Sox11 Expression Promotes Regeneration of Some Retinal Ganglion Cell Types but Kills Others

At least 30 types of retinal ganglion cells (RGCs) send distinct messages through the optic nerve to the brain. Available strategies of promoting axon regeneration act on only some of these types. Here we tested the hypothesis that overexpressing developmentally important transcription factors in ad...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuron (Cambridge, Mass.) Mass.), 2017-06, Vol.94 (6), p.1112-1120.e4
Hauptverfasser: Norsworthy, Michael W., Bei, Fengfeng, Kawaguchi, Riki, Wang, Qing, Tran, Nicholas M., Li, Yi, Brommer, Benedikt, Zhang, Yiming, Wang, Chen, Sanes, Joshua R., Coppola, Giovanni, He, Zhigang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1120.e4
container_issue 6
container_start_page 1112
container_title Neuron (Cambridge, Mass.)
container_volume 94
creator Norsworthy, Michael W.
Bei, Fengfeng
Kawaguchi, Riki
Wang, Qing
Tran, Nicholas M.
Li, Yi
Brommer, Benedikt
Zhang, Yiming
Wang, Chen
Sanes, Joshua R.
Coppola, Giovanni
He, Zhigang
description At least 30 types of retinal ganglion cells (RGCs) send distinct messages through the optic nerve to the brain. Available strategies of promoting axon regeneration act on only some of these types. Here we tested the hypothesis that overexpressing developmentally important transcription factors in adult RGCs could reprogram them to a “youthful” growth-competent state and promote regeneration of other types. From a screen of transcription factors, we identified Sox11 as one that could induce substantial axon regeneration. Transcriptome profiling indicated that Sox11 activates genes involved in cytoskeletal remodeling and axon growth. Remarkably, α-RGCs, which preferentially regenerate following treatments such as Pten deletion, were killed by Sox11 overexpression. Thus, Sox11 promotes regeneration of non-α-RGCs, which are refractory to Pten deletion-induced regeneration. We conclude that Sox11 can reprogram adult RGCs to a growth-competent state, suggesting that different growth-promoting interventions promote regeneration in distinct neuronal types. •Sox11 promotes robust axon regeneration from injured adult RGCs•Sox11 re-activates a developmental axon growth program•Sox11 kills α-RGCs and promotes regeneration from other types•Pten deletion enhances axon regeneration induced by Sox11 expression Norsworthy et al. discovered that forced expression of Sox11, a transcription factor expressed in differentiating retinal progenitors, is able to reactivate an axon growth program and promote axon regeneration in subsets of adult RGCs but kills other types, suggesting that this and similar reprogramming strategies may be more complex than previously appreciated.
doi_str_mv 10.1016/j.neuron.2017.05.035
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5519288</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627317304737</els_id><sourcerecordid>1912670447</sourcerecordid><originalsourceid>FETCH-LOGICAL-c557t-ae7bb0609e1c092ab5aed583e31271adc54cd6dd0d70d6e0dc91108da2694dce3</originalsourceid><addsrcrecordid>eNp9UU1v1DAUtBCILoV_gFAkLr0kvJfESXxBQqtSEJWKaDlxsBz77darxF7spGr_PQ5byseBk6V5M-M3bxh7iVAgYPNmVziag3dFCdgWwAuo-CO2QhBtXqMQj9kKOtHkTdlWR-xZjDsArLnAp-yo7JoaEWHFvl36W8Ts9HYfKEbrXfY5-NFPFLMvtCVHQU0L6jfZpR8pgZN1asjOlNsOy2BNw5Bd3e2ToJ-n7JMdhphdTNcU4nP2ZKOGSC_u32P29f3p1fpDfn5x9nH97jzXnLdTrqjte2hAEGoQpeq5IsO7iiosW1RG81qbxhgwLZiGwGiRVu-MKhtRG03VMXt78N3P_UgJcVNQg9wHO6pwJ72y8u-Js9dy628k5yjKrksGJ_cGwX-fKU5ytFGnYMqRn6NEgVUluk4s1Nf_UHd-DukiP1ll00Jdt4lVH1g6-BgDbR6WQZBLe3InD-3JpT0JXKb2kuzVn0EeRL_q-p2U0jlvLAUZtSWnydhAepLG2___8AOa567H</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1912670447</pqid></control><display><type>article</type><title>Sox11 Expression Promotes Regeneration of Some Retinal Ganglion Cell Types but Kills Others</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Norsworthy, Michael W. ; Bei, Fengfeng ; Kawaguchi, Riki ; Wang, Qing ; Tran, Nicholas M. ; Li, Yi ; Brommer, Benedikt ; Zhang, Yiming ; Wang, Chen ; Sanes, Joshua R. ; Coppola, Giovanni ; He, Zhigang</creator><creatorcontrib>Norsworthy, Michael W. ; Bei, Fengfeng ; Kawaguchi, Riki ; Wang, Qing ; Tran, Nicholas M. ; Li, Yi ; Brommer, Benedikt ; Zhang, Yiming ; Wang, Chen ; Sanes, Joshua R. ; Coppola, Giovanni ; He, Zhigang</creatorcontrib><description>At least 30 types of retinal ganglion cells (RGCs) send distinct messages through the optic nerve to the brain. Available strategies of promoting axon regeneration act on only some of these types. Here we tested the hypothesis that overexpressing developmentally important transcription factors in adult RGCs could reprogram them to a “youthful” growth-competent state and promote regeneration of other types. From a screen of transcription factors, we identified Sox11 as one that could induce substantial axon regeneration. Transcriptome profiling indicated that Sox11 activates genes involved in cytoskeletal remodeling and axon growth. Remarkably, α-RGCs, which preferentially regenerate following treatments such as Pten deletion, were killed by Sox11 overexpression. Thus, Sox11 promotes regeneration of non-α-RGCs, which are refractory to Pten deletion-induced regeneration. We conclude that Sox11 can reprogram adult RGCs to a growth-competent state, suggesting that different growth-promoting interventions promote regeneration in distinct neuronal types. •Sox11 promotes robust axon regeneration from injured adult RGCs•Sox11 re-activates a developmental axon growth program•Sox11 kills α-RGCs and promotes regeneration from other types•Pten deletion enhances axon regeneration induced by Sox11 expression Norsworthy et al. discovered that forced expression of Sox11, a transcription factor expressed in differentiating retinal progenitors, is able to reactivate an axon growth program and promote axon regeneration in subsets of adult RGCs but kills other types, suggesting that this and similar reprogramming strategies may be more complex than previously appreciated.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2017.05.035</identifier><identifier>PMID: 28641110</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Axons - metabolism ; Cell Survival ; Cytoskeleton ; Fibroblasts ; Gene expression ; Gene Expression Profiling ; heterogeneity ; Kinases ; Mice ; Microscopy, Fluorescence ; Nerve Regeneration - genetics ; Nervous system ; Neuronal Outgrowth - genetics ; Neurons ; Optic nerve ; Optic Nerve Injuries - metabolism ; Optic Nerve Injuries - pathology ; Phosphatase ; Proteins ; PTEN Phosphohydrolase - genetics ; Regeneration ; Regeneration - genetics ; reprogramming ; Retina ; Retina - metabolism ; Retina - pathology ; Retinal ganglion cells ; Retinal Ganglion Cells - cytology ; Retinal Ganglion Cells - metabolism ; Retinal Ganglion Cells - pathology ; RGCs ; Sox11 ; SOXC Transcription Factors - genetics ; SOXC Transcription Factors - metabolism ; Stem cells ; Transcription factors</subject><ispartof>Neuron (Cambridge, Mass.), 2017-06, Vol.94 (6), p.1112-1120.e4</ispartof><rights>2017 Elsevier Inc.</rights><rights>Copyright © 2017 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Jun 21, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c557t-ae7bb0609e1c092ab5aed583e31271adc54cd6dd0d70d6e0dc91108da2694dce3</citedby><cites>FETCH-LOGICAL-c557t-ae7bb0609e1c092ab5aed583e31271adc54cd6dd0d70d6e0dc91108da2694dce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0896627317304737$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28641110$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Norsworthy, Michael W.</creatorcontrib><creatorcontrib>Bei, Fengfeng</creatorcontrib><creatorcontrib>Kawaguchi, Riki</creatorcontrib><creatorcontrib>Wang, Qing</creatorcontrib><creatorcontrib>Tran, Nicholas M.</creatorcontrib><creatorcontrib>Li, Yi</creatorcontrib><creatorcontrib>Brommer, Benedikt</creatorcontrib><creatorcontrib>Zhang, Yiming</creatorcontrib><creatorcontrib>Wang, Chen</creatorcontrib><creatorcontrib>Sanes, Joshua R.</creatorcontrib><creatorcontrib>Coppola, Giovanni</creatorcontrib><creatorcontrib>He, Zhigang</creatorcontrib><title>Sox11 Expression Promotes Regeneration of Some Retinal Ganglion Cell Types but Kills Others</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>At least 30 types of retinal ganglion cells (RGCs) send distinct messages through the optic nerve to the brain. Available strategies of promoting axon regeneration act on only some of these types. Here we tested the hypothesis that overexpressing developmentally important transcription factors in adult RGCs could reprogram them to a “youthful” growth-competent state and promote regeneration of other types. From a screen of transcription factors, we identified Sox11 as one that could induce substantial axon regeneration. Transcriptome profiling indicated that Sox11 activates genes involved in cytoskeletal remodeling and axon growth. Remarkably, α-RGCs, which preferentially regenerate following treatments such as Pten deletion, were killed by Sox11 overexpression. Thus, Sox11 promotes regeneration of non-α-RGCs, which are refractory to Pten deletion-induced regeneration. We conclude that Sox11 can reprogram adult RGCs to a growth-competent state, suggesting that different growth-promoting interventions promote regeneration in distinct neuronal types. •Sox11 promotes robust axon regeneration from injured adult RGCs•Sox11 re-activates a developmental axon growth program•Sox11 kills α-RGCs and promotes regeneration from other types•Pten deletion enhances axon regeneration induced by Sox11 expression Norsworthy et al. discovered that forced expression of Sox11, a transcription factor expressed in differentiating retinal progenitors, is able to reactivate an axon growth program and promote axon regeneration in subsets of adult RGCs but kills other types, suggesting that this and similar reprogramming strategies may be more complex than previously appreciated.</description><subject>Animals</subject><subject>Axons - metabolism</subject><subject>Cell Survival</subject><subject>Cytoskeleton</subject><subject>Fibroblasts</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>heterogeneity</subject><subject>Kinases</subject><subject>Mice</subject><subject>Microscopy, Fluorescence</subject><subject>Nerve Regeneration - genetics</subject><subject>Nervous system</subject><subject>Neuronal Outgrowth - genetics</subject><subject>Neurons</subject><subject>Optic nerve</subject><subject>Optic Nerve Injuries - metabolism</subject><subject>Optic Nerve Injuries - pathology</subject><subject>Phosphatase</subject><subject>Proteins</subject><subject>PTEN Phosphohydrolase - genetics</subject><subject>Regeneration</subject><subject>Regeneration - genetics</subject><subject>reprogramming</subject><subject>Retina</subject><subject>Retina - metabolism</subject><subject>Retina - pathology</subject><subject>Retinal ganglion cells</subject><subject>Retinal Ganglion Cells - cytology</subject><subject>Retinal Ganglion Cells - metabolism</subject><subject>Retinal Ganglion Cells - pathology</subject><subject>RGCs</subject><subject>Sox11</subject><subject>SOXC Transcription Factors - genetics</subject><subject>SOXC Transcription Factors - metabolism</subject><subject>Stem cells</subject><subject>Transcription factors</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UU1v1DAUtBCILoV_gFAkLr0kvJfESXxBQqtSEJWKaDlxsBz77darxF7spGr_PQ5byseBk6V5M-M3bxh7iVAgYPNmVziag3dFCdgWwAuo-CO2QhBtXqMQj9kKOtHkTdlWR-xZjDsArLnAp-yo7JoaEWHFvl36W8Ts9HYfKEbrXfY5-NFPFLMvtCVHQU0L6jfZpR8pgZN1asjOlNsOy2BNw5Bd3e2ToJ-n7JMdhphdTNcU4nP2ZKOGSC_u32P29f3p1fpDfn5x9nH97jzXnLdTrqjte2hAEGoQpeq5IsO7iiosW1RG81qbxhgwLZiGwGiRVu-MKhtRG03VMXt78N3P_UgJcVNQg9wHO6pwJ72y8u-Js9dy628k5yjKrksGJ_cGwX-fKU5ytFGnYMqRn6NEgVUluk4s1Nf_UHd-DukiP1ll00Jdt4lVH1g6-BgDbR6WQZBLe3InD-3JpT0JXKb2kuzVn0EeRL_q-p2U0jlvLAUZtSWnydhAepLG2___8AOa567H</recordid><startdate>20170621</startdate><enddate>20170621</enddate><creator>Norsworthy, Michael W.</creator><creator>Bei, Fengfeng</creator><creator>Kawaguchi, Riki</creator><creator>Wang, Qing</creator><creator>Tran, Nicholas M.</creator><creator>Li, Yi</creator><creator>Brommer, Benedikt</creator><creator>Zhang, Yiming</creator><creator>Wang, Chen</creator><creator>Sanes, Joshua R.</creator><creator>Coppola, Giovanni</creator><creator>He, Zhigang</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170621</creationdate><title>Sox11 Expression Promotes Regeneration of Some Retinal Ganglion Cell Types but Kills Others</title><author>Norsworthy, Michael W. ; Bei, Fengfeng ; Kawaguchi, Riki ; Wang, Qing ; Tran, Nicholas M. ; Li, Yi ; Brommer, Benedikt ; Zhang, Yiming ; Wang, Chen ; Sanes, Joshua R. ; Coppola, Giovanni ; He, Zhigang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c557t-ae7bb0609e1c092ab5aed583e31271adc54cd6dd0d70d6e0dc91108da2694dce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Axons - metabolism</topic><topic>Cell Survival</topic><topic>Cytoskeleton</topic><topic>Fibroblasts</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>heterogeneity</topic><topic>Kinases</topic><topic>Mice</topic><topic>Microscopy, Fluorescence</topic><topic>Nerve Regeneration - genetics</topic><topic>Nervous system</topic><topic>Neuronal Outgrowth - genetics</topic><topic>Neurons</topic><topic>Optic nerve</topic><topic>Optic Nerve Injuries - metabolism</topic><topic>Optic Nerve Injuries - pathology</topic><topic>Phosphatase</topic><topic>Proteins</topic><topic>PTEN Phosphohydrolase - genetics</topic><topic>Regeneration</topic><topic>Regeneration - genetics</topic><topic>reprogramming</topic><topic>Retina</topic><topic>Retina - metabolism</topic><topic>Retina - pathology</topic><topic>Retinal ganglion cells</topic><topic>Retinal Ganglion Cells - cytology</topic><topic>Retinal Ganglion Cells - metabolism</topic><topic>Retinal Ganglion Cells - pathology</topic><topic>RGCs</topic><topic>Sox11</topic><topic>SOXC Transcription Factors - genetics</topic><topic>SOXC Transcription Factors - metabolism</topic><topic>Stem cells</topic><topic>Transcription factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Norsworthy, Michael W.</creatorcontrib><creatorcontrib>Bei, Fengfeng</creatorcontrib><creatorcontrib>Kawaguchi, Riki</creatorcontrib><creatorcontrib>Wang, Qing</creatorcontrib><creatorcontrib>Tran, Nicholas M.</creatorcontrib><creatorcontrib>Li, Yi</creatorcontrib><creatorcontrib>Brommer, Benedikt</creatorcontrib><creatorcontrib>Zhang, Yiming</creatorcontrib><creatorcontrib>Wang, Chen</creatorcontrib><creatorcontrib>Sanes, Joshua R.</creatorcontrib><creatorcontrib>Coppola, Giovanni</creatorcontrib><creatorcontrib>He, Zhigang</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Norsworthy, Michael W.</au><au>Bei, Fengfeng</au><au>Kawaguchi, Riki</au><au>Wang, Qing</au><au>Tran, Nicholas M.</au><au>Li, Yi</au><au>Brommer, Benedikt</au><au>Zhang, Yiming</au><au>Wang, Chen</au><au>Sanes, Joshua R.</au><au>Coppola, Giovanni</au><au>He, Zhigang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sox11 Expression Promotes Regeneration of Some Retinal Ganglion Cell Types but Kills Others</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2017-06-21</date><risdate>2017</risdate><volume>94</volume><issue>6</issue><spage>1112</spage><epage>1120.e4</epage><pages>1112-1120.e4</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>At least 30 types of retinal ganglion cells (RGCs) send distinct messages through the optic nerve to the brain. Available strategies of promoting axon regeneration act on only some of these types. Here we tested the hypothesis that overexpressing developmentally important transcription factors in adult RGCs could reprogram them to a “youthful” growth-competent state and promote regeneration of other types. From a screen of transcription factors, we identified Sox11 as one that could induce substantial axon regeneration. Transcriptome profiling indicated that Sox11 activates genes involved in cytoskeletal remodeling and axon growth. Remarkably, α-RGCs, which preferentially regenerate following treatments such as Pten deletion, were killed by Sox11 overexpression. Thus, Sox11 promotes regeneration of non-α-RGCs, which are refractory to Pten deletion-induced regeneration. We conclude that Sox11 can reprogram adult RGCs to a growth-competent state, suggesting that different growth-promoting interventions promote regeneration in distinct neuronal types. •Sox11 promotes robust axon regeneration from injured adult RGCs•Sox11 re-activates a developmental axon growth program•Sox11 kills α-RGCs and promotes regeneration from other types•Pten deletion enhances axon regeneration induced by Sox11 expression Norsworthy et al. discovered that forced expression of Sox11, a transcription factor expressed in differentiating retinal progenitors, is able to reactivate an axon growth program and promote axon regeneration in subsets of adult RGCs but kills other types, suggesting that this and similar reprogramming strategies may be more complex than previously appreciated.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>28641110</pmid><doi>10.1016/j.neuron.2017.05.035</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0896-6273
ispartof Neuron (Cambridge, Mass.), 2017-06, Vol.94 (6), p.1112-1120.e4
issn 0896-6273
1097-4199
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5519288
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Animals
Axons - metabolism
Cell Survival
Cytoskeleton
Fibroblasts
Gene expression
Gene Expression Profiling
heterogeneity
Kinases
Mice
Microscopy, Fluorescence
Nerve Regeneration - genetics
Nervous system
Neuronal Outgrowth - genetics
Neurons
Optic nerve
Optic Nerve Injuries - metabolism
Optic Nerve Injuries - pathology
Phosphatase
Proteins
PTEN Phosphohydrolase - genetics
Regeneration
Regeneration - genetics
reprogramming
Retina
Retina - metabolism
Retina - pathology
Retinal ganglion cells
Retinal Ganglion Cells - cytology
Retinal Ganglion Cells - metabolism
Retinal Ganglion Cells - pathology
RGCs
Sox11
SOXC Transcription Factors - genetics
SOXC Transcription Factors - metabolism
Stem cells
Transcription factors
title Sox11 Expression Promotes Regeneration of Some Retinal Ganglion Cell Types but Kills Others
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T13%3A48%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sox11%20Expression%20Promotes%20Regeneration%20of%20Some%20Retinal%20Ganglion%20Cell%20Types%20but%20Kills%20Others&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Norsworthy,%20Michael%20W.&rft.date=2017-06-21&rft.volume=94&rft.issue=6&rft.spage=1112&rft.epage=1120.e4&rft.pages=1112-1120.e4&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2017.05.035&rft_dat=%3Cproquest_pubme%3E1912670447%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1912670447&rft_id=info:pmid/28641110&rft_els_id=S0896627317304737&rfr_iscdi=true