Claudins are essential for cell shape changes and convergent extension movements during neural tube closure
During neural tube closure, regulated changes at the level of individual cells are translated into large-scale morphogenetic movements to facilitate conversion of the flat neural plate into a closed tube. Throughout this process, the integrity of the neural epithelium is maintained via cell interact...
Gespeichert in:
Veröffentlicht in: | Developmental biology 2017-08, Vol.428 (1), p.25-38 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 38 |
---|---|
container_issue | 1 |
container_start_page | 25 |
container_title | Developmental biology |
container_volume | 428 |
creator | Baumholtz, Amanda I. Simard, Annie Nikolopoulou, Evanthia Oosenbrug, Marcus Collins, Michelle M. Piontek, Anna Krause, Gerd Piontek, Jörg Greene, Nicholas D.E. Ryan, Aimee K. |
description | During neural tube closure, regulated changes at the level of individual cells are translated into large-scale morphogenetic movements to facilitate conversion of the flat neural plate into a closed tube. Throughout this process, the integrity of the neural epithelium is maintained via cell interactions through intercellular junctions, including apical tight junctions. Members of the claudin family of tight junction proteins regulate paracellular permeability, apical-basal cell polarity and link the tight junction to the actin cytoskeleton. Here, we show that claudins are essential for neural tube closure: the simultaneous removal of Cldn3, −4 and −8 from tight junctions caused folate-resistant open neural tube defects. Their removal did not affect cell type differentiation, neural ectoderm patterning nor overall apical-basal polarity. However, apical accumulation of Vangl2, RhoA, and pMLC were reduced, and Par3 and Cdc42 were mislocalized at the apical cell surface. Our data showed that claudins act upstream of planar cell polarity and RhoA/ROCK signaling to regulate cell intercalation and actin-myosin contraction, which are required for convergent extension and apical constriction during neural tube closure, respectively.
[Display omitted]
•Simultaneous removal of Cldn3, −4 and −8 causes open neural tube defects.•Folic acid cannot rescue open NTDs caused by depletion of Cldn3, −4 and −8.•Removal of Cldn3, −4 and −8 prevents convergent extension.•Apical constriction to form the median hinge point requires Cldn3, −4 and −8.•Claudins localize polarity complex components to the apical surface. |
doi_str_mv | 10.1016/j.ydbio.2017.05.013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5523803</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0012160617300441</els_id><sourcerecordid>1903170562</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-efc2e9075d715a41788552fdf55cc5f9c2f61e404440a8f47fbb87d998a5fc7f3</originalsourceid><addsrcrecordid>eNp9kU-r1DAUxYMovvHpJxAkSzetN23SpgsFGfwHD9wouAtpcjOTsU3GpB18396M83zoxlXg5nfOPdxDyHMGNQPWvTrUt3b0sW6A9TWIGlj7gGwYDKISHf_2kGwAWFOxDror8iTnAwC0UraPyVUjBReSiw35vp30an3IVCekmDOGxeuJupiowWmiea-PSM1ehx0WKFhqYjhh2hWQ4s8FQ_Yx0DmecC6jTO2afNjRgGsqPss6FvUU85rwKXnk9JTx2d17Tb6-f_dl-7G6-fzh0_btTWW4GJYKnWlwgF7YngnNWS-lEI2zTghjhBtM4zqGHDjnoKXjvRtH2dthkFo407v2mry5-B7XcUZrSqwSRR2Tn3W6VVF79e9P8Hu1iydV1rQS2mLw8s4gxR8r5kXNPp-voQPGNSs2QMt6EF1T0PaCmhRzTuju1zBQ55rUQf2uSZ1rUiBUqamoXvyd8F7zp5cCvL4AWO508phUNh6DQesTmkXZ6P-74BfVhqiJ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1903170562</pqid></control><display><type>article</type><title>Claudins are essential for cell shape changes and convergent extension movements during neural tube closure</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Baumholtz, Amanda I. ; Simard, Annie ; Nikolopoulou, Evanthia ; Oosenbrug, Marcus ; Collins, Michelle M. ; Piontek, Anna ; Krause, Gerd ; Piontek, Jörg ; Greene, Nicholas D.E. ; Ryan, Aimee K.</creator><creatorcontrib>Baumholtz, Amanda I. ; Simard, Annie ; Nikolopoulou, Evanthia ; Oosenbrug, Marcus ; Collins, Michelle M. ; Piontek, Anna ; Krause, Gerd ; Piontek, Jörg ; Greene, Nicholas D.E. ; Ryan, Aimee K.</creatorcontrib><description>During neural tube closure, regulated changes at the level of individual cells are translated into large-scale morphogenetic movements to facilitate conversion of the flat neural plate into a closed tube. Throughout this process, the integrity of the neural epithelium is maintained via cell interactions through intercellular junctions, including apical tight junctions. Members of the claudin family of tight junction proteins regulate paracellular permeability, apical-basal cell polarity and link the tight junction to the actin cytoskeleton. Here, we show that claudins are essential for neural tube closure: the simultaneous removal of Cldn3, −4 and −8 from tight junctions caused folate-resistant open neural tube defects. Their removal did not affect cell type differentiation, neural ectoderm patterning nor overall apical-basal polarity. However, apical accumulation of Vangl2, RhoA, and pMLC were reduced, and Par3 and Cdc42 were mislocalized at the apical cell surface. Our data showed that claudins act upstream of planar cell polarity and RhoA/ROCK signaling to regulate cell intercalation and actin-myosin contraction, which are required for convergent extension and apical constriction during neural tube closure, respectively.
[Display omitted]
•Simultaneous removal of Cldn3, −4 and −8 causes open neural tube defects.•Folic acid cannot rescue open NTDs caused by depletion of Cldn3, −4 and −8.•Removal of Cldn3, −4 and −8 prevents convergent extension.•Apical constriction to form the median hinge point requires Cldn3, −4 and −8.•Claudins localize polarity complex components to the apical surface.</description><identifier>ISSN: 0012-1606</identifier><identifier>EISSN: 1095-564X</identifier><identifier>DOI: 10.1016/j.ydbio.2017.05.013</identifier><identifier>PMID: 28545845</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Actin Cytoskeleton - metabolism ; Animals ; Apical constriction ; cdc42 GTP-Binding Protein - metabolism ; Cell Adhesion Molecules - metabolism ; Cell Polarity - physiology ; Cell Shape - physiology ; Chick Embryo ; Claudin ; Claudin-3 - genetics ; Claudin-3 - metabolism ; Claudin-4 - genetics ; Claudin-4 - metabolism ; Claudins - genetics ; Claudins - metabolism ; Convergent extension ; Embryo Culture Techniques ; Mice ; Morphogenesis - physiology ; Nerve Tissue Proteins - metabolism ; Neural Plate - embryology ; Neural Tube - embryology ; Neural tube defects ; Neural Tube Defects - genetics ; Neurulation - physiology ; rho GTP-Binding Proteins - metabolism ; Signal Transduction - physiology ; Tight junctions ; Tight Junctions - physiology</subject><ispartof>Developmental biology, 2017-08, Vol.428 (1), p.25-38</ispartof><rights>2017 The Authors</rights><rights>Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>2017 The Authors 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-efc2e9075d715a41788552fdf55cc5f9c2f61e404440a8f47fbb87d998a5fc7f3</citedby><cites>FETCH-LOGICAL-c459t-efc2e9075d715a41788552fdf55cc5f9c2f61e404440a8f47fbb87d998a5fc7f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ydbio.2017.05.013$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28545845$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Baumholtz, Amanda I.</creatorcontrib><creatorcontrib>Simard, Annie</creatorcontrib><creatorcontrib>Nikolopoulou, Evanthia</creatorcontrib><creatorcontrib>Oosenbrug, Marcus</creatorcontrib><creatorcontrib>Collins, Michelle M.</creatorcontrib><creatorcontrib>Piontek, Anna</creatorcontrib><creatorcontrib>Krause, Gerd</creatorcontrib><creatorcontrib>Piontek, Jörg</creatorcontrib><creatorcontrib>Greene, Nicholas D.E.</creatorcontrib><creatorcontrib>Ryan, Aimee K.</creatorcontrib><title>Claudins are essential for cell shape changes and convergent extension movements during neural tube closure</title><title>Developmental biology</title><addtitle>Dev Biol</addtitle><description>During neural tube closure, regulated changes at the level of individual cells are translated into large-scale morphogenetic movements to facilitate conversion of the flat neural plate into a closed tube. Throughout this process, the integrity of the neural epithelium is maintained via cell interactions through intercellular junctions, including apical tight junctions. Members of the claudin family of tight junction proteins regulate paracellular permeability, apical-basal cell polarity and link the tight junction to the actin cytoskeleton. Here, we show that claudins are essential for neural tube closure: the simultaneous removal of Cldn3, −4 and −8 from tight junctions caused folate-resistant open neural tube defects. Their removal did not affect cell type differentiation, neural ectoderm patterning nor overall apical-basal polarity. However, apical accumulation of Vangl2, RhoA, and pMLC were reduced, and Par3 and Cdc42 were mislocalized at the apical cell surface. Our data showed that claudins act upstream of planar cell polarity and RhoA/ROCK signaling to regulate cell intercalation and actin-myosin contraction, which are required for convergent extension and apical constriction during neural tube closure, respectively.
[Display omitted]
•Simultaneous removal of Cldn3, −4 and −8 causes open neural tube defects.•Folic acid cannot rescue open NTDs caused by depletion of Cldn3, −4 and −8.•Removal of Cldn3, −4 and −8 prevents convergent extension.•Apical constriction to form the median hinge point requires Cldn3, −4 and −8.•Claudins localize polarity complex components to the apical surface.</description><subject>Actin Cytoskeleton - metabolism</subject><subject>Animals</subject><subject>Apical constriction</subject><subject>cdc42 GTP-Binding Protein - metabolism</subject><subject>Cell Adhesion Molecules - metabolism</subject><subject>Cell Polarity - physiology</subject><subject>Cell Shape - physiology</subject><subject>Chick Embryo</subject><subject>Claudin</subject><subject>Claudin-3 - genetics</subject><subject>Claudin-3 - metabolism</subject><subject>Claudin-4 - genetics</subject><subject>Claudin-4 - metabolism</subject><subject>Claudins - genetics</subject><subject>Claudins - metabolism</subject><subject>Convergent extension</subject><subject>Embryo Culture Techniques</subject><subject>Mice</subject><subject>Morphogenesis - physiology</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Neural Plate - embryology</subject><subject>Neural Tube - embryology</subject><subject>Neural tube defects</subject><subject>Neural Tube Defects - genetics</subject><subject>Neurulation - physiology</subject><subject>rho GTP-Binding Proteins - metabolism</subject><subject>Signal Transduction - physiology</subject><subject>Tight junctions</subject><subject>Tight Junctions - physiology</subject><issn>0012-1606</issn><issn>1095-564X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU-r1DAUxYMovvHpJxAkSzetN23SpgsFGfwHD9wouAtpcjOTsU3GpB18396M83zoxlXg5nfOPdxDyHMGNQPWvTrUt3b0sW6A9TWIGlj7gGwYDKISHf_2kGwAWFOxDror8iTnAwC0UraPyVUjBReSiw35vp30an3IVCekmDOGxeuJupiowWmiea-PSM1ehx0WKFhqYjhh2hWQ4s8FQ_Yx0DmecC6jTO2afNjRgGsqPss6FvUU85rwKXnk9JTx2d17Tb6-f_dl-7G6-fzh0_btTWW4GJYKnWlwgF7YngnNWS-lEI2zTghjhBtM4zqGHDjnoKXjvRtH2dthkFo407v2mry5-B7XcUZrSqwSRR2Tn3W6VVF79e9P8Hu1iydV1rQS2mLw8s4gxR8r5kXNPp-voQPGNSs2QMt6EF1T0PaCmhRzTuju1zBQ55rUQf2uSZ1rUiBUqamoXvyd8F7zp5cCvL4AWO508phUNh6DQesTmkXZ6P-74BfVhqiJ</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Baumholtz, Amanda I.</creator><creator>Simard, Annie</creator><creator>Nikolopoulou, Evanthia</creator><creator>Oosenbrug, Marcus</creator><creator>Collins, Michelle M.</creator><creator>Piontek, Anna</creator><creator>Krause, Gerd</creator><creator>Piontek, Jörg</creator><creator>Greene, Nicholas D.E.</creator><creator>Ryan, Aimee K.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170801</creationdate><title>Claudins are essential for cell shape changes and convergent extension movements during neural tube closure</title><author>Baumholtz, Amanda I. ; Simard, Annie ; Nikolopoulou, Evanthia ; Oosenbrug, Marcus ; Collins, Michelle M. ; Piontek, Anna ; Krause, Gerd ; Piontek, Jörg ; Greene, Nicholas D.E. ; Ryan, Aimee K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-efc2e9075d715a41788552fdf55cc5f9c2f61e404440a8f47fbb87d998a5fc7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Actin Cytoskeleton - metabolism</topic><topic>Animals</topic><topic>Apical constriction</topic><topic>cdc42 GTP-Binding Protein - metabolism</topic><topic>Cell Adhesion Molecules - metabolism</topic><topic>Cell Polarity - physiology</topic><topic>Cell Shape - physiology</topic><topic>Chick Embryo</topic><topic>Claudin</topic><topic>Claudin-3 - genetics</topic><topic>Claudin-3 - metabolism</topic><topic>Claudin-4 - genetics</topic><topic>Claudin-4 - metabolism</topic><topic>Claudins - genetics</topic><topic>Claudins - metabolism</topic><topic>Convergent extension</topic><topic>Embryo Culture Techniques</topic><topic>Mice</topic><topic>Morphogenesis - physiology</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Neural Plate - embryology</topic><topic>Neural Tube - embryology</topic><topic>Neural tube defects</topic><topic>Neural Tube Defects - genetics</topic><topic>Neurulation - physiology</topic><topic>rho GTP-Binding Proteins - metabolism</topic><topic>Signal Transduction - physiology</topic><topic>Tight junctions</topic><topic>Tight Junctions - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baumholtz, Amanda I.</creatorcontrib><creatorcontrib>Simard, Annie</creatorcontrib><creatorcontrib>Nikolopoulou, Evanthia</creatorcontrib><creatorcontrib>Oosenbrug, Marcus</creatorcontrib><creatorcontrib>Collins, Michelle M.</creatorcontrib><creatorcontrib>Piontek, Anna</creatorcontrib><creatorcontrib>Krause, Gerd</creatorcontrib><creatorcontrib>Piontek, Jörg</creatorcontrib><creatorcontrib>Greene, Nicholas D.E.</creatorcontrib><creatorcontrib>Ryan, Aimee K.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Developmental biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baumholtz, Amanda I.</au><au>Simard, Annie</au><au>Nikolopoulou, Evanthia</au><au>Oosenbrug, Marcus</au><au>Collins, Michelle M.</au><au>Piontek, Anna</au><au>Krause, Gerd</au><au>Piontek, Jörg</au><au>Greene, Nicholas D.E.</au><au>Ryan, Aimee K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Claudins are essential for cell shape changes and convergent extension movements during neural tube closure</atitle><jtitle>Developmental biology</jtitle><addtitle>Dev Biol</addtitle><date>2017-08-01</date><risdate>2017</risdate><volume>428</volume><issue>1</issue><spage>25</spage><epage>38</epage><pages>25-38</pages><issn>0012-1606</issn><eissn>1095-564X</eissn><abstract>During neural tube closure, regulated changes at the level of individual cells are translated into large-scale morphogenetic movements to facilitate conversion of the flat neural plate into a closed tube. Throughout this process, the integrity of the neural epithelium is maintained via cell interactions through intercellular junctions, including apical tight junctions. Members of the claudin family of tight junction proteins regulate paracellular permeability, apical-basal cell polarity and link the tight junction to the actin cytoskeleton. Here, we show that claudins are essential for neural tube closure: the simultaneous removal of Cldn3, −4 and −8 from tight junctions caused folate-resistant open neural tube defects. Their removal did not affect cell type differentiation, neural ectoderm patterning nor overall apical-basal polarity. However, apical accumulation of Vangl2, RhoA, and pMLC were reduced, and Par3 and Cdc42 were mislocalized at the apical cell surface. Our data showed that claudins act upstream of planar cell polarity and RhoA/ROCK signaling to regulate cell intercalation and actin-myosin contraction, which are required for convergent extension and apical constriction during neural tube closure, respectively.
[Display omitted]
•Simultaneous removal of Cldn3, −4 and −8 causes open neural tube defects.•Folic acid cannot rescue open NTDs caused by depletion of Cldn3, −4 and −8.•Removal of Cldn3, −4 and −8 prevents convergent extension.•Apical constriction to form the median hinge point requires Cldn3, −4 and −8.•Claudins localize polarity complex components to the apical surface.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>28545845</pmid><doi>10.1016/j.ydbio.2017.05.013</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-1606 |
ispartof | Developmental biology, 2017-08, Vol.428 (1), p.25-38 |
issn | 0012-1606 1095-564X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5523803 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Actin Cytoskeleton - metabolism Animals Apical constriction cdc42 GTP-Binding Protein - metabolism Cell Adhesion Molecules - metabolism Cell Polarity - physiology Cell Shape - physiology Chick Embryo Claudin Claudin-3 - genetics Claudin-3 - metabolism Claudin-4 - genetics Claudin-4 - metabolism Claudins - genetics Claudins - metabolism Convergent extension Embryo Culture Techniques Mice Morphogenesis - physiology Nerve Tissue Proteins - metabolism Neural Plate - embryology Neural Tube - embryology Neural tube defects Neural Tube Defects - genetics Neurulation - physiology rho GTP-Binding Proteins - metabolism Signal Transduction - physiology Tight junctions Tight Junctions - physiology |
title | Claudins are essential for cell shape changes and convergent extension movements during neural tube closure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A47%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Claudins%20are%20essential%20for%20cell%20shape%20changes%20and%20convergent%20extension%20movements%20during%20neural%20tube%20closure&rft.jtitle=Developmental%20biology&rft.au=Baumholtz,%20Amanda%20I.&rft.date=2017-08-01&rft.volume=428&rft.issue=1&rft.spage=25&rft.epage=38&rft.pages=25-38&rft.issn=0012-1606&rft.eissn=1095-564X&rft_id=info:doi/10.1016/j.ydbio.2017.05.013&rft_dat=%3Cproquest_pubme%3E1903170562%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1903170562&rft_id=info:pmid/28545845&rft_els_id=S0012160617300441&rfr_iscdi=true |