The iron-dependent mitochondrial superoxide dismutase SODA promotes Leishmania virulence
Leishmaniasis is one of the leading globally neglected diseases, affecting millions of people worldwide. Leishmania infection depends on the ability of insect-transmitted metacyclic promastigotes to invade mammalian hosts, differentiate into amastigotes, and replicate inside macrophages. To counter...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2017-07, Vol.292 (29), p.12324-12338 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12338 |
---|---|
container_issue | 29 |
container_start_page | 12324 |
container_title | The Journal of biological chemistry |
container_volume | 292 |
creator | Mittra, Bidyottam Laranjeira-Silva, Maria Fernanda Miguel, Danilo Ciccone Perrone Bezerra de Menezes, Juliana Andrews, Norma W. |
description | Leishmaniasis is one of the leading globally neglected diseases, affecting millions of people worldwide. Leishmania infection depends on the ability of insect-transmitted metacyclic promastigotes to invade mammalian hosts, differentiate into amastigotes, and replicate inside macrophages. To counter the hostile oxidative environment inside macrophages, these protozoans contain anti-oxidant systems that include iron-dependent superoxide dismutases (SODs) in mitochondria and glycosomes. Increasing evidence suggests that in addition to this protective role, Leishmania mitochondrial SOD may also initiate H2O2-mediated redox signaling that regulates gene expression and metabolic changes associated with differentiation into virulent forms. To investigate this hypothesis, we examined the specific role of SODA, the mitochondrial SOD isoform in Leishmania amazonensis. Our inability to generate L. amazonensis SODA null mutants and the lethal phenotype observed following RNAi-mediated silencing of the Trypanosoma brucei SODA ortholog suggests that SODA is essential for trypanosomatid survival. L. amazonensis metacyclic promastigotes lacking one SODA allele failed to replicate in macrophages and were severely attenuated in their ability to generate cutaneous lesions in mice. Reduced expression of SODA also resulted in mitochondrial oxidative damage and failure of SODA/ΔsodA promastigotes to differentiate into axenic amastigotes. SODA expression above a critical threshold was also required for the development of metacyclic promastigotes, as SODA/ΔsodA cultures were strongly depleted in this infective form and more susceptible to reactive oxygen species (ROS)-induced stress. Collectively, our data suggest that SODA promotes Leishmania virulence by protecting the parasites against mitochondrion-generated oxidative stress and by initiating ROS-mediated signaling mechanisms required for the differentiation of infective forms. |
doi_str_mv | 10.1074/jbc.M116.772624 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5519379</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820429990</els_id><sourcerecordid>1903161385</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-b588f8a1929eaa774aebfdd055866cfcffffb6d517bb891076a122db3f32995d3</originalsourceid><addsrcrecordid>eNp1kbtP5DAQh60Tp2N51HQoJU12_YgTu0FCvKU9UdyeRGc59oQ1SuJgJyv47_FqAXHFTePCn3-emQ-hE4LnBFfF4rk289-ElPOqoiUtfqAZwYLljJPHPTTDmJJcUi720UGMzzhVIckvtE8F5xiLcoYeV2vIXPB9bmGA3kI_Zp0bvVn73gan2yxOAwT_6ixk1sVuGnWE7M_D1UU2BN_5EWK2BBfXne6dzjYuTC30Bo7Qz0a3EY4_zkP09-Z6dXmXLx9u7y8vlrkpCjbmNReiEZpIKkHrqio01I21mHNRlqYxTaq6tJxUdS1kmrnUhFJbs4ZRKbllh-h8lztMdQfWpAGCbtUQXKfDm_LaqX9verdWT36jOCeSVTIFnH0EBP8yQRxV56KBttU9-CkqIjEjJWGCJ3SxQ03wMQZovr4hWG19qORDbX2onY_04vR7d1_8p4AEyB0AaUcbB0FF47b7sy6AGZX17r_h76WPnTc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1903161385</pqid></control><display><type>article</type><title>The iron-dependent mitochondrial superoxide dismutase SODA promotes Leishmania virulence</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Mittra, Bidyottam ; Laranjeira-Silva, Maria Fernanda ; Miguel, Danilo Ciccone ; Perrone Bezerra de Menezes, Juliana ; Andrews, Norma W.</creator><creatorcontrib>Mittra, Bidyottam ; Laranjeira-Silva, Maria Fernanda ; Miguel, Danilo Ciccone ; Perrone Bezerra de Menezes, Juliana ; Andrews, Norma W.</creatorcontrib><description>Leishmaniasis is one of the leading globally neglected diseases, affecting millions of people worldwide. Leishmania infection depends on the ability of insect-transmitted metacyclic promastigotes to invade mammalian hosts, differentiate into amastigotes, and replicate inside macrophages. To counter the hostile oxidative environment inside macrophages, these protozoans contain anti-oxidant systems that include iron-dependent superoxide dismutases (SODs) in mitochondria and glycosomes. Increasing evidence suggests that in addition to this protective role, Leishmania mitochondrial SOD may also initiate H2O2-mediated redox signaling that regulates gene expression and metabolic changes associated with differentiation into virulent forms. To investigate this hypothesis, we examined the specific role of SODA, the mitochondrial SOD isoform in Leishmania amazonensis. Our inability to generate L. amazonensis SODA null mutants and the lethal phenotype observed following RNAi-mediated silencing of the Trypanosoma brucei SODA ortholog suggests that SODA is essential for trypanosomatid survival. L. amazonensis metacyclic promastigotes lacking one SODA allele failed to replicate in macrophages and were severely attenuated in their ability to generate cutaneous lesions in mice. Reduced expression of SODA also resulted in mitochondrial oxidative damage and failure of SODA/ΔsodA promastigotes to differentiate into axenic amastigotes. SODA expression above a critical threshold was also required for the development of metacyclic promastigotes, as SODA/ΔsodA cultures were strongly depleted in this infective form and more susceptible to reactive oxygen species (ROS)-induced stress. Collectively, our data suggest that SODA promotes Leishmania virulence by protecting the parasites against mitochondrion-generated oxidative stress and by initiating ROS-mediated signaling mechanisms required for the differentiation of infective forms.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M116.772624</identifier><identifier>PMID: 28550086</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Bone Marrow Cells - immunology ; Bone Marrow Cells - metabolism ; Bone Marrow Cells - parasitology ; Bone Marrow Cells - pathology ; Cell Line ; Cells, Cultured ; Clone Cells ; differentiation ; Female ; Gene Knockout Techniques ; Iron - metabolism ; iron superoxide dismutase ; Isoenzymes - antagonists & inhibitors ; Isoenzymes - genetics ; Isoenzymes - metabolism ; Leishmania ; Leishmania mexicana - enzymology ; Leishmania mexicana - growth & development ; Leishmania mexicana - pathogenicity ; Leishmania mexicana - ultrastructure ; Leishmaniasis, Cutaneous - immunology ; Leishmaniasis, Cutaneous - metabolism ; Leishmaniasis, Cutaneous - parasitology ; Leishmaniasis, Cutaneous - pathology ; Macrophages - immunology ; Macrophages - metabolism ; Macrophages - parasitology ; Macrophages - pathology ; Mice, Inbred C57BL ; Microbiology ; Microscopy, Electron, Scanning ; Microscopy, Electron, Transmission ; mitochondria ; Mitochondria - enzymology ; Mitochondria - metabolism ; Mitochondria - ultrastructure ; Parasite Load ; Protein Transport ; Protozoan Proteins - antagonists & inhibitors ; Protozoan Proteins - genetics ; Protozoan Proteins - metabolism ; redox signaling ; RNA Interference ; superoxide dismutase (SOD) ; Superoxide Dismutase - antagonists & inhibitors ; Superoxide Dismutase - genetics ; Superoxide Dismutase - metabolism ; Virulence</subject><ispartof>The Journal of biological chemistry, 2017-07, Vol.292 (29), p.12324-12338</ispartof><rights>2017 © 2017 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2017 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><rights>2017 by The American Society for Biochemistry and Molecular Biology, Inc. 2017 The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-b588f8a1929eaa774aebfdd055866cfcffffb6d517bb891076a122db3f32995d3</citedby><cites>FETCH-LOGICAL-c443t-b588f8a1929eaa774aebfdd055866cfcffffb6d517bb891076a122db3f32995d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5519379/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5519379/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28550086$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mittra, Bidyottam</creatorcontrib><creatorcontrib>Laranjeira-Silva, Maria Fernanda</creatorcontrib><creatorcontrib>Miguel, Danilo Ciccone</creatorcontrib><creatorcontrib>Perrone Bezerra de Menezes, Juliana</creatorcontrib><creatorcontrib>Andrews, Norma W.</creatorcontrib><title>The iron-dependent mitochondrial superoxide dismutase SODA promotes Leishmania virulence</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Leishmaniasis is one of the leading globally neglected diseases, affecting millions of people worldwide. Leishmania infection depends on the ability of insect-transmitted metacyclic promastigotes to invade mammalian hosts, differentiate into amastigotes, and replicate inside macrophages. To counter the hostile oxidative environment inside macrophages, these protozoans contain anti-oxidant systems that include iron-dependent superoxide dismutases (SODs) in mitochondria and glycosomes. Increasing evidence suggests that in addition to this protective role, Leishmania mitochondrial SOD may also initiate H2O2-mediated redox signaling that regulates gene expression and metabolic changes associated with differentiation into virulent forms. To investigate this hypothesis, we examined the specific role of SODA, the mitochondrial SOD isoform in Leishmania amazonensis. Our inability to generate L. amazonensis SODA null mutants and the lethal phenotype observed following RNAi-mediated silencing of the Trypanosoma brucei SODA ortholog suggests that SODA is essential for trypanosomatid survival. L. amazonensis metacyclic promastigotes lacking one SODA allele failed to replicate in macrophages and were severely attenuated in their ability to generate cutaneous lesions in mice. Reduced expression of SODA also resulted in mitochondrial oxidative damage and failure of SODA/ΔsodA promastigotes to differentiate into axenic amastigotes. SODA expression above a critical threshold was also required for the development of metacyclic promastigotes, as SODA/ΔsodA cultures were strongly depleted in this infective form and more susceptible to reactive oxygen species (ROS)-induced stress. Collectively, our data suggest that SODA promotes Leishmania virulence by protecting the parasites against mitochondrion-generated oxidative stress and by initiating ROS-mediated signaling mechanisms required for the differentiation of infective forms.</description><subject>Animals</subject><subject>Bone Marrow Cells - immunology</subject><subject>Bone Marrow Cells - metabolism</subject><subject>Bone Marrow Cells - parasitology</subject><subject>Bone Marrow Cells - pathology</subject><subject>Cell Line</subject><subject>Cells, Cultured</subject><subject>Clone Cells</subject><subject>differentiation</subject><subject>Female</subject><subject>Gene Knockout Techniques</subject><subject>Iron - metabolism</subject><subject>iron superoxide dismutase</subject><subject>Isoenzymes - antagonists & inhibitors</subject><subject>Isoenzymes - genetics</subject><subject>Isoenzymes - metabolism</subject><subject>Leishmania</subject><subject>Leishmania mexicana - enzymology</subject><subject>Leishmania mexicana - growth & development</subject><subject>Leishmania mexicana - pathogenicity</subject><subject>Leishmania mexicana - ultrastructure</subject><subject>Leishmaniasis, Cutaneous - immunology</subject><subject>Leishmaniasis, Cutaneous - metabolism</subject><subject>Leishmaniasis, Cutaneous - parasitology</subject><subject>Leishmaniasis, Cutaneous - pathology</subject><subject>Macrophages - immunology</subject><subject>Macrophages - metabolism</subject><subject>Macrophages - parasitology</subject><subject>Macrophages - pathology</subject><subject>Mice, Inbred C57BL</subject><subject>Microbiology</subject><subject>Microscopy, Electron, Scanning</subject><subject>Microscopy, Electron, Transmission</subject><subject>mitochondria</subject><subject>Mitochondria - enzymology</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondria - ultrastructure</subject><subject>Parasite Load</subject><subject>Protein Transport</subject><subject>Protozoan Proteins - antagonists & inhibitors</subject><subject>Protozoan Proteins - genetics</subject><subject>Protozoan Proteins - metabolism</subject><subject>redox signaling</subject><subject>RNA Interference</subject><subject>superoxide dismutase (SOD)</subject><subject>Superoxide Dismutase - antagonists & inhibitors</subject><subject>Superoxide Dismutase - genetics</subject><subject>Superoxide Dismutase - metabolism</subject><subject>Virulence</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kbtP5DAQh60Tp2N51HQoJU12_YgTu0FCvKU9UdyeRGc59oQ1SuJgJyv47_FqAXHFTePCn3-emQ-hE4LnBFfF4rk289-ElPOqoiUtfqAZwYLljJPHPTTDmJJcUi720UGMzzhVIckvtE8F5xiLcoYeV2vIXPB9bmGA3kI_Zp0bvVn73gan2yxOAwT_6ixk1sVuGnWE7M_D1UU2BN_5EWK2BBfXne6dzjYuTC30Bo7Qz0a3EY4_zkP09-Z6dXmXLx9u7y8vlrkpCjbmNReiEZpIKkHrqio01I21mHNRlqYxTaq6tJxUdS1kmrnUhFJbs4ZRKbllh-h8lztMdQfWpAGCbtUQXKfDm_LaqX9verdWT36jOCeSVTIFnH0EBP8yQRxV56KBttU9-CkqIjEjJWGCJ3SxQ03wMQZovr4hWG19qORDbX2onY_04vR7d1_8p4AEyB0AaUcbB0FF47b7sy6AGZX17r_h76WPnTc</recordid><startdate>20170721</startdate><enddate>20170721</enddate><creator>Mittra, Bidyottam</creator><creator>Laranjeira-Silva, Maria Fernanda</creator><creator>Miguel, Danilo Ciccone</creator><creator>Perrone Bezerra de Menezes, Juliana</creator><creator>Andrews, Norma W.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170721</creationdate><title>The iron-dependent mitochondrial superoxide dismutase SODA promotes Leishmania virulence</title><author>Mittra, Bidyottam ; Laranjeira-Silva, Maria Fernanda ; Miguel, Danilo Ciccone ; Perrone Bezerra de Menezes, Juliana ; Andrews, Norma W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-b588f8a1929eaa774aebfdd055866cfcffffb6d517bb891076a122db3f32995d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Bone Marrow Cells - immunology</topic><topic>Bone Marrow Cells - metabolism</topic><topic>Bone Marrow Cells - parasitology</topic><topic>Bone Marrow Cells - pathology</topic><topic>Cell Line</topic><topic>Cells, Cultured</topic><topic>Clone Cells</topic><topic>differentiation</topic><topic>Female</topic><topic>Gene Knockout Techniques</topic><topic>Iron - metabolism</topic><topic>iron superoxide dismutase</topic><topic>Isoenzymes - antagonists & inhibitors</topic><topic>Isoenzymes - genetics</topic><topic>Isoenzymes - metabolism</topic><topic>Leishmania</topic><topic>Leishmania mexicana - enzymology</topic><topic>Leishmania mexicana - growth & development</topic><topic>Leishmania mexicana - pathogenicity</topic><topic>Leishmania mexicana - ultrastructure</topic><topic>Leishmaniasis, Cutaneous - immunology</topic><topic>Leishmaniasis, Cutaneous - metabolism</topic><topic>Leishmaniasis, Cutaneous - parasitology</topic><topic>Leishmaniasis, Cutaneous - pathology</topic><topic>Macrophages - immunology</topic><topic>Macrophages - metabolism</topic><topic>Macrophages - parasitology</topic><topic>Macrophages - pathology</topic><topic>Mice, Inbred C57BL</topic><topic>Microbiology</topic><topic>Microscopy, Electron, Scanning</topic><topic>Microscopy, Electron, Transmission</topic><topic>mitochondria</topic><topic>Mitochondria - enzymology</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondria - ultrastructure</topic><topic>Parasite Load</topic><topic>Protein Transport</topic><topic>Protozoan Proteins - antagonists & inhibitors</topic><topic>Protozoan Proteins - genetics</topic><topic>Protozoan Proteins - metabolism</topic><topic>redox signaling</topic><topic>RNA Interference</topic><topic>superoxide dismutase (SOD)</topic><topic>Superoxide Dismutase - antagonists & inhibitors</topic><topic>Superoxide Dismutase - genetics</topic><topic>Superoxide Dismutase - metabolism</topic><topic>Virulence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mittra, Bidyottam</creatorcontrib><creatorcontrib>Laranjeira-Silva, Maria Fernanda</creatorcontrib><creatorcontrib>Miguel, Danilo Ciccone</creatorcontrib><creatorcontrib>Perrone Bezerra de Menezes, Juliana</creatorcontrib><creatorcontrib>Andrews, Norma W.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mittra, Bidyottam</au><au>Laranjeira-Silva, Maria Fernanda</au><au>Miguel, Danilo Ciccone</au><au>Perrone Bezerra de Menezes, Juliana</au><au>Andrews, Norma W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The iron-dependent mitochondrial superoxide dismutase SODA promotes Leishmania virulence</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2017-07-21</date><risdate>2017</risdate><volume>292</volume><issue>29</issue><spage>12324</spage><epage>12338</epage><pages>12324-12338</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Leishmaniasis is one of the leading globally neglected diseases, affecting millions of people worldwide. Leishmania infection depends on the ability of insect-transmitted metacyclic promastigotes to invade mammalian hosts, differentiate into amastigotes, and replicate inside macrophages. To counter the hostile oxidative environment inside macrophages, these protozoans contain anti-oxidant systems that include iron-dependent superoxide dismutases (SODs) in mitochondria and glycosomes. Increasing evidence suggests that in addition to this protective role, Leishmania mitochondrial SOD may also initiate H2O2-mediated redox signaling that regulates gene expression and metabolic changes associated with differentiation into virulent forms. To investigate this hypothesis, we examined the specific role of SODA, the mitochondrial SOD isoform in Leishmania amazonensis. Our inability to generate L. amazonensis SODA null mutants and the lethal phenotype observed following RNAi-mediated silencing of the Trypanosoma brucei SODA ortholog suggests that SODA is essential for trypanosomatid survival. L. amazonensis metacyclic promastigotes lacking one SODA allele failed to replicate in macrophages and were severely attenuated in their ability to generate cutaneous lesions in mice. Reduced expression of SODA also resulted in mitochondrial oxidative damage and failure of SODA/ΔsodA promastigotes to differentiate into axenic amastigotes. SODA expression above a critical threshold was also required for the development of metacyclic promastigotes, as SODA/ΔsodA cultures were strongly depleted in this infective form and more susceptible to reactive oxygen species (ROS)-induced stress. Collectively, our data suggest that SODA promotes Leishmania virulence by protecting the parasites against mitochondrion-generated oxidative stress and by initiating ROS-mediated signaling mechanisms required for the differentiation of infective forms.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>28550086</pmid><doi>10.1074/jbc.M116.772624</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2017-07, Vol.292 (29), p.12324-12338 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5519379 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | Animals Bone Marrow Cells - immunology Bone Marrow Cells - metabolism Bone Marrow Cells - parasitology Bone Marrow Cells - pathology Cell Line Cells, Cultured Clone Cells differentiation Female Gene Knockout Techniques Iron - metabolism iron superoxide dismutase Isoenzymes - antagonists & inhibitors Isoenzymes - genetics Isoenzymes - metabolism Leishmania Leishmania mexicana - enzymology Leishmania mexicana - growth & development Leishmania mexicana - pathogenicity Leishmania mexicana - ultrastructure Leishmaniasis, Cutaneous - immunology Leishmaniasis, Cutaneous - metabolism Leishmaniasis, Cutaneous - parasitology Leishmaniasis, Cutaneous - pathology Macrophages - immunology Macrophages - metabolism Macrophages - parasitology Macrophages - pathology Mice, Inbred C57BL Microbiology Microscopy, Electron, Scanning Microscopy, Electron, Transmission mitochondria Mitochondria - enzymology Mitochondria - metabolism Mitochondria - ultrastructure Parasite Load Protein Transport Protozoan Proteins - antagonists & inhibitors Protozoan Proteins - genetics Protozoan Proteins - metabolism redox signaling RNA Interference superoxide dismutase (SOD) Superoxide Dismutase - antagonists & inhibitors Superoxide Dismutase - genetics Superoxide Dismutase - metabolism Virulence |
title | The iron-dependent mitochondrial superoxide dismutase SODA promotes Leishmania virulence |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T07%3A32%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20iron-dependent%20mitochondrial%20superoxide%20dismutase%20SODA%20promotes%20Leishmania%20virulence&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Mittra,%20Bidyottam&rft.date=2017-07-21&rft.volume=292&rft.issue=29&rft.spage=12324&rft.epage=12338&rft.pages=12324-12338&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M116.772624&rft_dat=%3Cproquest_pubme%3E1903161385%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1903161385&rft_id=info:pmid/28550086&rft_els_id=S0021925820429990&rfr_iscdi=true |