Microbial potential for carbon and nutrient cycling in a geogenic supercritical carbon dioxide reservoir

Summary Microorganisms catalyze carbon cycling and biogeochemical reactions in the deep subsurface and thus may be expected to influence the fate of injected supercritical (sc) CO2 following geological carbon sequestration (GCS). We hypothesized that natural subsurface scCO2 reservoirs, which serve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental microbiology 2017-06, Vol.19 (6), p.2228-2245
Hauptverfasser: Freedman, Adam J.E., Tan, BoonFei, Thompson, Janelle R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2245
container_issue 6
container_start_page 2228
container_title Environmental microbiology
container_volume 19
creator Freedman, Adam J.E.
Tan, BoonFei
Thompson, Janelle R.
description Summary Microorganisms catalyze carbon cycling and biogeochemical reactions in the deep subsurface and thus may be expected to influence the fate of injected supercritical (sc) CO2 following geological carbon sequestration (GCS). We hypothesized that natural subsurface scCO2 reservoirs, which serve as analogs for the long‐term fate of sequestered scCO2, harbor a ‘deep carbonated biosphere’ with carbon cycling potential. We sampled subsurface fluids from scCO2‐water separators at a natural scCO2 reservoir at McElmo Dome, Colorado for analysis of 16S rRNA gene diversity and metagenome content. Sequence annotations indicated dominance of Sulfurospirillum, Rhizobium, Desulfovibrio and four members of the Clostridiales family. Genomes extracted from metagenomes using homology and compositional approaches revealed diverse mechanisms for growth and nutrient cycling, including pathways for CO2 and N2 fixation, anaerobic respiration, sulfur oxidation, fermentation and potential for metabolic syntrophy. Differences in biogeochemical potential between two production well communities were consistent with differences in fluid chemical profiles, suggesting a potential link between microbial activity and geochemistry. The existence of a microbial ecosystem associated with the McElmo Dome scCO2 reservoir indicates that potential impacts of the deep biosphere on CO2 fate and transport should be taken into consideration as a component of GCS planning and modelling.
doi_str_mv 10.1111/1462-2920.13706
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5518199</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1871554644</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4676-f60478431b3fb66f1bcd6513a3c68a11ed703b7612b40b61249b9a177256a6783</originalsourceid><addsrcrecordid>eNqFkbtPBCEQxonR-K7tDImNzekOy2O3MTHGV6Kx0ZoAy56YPThhV73_Xs47L2ojzcDwmy8z8yF0AMUJ5HMKlJMRqUl-lqLga2h7lVlf3YFsoZ2UXooCRKY20RapCKkZgW30fO9MDNqpDk9Db30_v7UhYqOiDh4r32A_9NHlL2xmpnN-jF3O47ENY-udwWmY2mii653Jtcu6xoUP11gcbbLxLbi4hzZa1SW7v4y76Onq8vHiZnT3cH17cX43MpQLPmp5QUVFS9BlqzlvQZuGMyhVaXilAGwjilILDkTTQudAa10rEIIwrrioyl10ttCdDnpiG5P7jqqT0-gmKs5kUE7-_vHuWY7Dm2QMKqjrLHC8FIjhdbCplxOXjO065W0YkoRKAGOUU5rRoz_oSxiiz-NJyFsHYDVlmTpdUHnRKUXbrpqBQs5dlHOf5Nwz-eVirjj8OcOK_7YtA2wBvLvOzv7Tk5f3twvhT05Zp4A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1912115945</pqid></control><display><type>article</type><title>Microbial potential for carbon and nutrient cycling in a geogenic supercritical carbon dioxide reservoir</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><creator>Freedman, Adam J.E. ; Tan, BoonFei ; Thompson, Janelle R.</creator><creatorcontrib>Freedman, Adam J.E. ; Tan, BoonFei ; Thompson, Janelle R.</creatorcontrib><description>Summary Microorganisms catalyze carbon cycling and biogeochemical reactions in the deep subsurface and thus may be expected to influence the fate of injected supercritical (sc) CO2 following geological carbon sequestration (GCS). We hypothesized that natural subsurface scCO2 reservoirs, which serve as analogs for the long‐term fate of sequestered scCO2, harbor a ‘deep carbonated biosphere’ with carbon cycling potential. We sampled subsurface fluids from scCO2‐water separators at a natural scCO2 reservoir at McElmo Dome, Colorado for analysis of 16S rRNA gene diversity and metagenome content. Sequence annotations indicated dominance of Sulfurospirillum, Rhizobium, Desulfovibrio and four members of the Clostridiales family. Genomes extracted from metagenomes using homology and compositional approaches revealed diverse mechanisms for growth and nutrient cycling, including pathways for CO2 and N2 fixation, anaerobic respiration, sulfur oxidation, fermentation and potential for metabolic syntrophy. Differences in biogeochemical potential between two production well communities were consistent with differences in fluid chemical profiles, suggesting a potential link between microbial activity and geochemistry. The existence of a microbial ecosystem associated with the McElmo Dome scCO2 reservoir indicates that potential impacts of the deep biosphere on CO2 fate and transport should be taken into consideration as a component of GCS planning and modelling.</description><identifier>ISSN: 1462-2912</identifier><identifier>EISSN: 1462-2920</identifier><identifier>DOI: 10.1111/1462-2920.13706</identifier><identifier>PMID: 28229521</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Anaerobic respiration ; Analogs ; Annotations ; Bicycles ; Biogeochemistry ; Biological activity ; Biosphere ; Carbon - metabolism ; Carbon cycle ; Carbon Cycle - physiology ; Carbon dioxide ; Carbon Dioxide - metabolism ; Carbon sequestration ; Carbon Sequestration - physiology ; Carbonation ; Chemical reactions ; Clostridiales - classification ; Clostridiales - genetics ; Clostridiales - metabolism ; Colorado ; Communities ; Computational fluid dynamics ; Desulfovibrio - classification ; Desulfovibrio - genetics ; Desulfovibrio - metabolism ; Ecosystem ; Ecosystems ; Epsilonproteobacteria - classification ; Epsilonproteobacteria - genetics ; Epsilonproteobacteria - metabolism ; Fermentation ; Fluids ; Genome, Bacterial - genetics ; Genomes ; Geochemistry ; Homology ; Metagenome ; Microbial activity ; Microorganisms ; Mineral nutrients ; Modelling ; Nutrients ; Oxidation ; Profiles ; Reservoirs ; Rhizobium - classification ; Rhizobium - genetics ; Rhizobium - metabolism ; RNA, Ribosomal, 16S - genetics ; rRNA 16S ; Separators ; Sulfur ; Sulfur oxidation ; Sulphur</subject><ispartof>Environmental microbiology, 2017-06, Vol.19 (6), p.2228-2245</ispartof><rights>2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley &amp; Sons Ltd.</rights><rights>2017 Society for Applied Microbiology and John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4676-f60478431b3fb66f1bcd6513a3c68a11ed703b7612b40b61249b9a177256a6783</citedby><cites>FETCH-LOGICAL-c4676-f60478431b3fb66f1bcd6513a3c68a11ed703b7612b40b61249b9a177256a6783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1462-2920.13706$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1462-2920.13706$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28229521$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Freedman, Adam J.E.</creatorcontrib><creatorcontrib>Tan, BoonFei</creatorcontrib><creatorcontrib>Thompson, Janelle R.</creatorcontrib><title>Microbial potential for carbon and nutrient cycling in a geogenic supercritical carbon dioxide reservoir</title><title>Environmental microbiology</title><addtitle>Environ Microbiol</addtitle><description>Summary Microorganisms catalyze carbon cycling and biogeochemical reactions in the deep subsurface and thus may be expected to influence the fate of injected supercritical (sc) CO2 following geological carbon sequestration (GCS). We hypothesized that natural subsurface scCO2 reservoirs, which serve as analogs for the long‐term fate of sequestered scCO2, harbor a ‘deep carbonated biosphere’ with carbon cycling potential. We sampled subsurface fluids from scCO2‐water separators at a natural scCO2 reservoir at McElmo Dome, Colorado for analysis of 16S rRNA gene diversity and metagenome content. Sequence annotations indicated dominance of Sulfurospirillum, Rhizobium, Desulfovibrio and four members of the Clostridiales family. Genomes extracted from metagenomes using homology and compositional approaches revealed diverse mechanisms for growth and nutrient cycling, including pathways for CO2 and N2 fixation, anaerobic respiration, sulfur oxidation, fermentation and potential for metabolic syntrophy. Differences in biogeochemical potential between two production well communities were consistent with differences in fluid chemical profiles, suggesting a potential link between microbial activity and geochemistry. The existence of a microbial ecosystem associated with the McElmo Dome scCO2 reservoir indicates that potential impacts of the deep biosphere on CO2 fate and transport should be taken into consideration as a component of GCS planning and modelling.</description><subject>Anaerobic respiration</subject><subject>Analogs</subject><subject>Annotations</subject><subject>Bicycles</subject><subject>Biogeochemistry</subject><subject>Biological activity</subject><subject>Biosphere</subject><subject>Carbon - metabolism</subject><subject>Carbon cycle</subject><subject>Carbon Cycle - physiology</subject><subject>Carbon dioxide</subject><subject>Carbon Dioxide - metabolism</subject><subject>Carbon sequestration</subject><subject>Carbon Sequestration - physiology</subject><subject>Carbonation</subject><subject>Chemical reactions</subject><subject>Clostridiales - classification</subject><subject>Clostridiales - genetics</subject><subject>Clostridiales - metabolism</subject><subject>Colorado</subject><subject>Communities</subject><subject>Computational fluid dynamics</subject><subject>Desulfovibrio - classification</subject><subject>Desulfovibrio - genetics</subject><subject>Desulfovibrio - metabolism</subject><subject>Ecosystem</subject><subject>Ecosystems</subject><subject>Epsilonproteobacteria - classification</subject><subject>Epsilonproteobacteria - genetics</subject><subject>Epsilonproteobacteria - metabolism</subject><subject>Fermentation</subject><subject>Fluids</subject><subject>Genome, Bacterial - genetics</subject><subject>Genomes</subject><subject>Geochemistry</subject><subject>Homology</subject><subject>Metagenome</subject><subject>Microbial activity</subject><subject>Microorganisms</subject><subject>Mineral nutrients</subject><subject>Modelling</subject><subject>Nutrients</subject><subject>Oxidation</subject><subject>Profiles</subject><subject>Reservoirs</subject><subject>Rhizobium - classification</subject><subject>Rhizobium - genetics</subject><subject>Rhizobium - metabolism</subject><subject>RNA, Ribosomal, 16S - genetics</subject><subject>rRNA 16S</subject><subject>Separators</subject><subject>Sulfur</subject><subject>Sulfur oxidation</subject><subject>Sulphur</subject><issn>1462-2912</issn><issn>1462-2920</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqFkbtPBCEQxonR-K7tDImNzekOy2O3MTHGV6Kx0ZoAy56YPThhV73_Xs47L2ojzcDwmy8z8yF0AMUJ5HMKlJMRqUl-lqLga2h7lVlf3YFsoZ2UXooCRKY20RapCKkZgW30fO9MDNqpDk9Db30_v7UhYqOiDh4r32A_9NHlL2xmpnN-jF3O47ENY-udwWmY2mii653Jtcu6xoUP11gcbbLxLbi4hzZa1SW7v4y76Onq8vHiZnT3cH17cX43MpQLPmp5QUVFS9BlqzlvQZuGMyhVaXilAGwjilILDkTTQudAa10rEIIwrrioyl10ttCdDnpiG5P7jqqT0-gmKs5kUE7-_vHuWY7Dm2QMKqjrLHC8FIjhdbCplxOXjO065W0YkoRKAGOUU5rRoz_oSxiiz-NJyFsHYDVlmTpdUHnRKUXbrpqBQs5dlHOf5Nwz-eVirjj8OcOK_7YtA2wBvLvOzv7Tk5f3twvhT05Zp4A</recordid><startdate>201706</startdate><enddate>201706</enddate><creator>Freedman, Adam J.E.</creator><creator>Tan, BoonFei</creator><creator>Thompson, Janelle R.</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7ST</scope><scope>7T7</scope><scope>7TN</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201706</creationdate><title>Microbial potential for carbon and nutrient cycling in a geogenic supercritical carbon dioxide reservoir</title><author>Freedman, Adam J.E. ; Tan, BoonFei ; Thompson, Janelle R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4676-f60478431b3fb66f1bcd6513a3c68a11ed703b7612b40b61249b9a177256a6783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Anaerobic respiration</topic><topic>Analogs</topic><topic>Annotations</topic><topic>Bicycles</topic><topic>Biogeochemistry</topic><topic>Biological activity</topic><topic>Biosphere</topic><topic>Carbon - metabolism</topic><topic>Carbon cycle</topic><topic>Carbon Cycle - physiology</topic><topic>Carbon dioxide</topic><topic>Carbon Dioxide - metabolism</topic><topic>Carbon sequestration</topic><topic>Carbon Sequestration - physiology</topic><topic>Carbonation</topic><topic>Chemical reactions</topic><topic>Clostridiales - classification</topic><topic>Clostridiales - genetics</topic><topic>Clostridiales - metabolism</topic><topic>Colorado</topic><topic>Communities</topic><topic>Computational fluid dynamics</topic><topic>Desulfovibrio - classification</topic><topic>Desulfovibrio - genetics</topic><topic>Desulfovibrio - metabolism</topic><topic>Ecosystem</topic><topic>Ecosystems</topic><topic>Epsilonproteobacteria - classification</topic><topic>Epsilonproteobacteria - genetics</topic><topic>Epsilonproteobacteria - metabolism</topic><topic>Fermentation</topic><topic>Fluids</topic><topic>Genome, Bacterial - genetics</topic><topic>Genomes</topic><topic>Geochemistry</topic><topic>Homology</topic><topic>Metagenome</topic><topic>Microbial activity</topic><topic>Microorganisms</topic><topic>Mineral nutrients</topic><topic>Modelling</topic><topic>Nutrients</topic><topic>Oxidation</topic><topic>Profiles</topic><topic>Reservoirs</topic><topic>Rhizobium - classification</topic><topic>Rhizobium - genetics</topic><topic>Rhizobium - metabolism</topic><topic>RNA, Ribosomal, 16S - genetics</topic><topic>rRNA 16S</topic><topic>Separators</topic><topic>Sulfur</topic><topic>Sulfur oxidation</topic><topic>Sulphur</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Freedman, Adam J.E.</creatorcontrib><creatorcontrib>Tan, BoonFei</creatorcontrib><creatorcontrib>Thompson, Janelle R.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Environmental microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Freedman, Adam J.E.</au><au>Tan, BoonFei</au><au>Thompson, Janelle R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microbial potential for carbon and nutrient cycling in a geogenic supercritical carbon dioxide reservoir</atitle><jtitle>Environmental microbiology</jtitle><addtitle>Environ Microbiol</addtitle><date>2017-06</date><risdate>2017</risdate><volume>19</volume><issue>6</issue><spage>2228</spage><epage>2245</epage><pages>2228-2245</pages><issn>1462-2912</issn><eissn>1462-2920</eissn><abstract>Summary Microorganisms catalyze carbon cycling and biogeochemical reactions in the deep subsurface and thus may be expected to influence the fate of injected supercritical (sc) CO2 following geological carbon sequestration (GCS). We hypothesized that natural subsurface scCO2 reservoirs, which serve as analogs for the long‐term fate of sequestered scCO2, harbor a ‘deep carbonated biosphere’ with carbon cycling potential. We sampled subsurface fluids from scCO2‐water separators at a natural scCO2 reservoir at McElmo Dome, Colorado for analysis of 16S rRNA gene diversity and metagenome content. Sequence annotations indicated dominance of Sulfurospirillum, Rhizobium, Desulfovibrio and four members of the Clostridiales family. Genomes extracted from metagenomes using homology and compositional approaches revealed diverse mechanisms for growth and nutrient cycling, including pathways for CO2 and N2 fixation, anaerobic respiration, sulfur oxidation, fermentation and potential for metabolic syntrophy. Differences in biogeochemical potential between two production well communities were consistent with differences in fluid chemical profiles, suggesting a potential link between microbial activity and geochemistry. The existence of a microbial ecosystem associated with the McElmo Dome scCO2 reservoir indicates that potential impacts of the deep biosphere on CO2 fate and transport should be taken into consideration as a component of GCS planning and modelling.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28229521</pmid><doi>10.1111/1462-2920.13706</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1462-2912
ispartof Environmental microbiology, 2017-06, Vol.19 (6), p.2228-2245
issn 1462-2912
1462-2920
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5518199
source Wiley Online Library - AutoHoldings Journals; MEDLINE
subjects Anaerobic respiration
Analogs
Annotations
Bicycles
Biogeochemistry
Biological activity
Biosphere
Carbon - metabolism
Carbon cycle
Carbon Cycle - physiology
Carbon dioxide
Carbon Dioxide - metabolism
Carbon sequestration
Carbon Sequestration - physiology
Carbonation
Chemical reactions
Clostridiales - classification
Clostridiales - genetics
Clostridiales - metabolism
Colorado
Communities
Computational fluid dynamics
Desulfovibrio - classification
Desulfovibrio - genetics
Desulfovibrio - metabolism
Ecosystem
Ecosystems
Epsilonproteobacteria - classification
Epsilonproteobacteria - genetics
Epsilonproteobacteria - metabolism
Fermentation
Fluids
Genome, Bacterial - genetics
Genomes
Geochemistry
Homology
Metagenome
Microbial activity
Microorganisms
Mineral nutrients
Modelling
Nutrients
Oxidation
Profiles
Reservoirs
Rhizobium - classification
Rhizobium - genetics
Rhizobium - metabolism
RNA, Ribosomal, 16S - genetics
rRNA 16S
Separators
Sulfur
Sulfur oxidation
Sulphur
title Microbial potential for carbon and nutrient cycling in a geogenic supercritical carbon dioxide reservoir
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A29%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microbial%20potential%20for%20carbon%20and%20nutrient%20cycling%20in%20a%20geogenic%20supercritical%20carbon%20dioxide%20reservoir&rft.jtitle=Environmental%20microbiology&rft.au=Freedman,%20Adam%20J.E.&rft.date=2017-06&rft.volume=19&rft.issue=6&rft.spage=2228&rft.epage=2245&rft.pages=2228-2245&rft.issn=1462-2912&rft.eissn=1462-2920&rft_id=info:doi/10.1111/1462-2920.13706&rft_dat=%3Cproquest_pubme%3E1871554644%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1912115945&rft_id=info:pmid/28229521&rfr_iscdi=true