Microbial potential for carbon and nutrient cycling in a geogenic supercritical carbon dioxide reservoir
Summary Microorganisms catalyze carbon cycling and biogeochemical reactions in the deep subsurface and thus may be expected to influence the fate of injected supercritical (sc) CO2 following geological carbon sequestration (GCS). We hypothesized that natural subsurface scCO2 reservoirs, which serve...
Gespeichert in:
Veröffentlicht in: | Environmental microbiology 2017-06, Vol.19 (6), p.2228-2245 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2245 |
---|---|
container_issue | 6 |
container_start_page | 2228 |
container_title | Environmental microbiology |
container_volume | 19 |
creator | Freedman, Adam J.E. Tan, BoonFei Thompson, Janelle R. |
description | Summary
Microorganisms catalyze carbon cycling and biogeochemical reactions in the deep subsurface and thus may be expected to influence the fate of injected supercritical (sc) CO2 following geological carbon sequestration (GCS). We hypothesized that natural subsurface scCO2 reservoirs, which serve as analogs for the long‐term fate of sequestered scCO2, harbor a ‘deep carbonated biosphere’ with carbon cycling potential. We sampled subsurface fluids from scCO2‐water separators at a natural scCO2 reservoir at McElmo Dome, Colorado for analysis of 16S rRNA gene diversity and metagenome content. Sequence annotations indicated dominance of Sulfurospirillum, Rhizobium, Desulfovibrio and four members of the Clostridiales family. Genomes extracted from metagenomes using homology and compositional approaches revealed diverse mechanisms for growth and nutrient cycling, including pathways for CO2 and N2 fixation, anaerobic respiration, sulfur oxidation, fermentation and potential for metabolic syntrophy. Differences in biogeochemical potential between two production well communities were consistent with differences in fluid chemical profiles, suggesting a potential link between microbial activity and geochemistry. The existence of a microbial ecosystem associated with the McElmo Dome scCO2 reservoir indicates that potential impacts of the deep biosphere on CO2 fate and transport should be taken into consideration as a component of GCS planning and modelling. |
doi_str_mv | 10.1111/1462-2920.13706 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5518199</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1871554644</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4676-f60478431b3fb66f1bcd6513a3c68a11ed703b7612b40b61249b9a177256a6783</originalsourceid><addsrcrecordid>eNqFkbtPBCEQxonR-K7tDImNzekOy2O3MTHGV6Kx0ZoAy56YPThhV73_Xs47L2ojzcDwmy8z8yF0AMUJ5HMKlJMRqUl-lqLga2h7lVlf3YFsoZ2UXooCRKY20RapCKkZgW30fO9MDNqpDk9Db30_v7UhYqOiDh4r32A_9NHlL2xmpnN-jF3O47ENY-udwWmY2mii653Jtcu6xoUP11gcbbLxLbi4hzZa1SW7v4y76Onq8vHiZnT3cH17cX43MpQLPmp5QUVFS9BlqzlvQZuGMyhVaXilAGwjilILDkTTQudAa10rEIIwrrioyl10ttCdDnpiG5P7jqqT0-gmKs5kUE7-_vHuWY7Dm2QMKqjrLHC8FIjhdbCplxOXjO065W0YkoRKAGOUU5rRoz_oSxiiz-NJyFsHYDVlmTpdUHnRKUXbrpqBQs5dlHOf5Nwz-eVirjj8OcOK_7YtA2wBvLvOzv7Tk5f3twvhT05Zp4A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1912115945</pqid></control><display><type>article</type><title>Microbial potential for carbon and nutrient cycling in a geogenic supercritical carbon dioxide reservoir</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><creator>Freedman, Adam J.E. ; Tan, BoonFei ; Thompson, Janelle R.</creator><creatorcontrib>Freedman, Adam J.E. ; Tan, BoonFei ; Thompson, Janelle R.</creatorcontrib><description>Summary
Microorganisms catalyze carbon cycling and biogeochemical reactions in the deep subsurface and thus may be expected to influence the fate of injected supercritical (sc) CO2 following geological carbon sequestration (GCS). We hypothesized that natural subsurface scCO2 reservoirs, which serve as analogs for the long‐term fate of sequestered scCO2, harbor a ‘deep carbonated biosphere’ with carbon cycling potential. We sampled subsurface fluids from scCO2‐water separators at a natural scCO2 reservoir at McElmo Dome, Colorado for analysis of 16S rRNA gene diversity and metagenome content. Sequence annotations indicated dominance of Sulfurospirillum, Rhizobium, Desulfovibrio and four members of the Clostridiales family. Genomes extracted from metagenomes using homology and compositional approaches revealed diverse mechanisms for growth and nutrient cycling, including pathways for CO2 and N2 fixation, anaerobic respiration, sulfur oxidation, fermentation and potential for metabolic syntrophy. Differences in biogeochemical potential between two production well communities were consistent with differences in fluid chemical profiles, suggesting a potential link between microbial activity and geochemistry. The existence of a microbial ecosystem associated with the McElmo Dome scCO2 reservoir indicates that potential impacts of the deep biosphere on CO2 fate and transport should be taken into consideration as a component of GCS planning and modelling.</description><identifier>ISSN: 1462-2912</identifier><identifier>EISSN: 1462-2920</identifier><identifier>DOI: 10.1111/1462-2920.13706</identifier><identifier>PMID: 28229521</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Anaerobic respiration ; Analogs ; Annotations ; Bicycles ; Biogeochemistry ; Biological activity ; Biosphere ; Carbon - metabolism ; Carbon cycle ; Carbon Cycle - physiology ; Carbon dioxide ; Carbon Dioxide - metabolism ; Carbon sequestration ; Carbon Sequestration - physiology ; Carbonation ; Chemical reactions ; Clostridiales - classification ; Clostridiales - genetics ; Clostridiales - metabolism ; Colorado ; Communities ; Computational fluid dynamics ; Desulfovibrio - classification ; Desulfovibrio - genetics ; Desulfovibrio - metabolism ; Ecosystem ; Ecosystems ; Epsilonproteobacteria - classification ; Epsilonproteobacteria - genetics ; Epsilonproteobacteria - metabolism ; Fermentation ; Fluids ; Genome, Bacterial - genetics ; Genomes ; Geochemistry ; Homology ; Metagenome ; Microbial activity ; Microorganisms ; Mineral nutrients ; Modelling ; Nutrients ; Oxidation ; Profiles ; Reservoirs ; Rhizobium - classification ; Rhizobium - genetics ; Rhizobium - metabolism ; RNA, Ribosomal, 16S - genetics ; rRNA 16S ; Separators ; Sulfur ; Sulfur oxidation ; Sulphur</subject><ispartof>Environmental microbiology, 2017-06, Vol.19 (6), p.2228-2245</ispartof><rights>2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.</rights><rights>2017 Society for Applied Microbiology and John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4676-f60478431b3fb66f1bcd6513a3c68a11ed703b7612b40b61249b9a177256a6783</citedby><cites>FETCH-LOGICAL-c4676-f60478431b3fb66f1bcd6513a3c68a11ed703b7612b40b61249b9a177256a6783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1462-2920.13706$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1462-2920.13706$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28229521$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Freedman, Adam J.E.</creatorcontrib><creatorcontrib>Tan, BoonFei</creatorcontrib><creatorcontrib>Thompson, Janelle R.</creatorcontrib><title>Microbial potential for carbon and nutrient cycling in a geogenic supercritical carbon dioxide reservoir</title><title>Environmental microbiology</title><addtitle>Environ Microbiol</addtitle><description>Summary
Microorganisms catalyze carbon cycling and biogeochemical reactions in the deep subsurface and thus may be expected to influence the fate of injected supercritical (sc) CO2 following geological carbon sequestration (GCS). We hypothesized that natural subsurface scCO2 reservoirs, which serve as analogs for the long‐term fate of sequestered scCO2, harbor a ‘deep carbonated biosphere’ with carbon cycling potential. We sampled subsurface fluids from scCO2‐water separators at a natural scCO2 reservoir at McElmo Dome, Colorado for analysis of 16S rRNA gene diversity and metagenome content. Sequence annotations indicated dominance of Sulfurospirillum, Rhizobium, Desulfovibrio and four members of the Clostridiales family. Genomes extracted from metagenomes using homology and compositional approaches revealed diverse mechanisms for growth and nutrient cycling, including pathways for CO2 and N2 fixation, anaerobic respiration, sulfur oxidation, fermentation and potential for metabolic syntrophy. Differences in biogeochemical potential between two production well communities were consistent with differences in fluid chemical profiles, suggesting a potential link between microbial activity and geochemistry. The existence of a microbial ecosystem associated with the McElmo Dome scCO2 reservoir indicates that potential impacts of the deep biosphere on CO2 fate and transport should be taken into consideration as a component of GCS planning and modelling.</description><subject>Anaerobic respiration</subject><subject>Analogs</subject><subject>Annotations</subject><subject>Bicycles</subject><subject>Biogeochemistry</subject><subject>Biological activity</subject><subject>Biosphere</subject><subject>Carbon - metabolism</subject><subject>Carbon cycle</subject><subject>Carbon Cycle - physiology</subject><subject>Carbon dioxide</subject><subject>Carbon Dioxide - metabolism</subject><subject>Carbon sequestration</subject><subject>Carbon Sequestration - physiology</subject><subject>Carbonation</subject><subject>Chemical reactions</subject><subject>Clostridiales - classification</subject><subject>Clostridiales - genetics</subject><subject>Clostridiales - metabolism</subject><subject>Colorado</subject><subject>Communities</subject><subject>Computational fluid dynamics</subject><subject>Desulfovibrio - classification</subject><subject>Desulfovibrio - genetics</subject><subject>Desulfovibrio - metabolism</subject><subject>Ecosystem</subject><subject>Ecosystems</subject><subject>Epsilonproteobacteria - classification</subject><subject>Epsilonproteobacteria - genetics</subject><subject>Epsilonproteobacteria - metabolism</subject><subject>Fermentation</subject><subject>Fluids</subject><subject>Genome, Bacterial - genetics</subject><subject>Genomes</subject><subject>Geochemistry</subject><subject>Homology</subject><subject>Metagenome</subject><subject>Microbial activity</subject><subject>Microorganisms</subject><subject>Mineral nutrients</subject><subject>Modelling</subject><subject>Nutrients</subject><subject>Oxidation</subject><subject>Profiles</subject><subject>Reservoirs</subject><subject>Rhizobium - classification</subject><subject>Rhizobium - genetics</subject><subject>Rhizobium - metabolism</subject><subject>RNA, Ribosomal, 16S - genetics</subject><subject>rRNA 16S</subject><subject>Separators</subject><subject>Sulfur</subject><subject>Sulfur oxidation</subject><subject>Sulphur</subject><issn>1462-2912</issn><issn>1462-2920</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqFkbtPBCEQxonR-K7tDImNzekOy2O3MTHGV6Kx0ZoAy56YPThhV73_Xs47L2ojzcDwmy8z8yF0AMUJ5HMKlJMRqUl-lqLga2h7lVlf3YFsoZ2UXooCRKY20RapCKkZgW30fO9MDNqpDk9Db30_v7UhYqOiDh4r32A_9NHlL2xmpnN-jF3O47ENY-udwWmY2mii653Jtcu6xoUP11gcbbLxLbi4hzZa1SW7v4y76Onq8vHiZnT3cH17cX43MpQLPmp5QUVFS9BlqzlvQZuGMyhVaXilAGwjilILDkTTQudAa10rEIIwrrioyl10ttCdDnpiG5P7jqqT0-gmKs5kUE7-_vHuWY7Dm2QMKqjrLHC8FIjhdbCplxOXjO065W0YkoRKAGOUU5rRoz_oSxiiz-NJyFsHYDVlmTpdUHnRKUXbrpqBQs5dlHOf5Nwz-eVirjj8OcOK_7YtA2wBvLvOzv7Tk5f3twvhT05Zp4A</recordid><startdate>201706</startdate><enddate>201706</enddate><creator>Freedman, Adam J.E.</creator><creator>Tan, BoonFei</creator><creator>Thompson, Janelle R.</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7ST</scope><scope>7T7</scope><scope>7TN</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201706</creationdate><title>Microbial potential for carbon and nutrient cycling in a geogenic supercritical carbon dioxide reservoir</title><author>Freedman, Adam J.E. ; Tan, BoonFei ; Thompson, Janelle R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4676-f60478431b3fb66f1bcd6513a3c68a11ed703b7612b40b61249b9a177256a6783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Anaerobic respiration</topic><topic>Analogs</topic><topic>Annotations</topic><topic>Bicycles</topic><topic>Biogeochemistry</topic><topic>Biological activity</topic><topic>Biosphere</topic><topic>Carbon - metabolism</topic><topic>Carbon cycle</topic><topic>Carbon Cycle - physiology</topic><topic>Carbon dioxide</topic><topic>Carbon Dioxide - metabolism</topic><topic>Carbon sequestration</topic><topic>Carbon Sequestration - physiology</topic><topic>Carbonation</topic><topic>Chemical reactions</topic><topic>Clostridiales - classification</topic><topic>Clostridiales - genetics</topic><topic>Clostridiales - metabolism</topic><topic>Colorado</topic><topic>Communities</topic><topic>Computational fluid dynamics</topic><topic>Desulfovibrio - classification</topic><topic>Desulfovibrio - genetics</topic><topic>Desulfovibrio - metabolism</topic><topic>Ecosystem</topic><topic>Ecosystems</topic><topic>Epsilonproteobacteria - classification</topic><topic>Epsilonproteobacteria - genetics</topic><topic>Epsilonproteobacteria - metabolism</topic><topic>Fermentation</topic><topic>Fluids</topic><topic>Genome, Bacterial - genetics</topic><topic>Genomes</topic><topic>Geochemistry</topic><topic>Homology</topic><topic>Metagenome</topic><topic>Microbial activity</topic><topic>Microorganisms</topic><topic>Mineral nutrients</topic><topic>Modelling</topic><topic>Nutrients</topic><topic>Oxidation</topic><topic>Profiles</topic><topic>Reservoirs</topic><topic>Rhizobium - classification</topic><topic>Rhizobium - genetics</topic><topic>Rhizobium - metabolism</topic><topic>RNA, Ribosomal, 16S - genetics</topic><topic>rRNA 16S</topic><topic>Separators</topic><topic>Sulfur</topic><topic>Sulfur oxidation</topic><topic>Sulphur</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Freedman, Adam J.E.</creatorcontrib><creatorcontrib>Tan, BoonFei</creatorcontrib><creatorcontrib>Thompson, Janelle R.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Environmental microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Freedman, Adam J.E.</au><au>Tan, BoonFei</au><au>Thompson, Janelle R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microbial potential for carbon and nutrient cycling in a geogenic supercritical carbon dioxide reservoir</atitle><jtitle>Environmental microbiology</jtitle><addtitle>Environ Microbiol</addtitle><date>2017-06</date><risdate>2017</risdate><volume>19</volume><issue>6</issue><spage>2228</spage><epage>2245</epage><pages>2228-2245</pages><issn>1462-2912</issn><eissn>1462-2920</eissn><abstract>Summary
Microorganisms catalyze carbon cycling and biogeochemical reactions in the deep subsurface and thus may be expected to influence the fate of injected supercritical (sc) CO2 following geological carbon sequestration (GCS). We hypothesized that natural subsurface scCO2 reservoirs, which serve as analogs for the long‐term fate of sequestered scCO2, harbor a ‘deep carbonated biosphere’ with carbon cycling potential. We sampled subsurface fluids from scCO2‐water separators at a natural scCO2 reservoir at McElmo Dome, Colorado for analysis of 16S rRNA gene diversity and metagenome content. Sequence annotations indicated dominance of Sulfurospirillum, Rhizobium, Desulfovibrio and four members of the Clostridiales family. Genomes extracted from metagenomes using homology and compositional approaches revealed diverse mechanisms for growth and nutrient cycling, including pathways for CO2 and N2 fixation, anaerobic respiration, sulfur oxidation, fermentation and potential for metabolic syntrophy. Differences in biogeochemical potential between two production well communities were consistent with differences in fluid chemical profiles, suggesting a potential link between microbial activity and geochemistry. The existence of a microbial ecosystem associated with the McElmo Dome scCO2 reservoir indicates that potential impacts of the deep biosphere on CO2 fate and transport should be taken into consideration as a component of GCS planning and modelling.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28229521</pmid><doi>10.1111/1462-2920.13706</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1462-2912 |
ispartof | Environmental microbiology, 2017-06, Vol.19 (6), p.2228-2245 |
issn | 1462-2912 1462-2920 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5518199 |
source | Wiley Online Library - AutoHoldings Journals; MEDLINE |
subjects | Anaerobic respiration Analogs Annotations Bicycles Biogeochemistry Biological activity Biosphere Carbon - metabolism Carbon cycle Carbon Cycle - physiology Carbon dioxide Carbon Dioxide - metabolism Carbon sequestration Carbon Sequestration - physiology Carbonation Chemical reactions Clostridiales - classification Clostridiales - genetics Clostridiales - metabolism Colorado Communities Computational fluid dynamics Desulfovibrio - classification Desulfovibrio - genetics Desulfovibrio - metabolism Ecosystem Ecosystems Epsilonproteobacteria - classification Epsilonproteobacteria - genetics Epsilonproteobacteria - metabolism Fermentation Fluids Genome, Bacterial - genetics Genomes Geochemistry Homology Metagenome Microbial activity Microorganisms Mineral nutrients Modelling Nutrients Oxidation Profiles Reservoirs Rhizobium - classification Rhizobium - genetics Rhizobium - metabolism RNA, Ribosomal, 16S - genetics rRNA 16S Separators Sulfur Sulfur oxidation Sulphur |
title | Microbial potential for carbon and nutrient cycling in a geogenic supercritical carbon dioxide reservoir |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A29%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microbial%20potential%20for%20carbon%20and%20nutrient%20cycling%20in%20a%20geogenic%20supercritical%20carbon%20dioxide%20reservoir&rft.jtitle=Environmental%20microbiology&rft.au=Freedman,%20Adam%20J.E.&rft.date=2017-06&rft.volume=19&rft.issue=6&rft.spage=2228&rft.epage=2245&rft.pages=2228-2245&rft.issn=1462-2912&rft.eissn=1462-2920&rft_id=info:doi/10.1111/1462-2920.13706&rft_dat=%3Cproquest_pubme%3E1871554644%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1912115945&rft_id=info:pmid/28229521&rfr_iscdi=true |