Claudins are essential for cell shape changes and convergent extension movements during neural tube closure

During neural tube closure, regulated changes at the level of individual cells are translated into large-scale morphogenetic movements to facilitate conversion of the flat neural plate into a closed tube. Throughout this process, the integrity of the neural epithelium is maintained via cell interact...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Developmental biology 2017-08, Vol.428 (1), p.25-38
Hauptverfasser: Baumholtz, Amanda I., Simard, Annie, Nikolopoulou, Evanthia, Oosenbrug, Marcus, Collins, Michelle M., Piontek, Anna, Krause, Gerd, Piontek, Jörg, Greene, Nicholas D.E., Ryan, Aimee K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 38
container_issue 1
container_start_page 25
container_title Developmental biology
container_volume 428
creator Baumholtz, Amanda I.
Simard, Annie
Nikolopoulou, Evanthia
Oosenbrug, Marcus
Collins, Michelle M.
Piontek, Anna
Krause, Gerd
Piontek, Jörg
Greene, Nicholas D.E.
Ryan, Aimee K.
description During neural tube closure, regulated changes at the level of individual cells are translated into large-scale morphogenetic movements to facilitate conversion of the flat neural plate into a closed tube. Throughout this process, the integrity of the neural epithelium is maintained via cell interactions through intercellular junctions, including apical tight junctions. Members of the claudin family of tight junction proteins regulate paracellular permeability, apical-basal cell polarity and link the tight junction to the actin cytoskeleton. Here, we show that claudins are essential for neural tube closure: the simultaneous removal of Cldn3, −4 and −8 from tight junctions caused folate-resistant open neural tube defects. Their removal did not affect cell type differentiation, neural ectoderm patterning nor overall apical-basal polarity. However, apical accumulation of Vangl2, RhoA, and pMLC were reduced, and Par3 and Cdc42 were mislocalized at the apical cell surface. Our data showed that claudins act upstream of planar cell polarity and RhoA/ROCK signaling to regulate cell intercalation and actin-myosin contraction, which are required for convergent extension and apical constriction during neural tube closure, respectively. [Display omitted] •Simultaneous removal of Cldn3, −4 and −8 causes open neural tube defects.•Folic acid cannot rescue open NTDs caused by depletion of Cldn3, −4 and −8.•Removal of Cldn3, −4 and −8 prevents convergent extension.•Apical constriction to form the median hinge point requires Cldn3, −4 and −8.•Claudins localize polarity complex components to the apical surface.
doi_str_mv 10.1016/j.ydbio.2017.05.013
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5523803</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0012160617300441</els_id><sourcerecordid>1903170562</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-efc2e9075d715a41788552fdf55cc5f9c2f61e404440a8f47fbb87d998a5fc7f3</originalsourceid><addsrcrecordid>eNp9kU-r1DAUxYMovvHpJxAkSzetN23SpgsFGfwHD9wouAtpcjOTsU3GpB18396M83zoxlXg5nfOPdxDyHMGNQPWvTrUt3b0sW6A9TWIGlj7gGwYDKISHf_2kGwAWFOxDror8iTnAwC0UraPyVUjBReSiw35vp30an3IVCekmDOGxeuJupiowWmiea-PSM1ehx0WKFhqYjhh2hWQ4s8FQ_Yx0DmecC6jTO2afNjRgGsqPss6FvUU85rwKXnk9JTx2d17Tb6-f_dl-7G6-fzh0_btTWW4GJYKnWlwgF7YngnNWS-lEI2zTghjhBtM4zqGHDjnoKXjvRtH2dthkFo407v2mry5-B7XcUZrSqwSRR2Tn3W6VVF79e9P8Hu1iydV1rQS2mLw8s4gxR8r5kXNPp-voQPGNSs2QMt6EF1T0PaCmhRzTuju1zBQ55rUQf2uSZ1rUiBUqamoXvyd8F7zp5cCvL4AWO508phUNh6DQesTmkXZ6P-74BfVhqiJ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1903170562</pqid></control><display><type>article</type><title>Claudins are essential for cell shape changes and convergent extension movements during neural tube closure</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Baumholtz, Amanda I. ; Simard, Annie ; Nikolopoulou, Evanthia ; Oosenbrug, Marcus ; Collins, Michelle M. ; Piontek, Anna ; Krause, Gerd ; Piontek, Jörg ; Greene, Nicholas D.E. ; Ryan, Aimee K.</creator><creatorcontrib>Baumholtz, Amanda I. ; Simard, Annie ; Nikolopoulou, Evanthia ; Oosenbrug, Marcus ; Collins, Michelle M. ; Piontek, Anna ; Krause, Gerd ; Piontek, Jörg ; Greene, Nicholas D.E. ; Ryan, Aimee K.</creatorcontrib><description>During neural tube closure, regulated changes at the level of individual cells are translated into large-scale morphogenetic movements to facilitate conversion of the flat neural plate into a closed tube. Throughout this process, the integrity of the neural epithelium is maintained via cell interactions through intercellular junctions, including apical tight junctions. Members of the claudin family of tight junction proteins regulate paracellular permeability, apical-basal cell polarity and link the tight junction to the actin cytoskeleton. Here, we show that claudins are essential for neural tube closure: the simultaneous removal of Cldn3, −4 and −8 from tight junctions caused folate-resistant open neural tube defects. Their removal did not affect cell type differentiation, neural ectoderm patterning nor overall apical-basal polarity. However, apical accumulation of Vangl2, RhoA, and pMLC were reduced, and Par3 and Cdc42 were mislocalized at the apical cell surface. Our data showed that claudins act upstream of planar cell polarity and RhoA/ROCK signaling to regulate cell intercalation and actin-myosin contraction, which are required for convergent extension and apical constriction during neural tube closure, respectively. [Display omitted] •Simultaneous removal of Cldn3, −4 and −8 causes open neural tube defects.•Folic acid cannot rescue open NTDs caused by depletion of Cldn3, −4 and −8.•Removal of Cldn3, −4 and −8 prevents convergent extension.•Apical constriction to form the median hinge point requires Cldn3, −4 and −8.•Claudins localize polarity complex components to the apical surface.</description><identifier>ISSN: 0012-1606</identifier><identifier>EISSN: 1095-564X</identifier><identifier>DOI: 10.1016/j.ydbio.2017.05.013</identifier><identifier>PMID: 28545845</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Actin Cytoskeleton - metabolism ; Animals ; Apical constriction ; cdc42 GTP-Binding Protein - metabolism ; Cell Adhesion Molecules - metabolism ; Cell Polarity - physiology ; Cell Shape - physiology ; Chick Embryo ; Claudin ; Claudin-3 - genetics ; Claudin-3 - metabolism ; Claudin-4 - genetics ; Claudin-4 - metabolism ; Claudins - genetics ; Claudins - metabolism ; Convergent extension ; Embryo Culture Techniques ; Mice ; Morphogenesis - physiology ; Nerve Tissue Proteins - metabolism ; Neural Plate - embryology ; Neural Tube - embryology ; Neural tube defects ; Neural Tube Defects - genetics ; Neurulation - physiology ; rho GTP-Binding Proteins - metabolism ; Signal Transduction - physiology ; Tight junctions ; Tight Junctions - physiology</subject><ispartof>Developmental biology, 2017-08, Vol.428 (1), p.25-38</ispartof><rights>2017 The Authors</rights><rights>Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>2017 The Authors 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-efc2e9075d715a41788552fdf55cc5f9c2f61e404440a8f47fbb87d998a5fc7f3</citedby><cites>FETCH-LOGICAL-c459t-efc2e9075d715a41788552fdf55cc5f9c2f61e404440a8f47fbb87d998a5fc7f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ydbio.2017.05.013$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28545845$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Baumholtz, Amanda I.</creatorcontrib><creatorcontrib>Simard, Annie</creatorcontrib><creatorcontrib>Nikolopoulou, Evanthia</creatorcontrib><creatorcontrib>Oosenbrug, Marcus</creatorcontrib><creatorcontrib>Collins, Michelle M.</creatorcontrib><creatorcontrib>Piontek, Anna</creatorcontrib><creatorcontrib>Krause, Gerd</creatorcontrib><creatorcontrib>Piontek, Jörg</creatorcontrib><creatorcontrib>Greene, Nicholas D.E.</creatorcontrib><creatorcontrib>Ryan, Aimee K.</creatorcontrib><title>Claudins are essential for cell shape changes and convergent extension movements during neural tube closure</title><title>Developmental biology</title><addtitle>Dev Biol</addtitle><description>During neural tube closure, regulated changes at the level of individual cells are translated into large-scale morphogenetic movements to facilitate conversion of the flat neural plate into a closed tube. Throughout this process, the integrity of the neural epithelium is maintained via cell interactions through intercellular junctions, including apical tight junctions. Members of the claudin family of tight junction proteins regulate paracellular permeability, apical-basal cell polarity and link the tight junction to the actin cytoskeleton. Here, we show that claudins are essential for neural tube closure: the simultaneous removal of Cldn3, −4 and −8 from tight junctions caused folate-resistant open neural tube defects. Their removal did not affect cell type differentiation, neural ectoderm patterning nor overall apical-basal polarity. However, apical accumulation of Vangl2, RhoA, and pMLC were reduced, and Par3 and Cdc42 were mislocalized at the apical cell surface. Our data showed that claudins act upstream of planar cell polarity and RhoA/ROCK signaling to regulate cell intercalation and actin-myosin contraction, which are required for convergent extension and apical constriction during neural tube closure, respectively. [Display omitted] •Simultaneous removal of Cldn3, −4 and −8 causes open neural tube defects.•Folic acid cannot rescue open NTDs caused by depletion of Cldn3, −4 and −8.•Removal of Cldn3, −4 and −8 prevents convergent extension.•Apical constriction to form the median hinge point requires Cldn3, −4 and −8.•Claudins localize polarity complex components to the apical surface.</description><subject>Actin Cytoskeleton - metabolism</subject><subject>Animals</subject><subject>Apical constriction</subject><subject>cdc42 GTP-Binding Protein - metabolism</subject><subject>Cell Adhesion Molecules - metabolism</subject><subject>Cell Polarity - physiology</subject><subject>Cell Shape - physiology</subject><subject>Chick Embryo</subject><subject>Claudin</subject><subject>Claudin-3 - genetics</subject><subject>Claudin-3 - metabolism</subject><subject>Claudin-4 - genetics</subject><subject>Claudin-4 - metabolism</subject><subject>Claudins - genetics</subject><subject>Claudins - metabolism</subject><subject>Convergent extension</subject><subject>Embryo Culture Techniques</subject><subject>Mice</subject><subject>Morphogenesis - physiology</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Neural Plate - embryology</subject><subject>Neural Tube - embryology</subject><subject>Neural tube defects</subject><subject>Neural Tube Defects - genetics</subject><subject>Neurulation - physiology</subject><subject>rho GTP-Binding Proteins - metabolism</subject><subject>Signal Transduction - physiology</subject><subject>Tight junctions</subject><subject>Tight Junctions - physiology</subject><issn>0012-1606</issn><issn>1095-564X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU-r1DAUxYMovvHpJxAkSzetN23SpgsFGfwHD9wouAtpcjOTsU3GpB18396M83zoxlXg5nfOPdxDyHMGNQPWvTrUt3b0sW6A9TWIGlj7gGwYDKISHf_2kGwAWFOxDror8iTnAwC0UraPyVUjBReSiw35vp30an3IVCekmDOGxeuJupiowWmiea-PSM1ehx0WKFhqYjhh2hWQ4s8FQ_Yx0DmecC6jTO2afNjRgGsqPss6FvUU85rwKXnk9JTx2d17Tb6-f_dl-7G6-fzh0_btTWW4GJYKnWlwgF7YngnNWS-lEI2zTghjhBtM4zqGHDjnoKXjvRtH2dthkFo407v2mry5-B7XcUZrSqwSRR2Tn3W6VVF79e9P8Hu1iydV1rQS2mLw8s4gxR8r5kXNPp-voQPGNSs2QMt6EF1T0PaCmhRzTuju1zBQ55rUQf2uSZ1rUiBUqamoXvyd8F7zp5cCvL4AWO508phUNh6DQesTmkXZ6P-74BfVhqiJ</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Baumholtz, Amanda I.</creator><creator>Simard, Annie</creator><creator>Nikolopoulou, Evanthia</creator><creator>Oosenbrug, Marcus</creator><creator>Collins, Michelle M.</creator><creator>Piontek, Anna</creator><creator>Krause, Gerd</creator><creator>Piontek, Jörg</creator><creator>Greene, Nicholas D.E.</creator><creator>Ryan, Aimee K.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170801</creationdate><title>Claudins are essential for cell shape changes and convergent extension movements during neural tube closure</title><author>Baumholtz, Amanda I. ; Simard, Annie ; Nikolopoulou, Evanthia ; Oosenbrug, Marcus ; Collins, Michelle M. ; Piontek, Anna ; Krause, Gerd ; Piontek, Jörg ; Greene, Nicholas D.E. ; Ryan, Aimee K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-efc2e9075d715a41788552fdf55cc5f9c2f61e404440a8f47fbb87d998a5fc7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Actin Cytoskeleton - metabolism</topic><topic>Animals</topic><topic>Apical constriction</topic><topic>cdc42 GTP-Binding Protein - metabolism</topic><topic>Cell Adhesion Molecules - metabolism</topic><topic>Cell Polarity - physiology</topic><topic>Cell Shape - physiology</topic><topic>Chick Embryo</topic><topic>Claudin</topic><topic>Claudin-3 - genetics</topic><topic>Claudin-3 - metabolism</topic><topic>Claudin-4 - genetics</topic><topic>Claudin-4 - metabolism</topic><topic>Claudins - genetics</topic><topic>Claudins - metabolism</topic><topic>Convergent extension</topic><topic>Embryo Culture Techniques</topic><topic>Mice</topic><topic>Morphogenesis - physiology</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Neural Plate - embryology</topic><topic>Neural Tube - embryology</topic><topic>Neural tube defects</topic><topic>Neural Tube Defects - genetics</topic><topic>Neurulation - physiology</topic><topic>rho GTP-Binding Proteins - metabolism</topic><topic>Signal Transduction - physiology</topic><topic>Tight junctions</topic><topic>Tight Junctions - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baumholtz, Amanda I.</creatorcontrib><creatorcontrib>Simard, Annie</creatorcontrib><creatorcontrib>Nikolopoulou, Evanthia</creatorcontrib><creatorcontrib>Oosenbrug, Marcus</creatorcontrib><creatorcontrib>Collins, Michelle M.</creatorcontrib><creatorcontrib>Piontek, Anna</creatorcontrib><creatorcontrib>Krause, Gerd</creatorcontrib><creatorcontrib>Piontek, Jörg</creatorcontrib><creatorcontrib>Greene, Nicholas D.E.</creatorcontrib><creatorcontrib>Ryan, Aimee K.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Developmental biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baumholtz, Amanda I.</au><au>Simard, Annie</au><au>Nikolopoulou, Evanthia</au><au>Oosenbrug, Marcus</au><au>Collins, Michelle M.</au><au>Piontek, Anna</au><au>Krause, Gerd</au><au>Piontek, Jörg</au><au>Greene, Nicholas D.E.</au><au>Ryan, Aimee K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Claudins are essential for cell shape changes and convergent extension movements during neural tube closure</atitle><jtitle>Developmental biology</jtitle><addtitle>Dev Biol</addtitle><date>2017-08-01</date><risdate>2017</risdate><volume>428</volume><issue>1</issue><spage>25</spage><epage>38</epage><pages>25-38</pages><issn>0012-1606</issn><eissn>1095-564X</eissn><abstract>During neural tube closure, regulated changes at the level of individual cells are translated into large-scale morphogenetic movements to facilitate conversion of the flat neural plate into a closed tube. Throughout this process, the integrity of the neural epithelium is maintained via cell interactions through intercellular junctions, including apical tight junctions. Members of the claudin family of tight junction proteins regulate paracellular permeability, apical-basal cell polarity and link the tight junction to the actin cytoskeleton. Here, we show that claudins are essential for neural tube closure: the simultaneous removal of Cldn3, −4 and −8 from tight junctions caused folate-resistant open neural tube defects. Their removal did not affect cell type differentiation, neural ectoderm patterning nor overall apical-basal polarity. However, apical accumulation of Vangl2, RhoA, and pMLC were reduced, and Par3 and Cdc42 were mislocalized at the apical cell surface. Our data showed that claudins act upstream of planar cell polarity and RhoA/ROCK signaling to regulate cell intercalation and actin-myosin contraction, which are required for convergent extension and apical constriction during neural tube closure, respectively. [Display omitted] •Simultaneous removal of Cldn3, −4 and −8 causes open neural tube defects.•Folic acid cannot rescue open NTDs caused by depletion of Cldn3, −4 and −8.•Removal of Cldn3, −4 and −8 prevents convergent extension.•Apical constriction to form the median hinge point requires Cldn3, −4 and −8.•Claudins localize polarity complex components to the apical surface.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>28545845</pmid><doi>10.1016/j.ydbio.2017.05.013</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0012-1606
ispartof Developmental biology, 2017-08, Vol.428 (1), p.25-38
issn 0012-1606
1095-564X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5523803
source MEDLINE; Elsevier ScienceDirect Journals Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Actin Cytoskeleton - metabolism
Animals
Apical constriction
cdc42 GTP-Binding Protein - metabolism
Cell Adhesion Molecules - metabolism
Cell Polarity - physiology
Cell Shape - physiology
Chick Embryo
Claudin
Claudin-3 - genetics
Claudin-3 - metabolism
Claudin-4 - genetics
Claudin-4 - metabolism
Claudins - genetics
Claudins - metabolism
Convergent extension
Embryo Culture Techniques
Mice
Morphogenesis - physiology
Nerve Tissue Proteins - metabolism
Neural Plate - embryology
Neural Tube - embryology
Neural tube defects
Neural Tube Defects - genetics
Neurulation - physiology
rho GTP-Binding Proteins - metabolism
Signal Transduction - physiology
Tight junctions
Tight Junctions - physiology
title Claudins are essential for cell shape changes and convergent extension movements during neural tube closure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A47%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Claudins%20are%20essential%20for%20cell%20shape%20changes%20and%20convergent%20extension%20movements%20during%20neural%20tube%20closure&rft.jtitle=Developmental%20biology&rft.au=Baumholtz,%20Amanda%20I.&rft.date=2017-08-01&rft.volume=428&rft.issue=1&rft.spage=25&rft.epage=38&rft.pages=25-38&rft.issn=0012-1606&rft.eissn=1095-564X&rft_id=info:doi/10.1016/j.ydbio.2017.05.013&rft_dat=%3Cproquest_pubme%3E1903170562%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1903170562&rft_id=info:pmid/28545845&rft_els_id=S0012160617300441&rfr_iscdi=true