXYOM-mHfopKpBCUiF5IZL0zQPprZ-CS-MllQSakHCk6nSPyrrWp3fNDFXLouCyrMo_rIt_qNJpcLDGu_RjqX5ieHtk2KDux030_TRa7-KpEA5CE3yMAdv7ZQBVc9bUIWsqZU3NWVM8eV4db_He8TdcScAOgpharsNwNPp_qK8PplZ7pbtgo7r5xiiIlF4hRVnz39yn6EU</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Pasqua, Teresa</creator><creator>Mahata, Sumana</creator><creator>Bandyopadhyay, Gautam K.</creator><creator>Biswas, Angshuman</creator><creator>Perkins, Guy A.</creator><creator>Sinha-Hikim, Amiya P.</creator><creator>Goldstein, David S.</creator><creator>Eiden, Lee E.</creator><creator>Mahata, Sushil K.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160301</creationdate><title>Impact of Chromogranin A deficiency on catecholamine storage, catecholamine granule morphology and chromaffin cell energy metabolism in vivo</title><author>Pasqua, Teresa ; Mahata, Sumana ; Bandyopadhyay, Gautam K. ; Biswas, Angshuman ; Perkins, Guy A. ; Sinha-Hikim, Amiya P. ; Goldstein, David S. ; Eiden, Lee E. ; Mahata, Sushil K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c728t-d8e2689b906bc40187d6a636a8d71300e16ec11011cb98986eb3ee1505e3f4223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adrenal Glands - drug effects</topic><topic>Adrenal Glands - metabolism</topic><topic>Animals</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Blotting, Western</topic><topic>Catecholamines</topic><topic>Catecholamines - metabolism</topic><topic>Cellular biology</topic><topic>Chromaffin Granules - drug effects</topic><topic>Chromaffin Granules - metabolism</topic><topic>Chromaffin Granules - ultrastructure</topic><topic>Chromogranin A - deficiency</topic><topic>Chromogranin A - metabolism</topic><topic>Dopamine - metabolism</topic><topic>Endocytosis - drug effects</topic><topic>Endoplasmic Reticulum - metabolism</topic><topic>Endoplasmic Reticulum - ultrastructure</topic><topic>Energy Metabolism - drug effects</topic><topic>Epinephrine - metabolism</topic><topic>Exocytosis - drug effects</topic><topic>Glucose - metabolism</topic><topic>Glycogen</topic><topic>Glycogen - metabolism</topic><topic>Golgi Apparatus - drug effects</topic><topic>Golgi Apparatus - metabolism</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Insulin - pharmacology</topic><topic>Metabolism</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Mitochondria - drug effects</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondrial DNA</topic><topic>Molecular Medicine</topic><topic>Morphology</topic><topic>Norepinephrine - metabolism</topic><topic>Proteins</topic><topic>Proteomics</topic><topic>Regular Article</topic><topic>Splanchnic Nerves - drug effects</topic><topic>Splanchnic Nerves - metabolism</topic><topic>Synaptic Vesicles - drug effects</topic><topic>Synaptic Vesicles - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pasqua, Teresa</creatorcontrib><creatorcontrib>Mahata, Sumana</creatorcontrib><creatorcontrib>Bandyopadhyay, Gautam K.</creatorcontrib><creatorcontrib>Biswas, Angshuman</creatorcontrib><creatorcontrib>Perkins, Guy A.</creatorcontrib><creatorcontrib>Sinha-Hikim, Amiya P.</creatorcontrib><creatorcontrib>Goldstein, David S.</creatorcontrib><creatorcontrib>Eiden, Lee E.</creatorcontrib><creatorcontrib>Mahata, Sushil K.</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>ProQuest Nursing &amp; Allied Health Database</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell and tissue research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pasqua, Teresa</au><au>Mahata, Sumana</au><au>Bandyopadhyay, Gautam K.</au><au>Biswas, Angshuman</au><au>Perkins, Guy A.</au><au>Sinha-Hikim, Amiya P.</au><au>Goldstein, David S.</au><au>Eiden, Lee E.</au><au>Mahata, Sushil K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of Chromogranin A deficiency on catecholamine storage, catecholamine granule morphology and chromaffin cell energy metabolism in vivo</atitle><jtitle>Cell and tissue research</jtitle><stitle>Cell Tissue Res</stitle><addtitle>Cell Tissue Res</addtitle><date>2016-03-01</date><risdate>2016</risdate><volume>363</volume><issue>3</issue><spage>693</spage><epage>712</epage><pages>693-712</pages><issn>0302-766X</issn><eissn>1432-0878</eissn><abstract>Chromogranin A (CgA) is a prohormone and granulogenic factor in neuroendocrine tissues with a regulated secretory pathway. The impact of CgA depletion on secretory granule formation has been previously demonstrated in cell culture. However, studies linking the structural effects of CgA deficiency with secretory performance and cell metabolism in the adrenomedullary chromaffin cells in vivo have not previously been reported. Adrenomedullary content of the secreted adrenal catecholamines norepinephrine (NE) and epinephrine (EPI) was decreased 30–40 % in Chga-KO mice. Quantification of NE and EPI-storing dense core (DC) vesicles (DCV) revealed decreased DCV numbers in chromaffin cells in Chga-KO mice. For both cell types, the DCV diameter in Chga-KO mice was less (100–200 nm) than in WT mice (200–350 nm). The volume density of the vesicle and vesicle number was also lower in Chga-KO mice. Chga-KO mice showed an ~47 % increase in DCV/DC ratio, implying vesicle swelling due to increased osmotically active free catecholamines. Upon challenge with 2 U/kg insulin, there was a diminution in adrenomedullary EPI, no change in NE and a very large increase in the EPI and NE precursor dopamine (DA), consistent with increased catecholamine biosynthesis during prolonged secretion. We found dilated mitochondrial cristae, endoplasmic reticulum and Golgi complex, as well as increased synaptic mitochondria, synaptic vesicles and glycogen granules in Chga-KO mice compared to WT mice, suggesting that decreased granulogenesis and catecholamine storage in CgA-deficient mouse adrenal medulla is compensated by increased VMAT-dependent catecholamine update into storage vesicles, at the expense of enhanced energy expenditure by the chromaffin cell.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>26572539</pmid><doi>10.1007/s00441-015-2316-3</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0302-766X
ispartof Cell and tissue research, 2016-03, Vol.363 (3), p.693-712
issn 0302-766X
1432-0878
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5529139
source MEDLINE; Springer Journals
subjects Adrenal Glands - drug effects
Adrenal Glands - metabolism
Animals
Biomedical and Life Sciences
Biomedicine
Blotting, Western
Catecholamines
Catecholamines - metabolism
Cellular biology
Chromaffin Granules - drug effects
Chromaffin Granules - metabolism
Chromaffin Granules - ultrastructure
Chromogranin A - deficiency
Chromogranin A - metabolism
Dopamine - metabolism
Endocytosis - drug effects
Endoplasmic Reticulum - metabolism
Endoplasmic Reticulum - ultrastructure
Energy Metabolism - drug effects
Epinephrine - metabolism
Exocytosis - drug effects
Glucose - metabolism
Glycogen
Glycogen - metabolism
Golgi Apparatus - drug effects
Golgi Apparatus - metabolism
Human Genetics
Humans
Insulin - pharmacology
Metabolism
Mice, Inbred C57BL
Mice, Knockout
Mitochondria - drug effects
Mitochondria - metabolism
Mitochondrial DNA
Molecular Medicine
Morphology
Norepinephrine - metabolism
Proteins
Proteomics
Regular Article
Splanchnic Nerves - drug effects
Splanchnic Nerves - metabolism
Synaptic Vesicles - drug effects
Synaptic Vesicles - metabolism
title Impact of Chromogranin A deficiency on catecholamine storage, catecholamine granule morphology and chromaffin cell energy metabolism in vivo
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T22%3A28%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20Chromogranin%20A%20deficiency%20on%20catecholamine%20storage,%20catecholamine%20granule%20morphology%20and%20chromaffin%20cell%20energy%20metabolism%20in%20vivo&rft.jtitle=Cell%20and%20tissue%20research&rft.au=Pasqua,%20Teresa&rft.date=2016-03-01&rft.volume=363&rft.issue=3&rft.spage=693&rft.epage=712&rft.pages=693-712&rft.issn=0302-766X&rft.eissn=1432-0878&rft_id=info:doi/10.1007/s00441-015-2316-3&rft_dat=%3Cgale_pubme%3EA443758546%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1771055216&rft_id=info:pmid/26572539&rft_galeid=A443758546&rfr_iscdi=true