Bayesian nonparametric clustering in phylogenetics: modeling antigenic evolution in influenza
Influenza is responsible for up to 500,000 deaths every year, and antigenic variability represents much of its epidemiological burden. To visualize antigenic differences across many viral strains, antigenic cartography methods use multidimensional scaling on binding assay data to map influenza antig...
Gespeichert in:
Veröffentlicht in: | Statistics in medicine 2018-01, Vol.37 (2), p.195-206 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 206 |
---|---|
container_issue | 2 |
container_start_page | 195 |
container_title | Statistics in medicine |
container_volume | 37 |
creator | Cybis, Gabriela B. Sinsheimer, Janet S. Bedford, Trevor Rambaut, Andrew Lemey, Philippe Suchard, Marc A. |
description | Influenza is responsible for up to 500,000 deaths every year, and antigenic variability represents much of its epidemiological burden. To visualize antigenic differences across many viral strains, antigenic cartography methods use multidimensional scaling on binding assay data to map influenza antigenicity onto a low‐dimensional space. Analysis of such assay data ideally leads to natural clustering of influenza strains of similar antigenicity that correlate with sequence evolution. To understand the dynamics of these antigenic groups, we present a framework that jointly models genetic and antigenic evolution by combining multidimensional scaling of binding assay data, Bayesian phylogenetic machinery and nonparametric clustering methods. We propose a phylogenetic Chinese restaurant process that extends the current process to incorporate the phylogenetic dependency structure between strains in the modeling of antigenic clusters. With this method, we are able to use the genetic information to better understand the evolution of antigenicity throughout epidemics, as shown in applications of this model to H1N1 influenza. Copyright © 2017 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/sim.7196 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5515700</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1861563571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4386-16aae219202881fdf9bd42b890611d06d6810f56c14d69c2ba9893b26a315b5b3</originalsourceid><addsrcrecordid>eNp1kV1rFTEQhkNR2tNa6C-QBW-82TqTPfnyQqilaqGlF-plCdls9jQlmxyT3crx17vH1lYFrwZmHh7e4SXkCOEYAeib4odjgYrvkAWCEjVQJp-RBVAhai6Q7ZH9Um4BEBkVu2SPSlCyUXRBrt-bjSvexCqmuDbZDG7M3lY2TGV02cdV5WO1vtmEtHLRjd6Wt9WQOhe2JxNHP69n3t2lMI0-xS3uYx8mF3-YF-R5b0Jxhw_zgHz9cPbl9FN9cfXx_PTkorbLRvIauTGOoqJApcS-61XbLWkrFXDEDnjHJULPuMVlx5WlrVFSNS3lpkHWsrY5IO_uveupHVxnXRyzCXqd_WDyRifj9d-X6G_0Kt1pxpAJgFnw-kGQ07fJlVEPvlgXgokuTUWj5Mh4wwTO6Kt_0Ns05Ti_p1EJISiIRj4JbU6lZNc_hkHQ28703JnedjajL_8M_wj-LmkG6nvguw9u81-R_nx--Uv4EwOWofU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1977720738</pqid></control><display><type>article</type><title>Bayesian nonparametric clustering in phylogenetics: modeling antigenic evolution in influenza</title><source>Wiley-Blackwell Journals</source><source>MEDLINE</source><creator>Cybis, Gabriela B. ; Sinsheimer, Janet S. ; Bedford, Trevor ; Rambaut, Andrew ; Lemey, Philippe ; Suchard, Marc A.</creator><creatorcontrib>Cybis, Gabriela B. ; Sinsheimer, Janet S. ; Bedford, Trevor ; Rambaut, Andrew ; Lemey, Philippe ; Suchard, Marc A.</creatorcontrib><description>Influenza is responsible for up to 500,000 deaths every year, and antigenic variability represents much of its epidemiological burden. To visualize antigenic differences across many viral strains, antigenic cartography methods use multidimensional scaling on binding assay data to map influenza antigenicity onto a low‐dimensional space. Analysis of such assay data ideally leads to natural clustering of influenza strains of similar antigenicity that correlate with sequence evolution. To understand the dynamics of these antigenic groups, we present a framework that jointly models genetic and antigenic evolution by combining multidimensional scaling of binding assay data, Bayesian phylogenetic machinery and nonparametric clustering methods. We propose a phylogenetic Chinese restaurant process that extends the current process to incorporate the phylogenetic dependency structure between strains in the modeling of antigenic clusters. With this method, we are able to use the genetic information to better understand the evolution of antigenicity throughout epidemics, as shown in applications of this model to H1N1 influenza. Copyright © 2017 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.7196</identifier><identifier>PMID: 28098392</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>antigenic cartography ; Antigens ; Antigens, Viral - genetics ; Antigens, Viral - immunology ; Bayes Theorem ; Bayesian nonparametric mixture models ; Biostatistics ; Cluster Analysis ; Epidemiology ; Evolution, Molecular ; Humans ; Influenza ; Influenza A Virus, H1N1 Subtype - classification ; Influenza A Virus, H1N1 Subtype - genetics ; Influenza A Virus, H1N1 Subtype - immunology ; Influenza, Human - epidemiology ; Influenza, Human - virology ; Likelihood Functions ; Mathematical models ; Models, Genetic ; Models, Immunological ; Molecular Epidemiology ; Nonparametric statistics ; phylodynamics ; Phylogenetics ; Phylogeny ; Statistics, Nonparametric ; Stochastic Processes</subject><ispartof>Statistics in medicine, 2018-01, Vol.37 (2), p.195-206</ispartof><rights>Copyright © 2017 John Wiley & Sons, Ltd.</rights><rights>Copyright © 2018 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4386-16aae219202881fdf9bd42b890611d06d6810f56c14d69c2ba9893b26a315b5b3</citedby><cites>FETCH-LOGICAL-c4386-16aae219202881fdf9bd42b890611d06d6810f56c14d69c2ba9893b26a315b5b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsim.7196$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsim.7196$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28098392$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cybis, Gabriela B.</creatorcontrib><creatorcontrib>Sinsheimer, Janet S.</creatorcontrib><creatorcontrib>Bedford, Trevor</creatorcontrib><creatorcontrib>Rambaut, Andrew</creatorcontrib><creatorcontrib>Lemey, Philippe</creatorcontrib><creatorcontrib>Suchard, Marc A.</creatorcontrib><title>Bayesian nonparametric clustering in phylogenetics: modeling antigenic evolution in influenza</title><title>Statistics in medicine</title><addtitle>Stat Med</addtitle><description>Influenza is responsible for up to 500,000 deaths every year, and antigenic variability represents much of its epidemiological burden. To visualize antigenic differences across many viral strains, antigenic cartography methods use multidimensional scaling on binding assay data to map influenza antigenicity onto a low‐dimensional space. Analysis of such assay data ideally leads to natural clustering of influenza strains of similar antigenicity that correlate with sequence evolution. To understand the dynamics of these antigenic groups, we present a framework that jointly models genetic and antigenic evolution by combining multidimensional scaling of binding assay data, Bayesian phylogenetic machinery and nonparametric clustering methods. We propose a phylogenetic Chinese restaurant process that extends the current process to incorporate the phylogenetic dependency structure between strains in the modeling of antigenic clusters. With this method, we are able to use the genetic information to better understand the evolution of antigenicity throughout epidemics, as shown in applications of this model to H1N1 influenza. Copyright © 2017 John Wiley & Sons, Ltd.</description><subject>antigenic cartography</subject><subject>Antigens</subject><subject>Antigens, Viral - genetics</subject><subject>Antigens, Viral - immunology</subject><subject>Bayes Theorem</subject><subject>Bayesian nonparametric mixture models</subject><subject>Biostatistics</subject><subject>Cluster Analysis</subject><subject>Epidemiology</subject><subject>Evolution, Molecular</subject><subject>Humans</subject><subject>Influenza</subject><subject>Influenza A Virus, H1N1 Subtype - classification</subject><subject>Influenza A Virus, H1N1 Subtype - genetics</subject><subject>Influenza A Virus, H1N1 Subtype - immunology</subject><subject>Influenza, Human - epidemiology</subject><subject>Influenza, Human - virology</subject><subject>Likelihood Functions</subject><subject>Mathematical models</subject><subject>Models, Genetic</subject><subject>Models, Immunological</subject><subject>Molecular Epidemiology</subject><subject>Nonparametric statistics</subject><subject>phylodynamics</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>Statistics, Nonparametric</subject><subject>Stochastic Processes</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kV1rFTEQhkNR2tNa6C-QBW-82TqTPfnyQqilaqGlF-plCdls9jQlmxyT3crx17vH1lYFrwZmHh7e4SXkCOEYAeib4odjgYrvkAWCEjVQJp-RBVAhai6Q7ZH9Um4BEBkVu2SPSlCyUXRBrt-bjSvexCqmuDbZDG7M3lY2TGV02cdV5WO1vtmEtHLRjd6Wt9WQOhe2JxNHP69n3t2lMI0-xS3uYx8mF3-YF-R5b0Jxhw_zgHz9cPbl9FN9cfXx_PTkorbLRvIauTGOoqJApcS-61XbLWkrFXDEDnjHJULPuMVlx5WlrVFSNS3lpkHWsrY5IO_uveupHVxnXRyzCXqd_WDyRifj9d-X6G_0Kt1pxpAJgFnw-kGQ07fJlVEPvlgXgokuTUWj5Mh4wwTO6Kt_0Ns05Ti_p1EJISiIRj4JbU6lZNc_hkHQ28703JnedjajL_8M_wj-LmkG6nvguw9u81-R_nx--Uv4EwOWofU</recordid><startdate>20180130</startdate><enddate>20180130</enddate><creator>Cybis, Gabriela B.</creator><creator>Sinsheimer, Janet S.</creator><creator>Bedford, Trevor</creator><creator>Rambaut, Andrew</creator><creator>Lemey, Philippe</creator><creator>Suchard, Marc A.</creator><general>John Wiley & Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180130</creationdate><title>Bayesian nonparametric clustering in phylogenetics: modeling antigenic evolution in influenza</title><author>Cybis, Gabriela B. ; Sinsheimer, Janet S. ; Bedford, Trevor ; Rambaut, Andrew ; Lemey, Philippe ; Suchard, Marc A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4386-16aae219202881fdf9bd42b890611d06d6810f56c14d69c2ba9893b26a315b5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>antigenic cartography</topic><topic>Antigens</topic><topic>Antigens, Viral - genetics</topic><topic>Antigens, Viral - immunology</topic><topic>Bayes Theorem</topic><topic>Bayesian nonparametric mixture models</topic><topic>Biostatistics</topic><topic>Cluster Analysis</topic><topic>Epidemiology</topic><topic>Evolution, Molecular</topic><topic>Humans</topic><topic>Influenza</topic><topic>Influenza A Virus, H1N1 Subtype - classification</topic><topic>Influenza A Virus, H1N1 Subtype - genetics</topic><topic>Influenza A Virus, H1N1 Subtype - immunology</topic><topic>Influenza, Human - epidemiology</topic><topic>Influenza, Human - virology</topic><topic>Likelihood Functions</topic><topic>Mathematical models</topic><topic>Models, Genetic</topic><topic>Models, Immunological</topic><topic>Molecular Epidemiology</topic><topic>Nonparametric statistics</topic><topic>phylodynamics</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>Statistics, Nonparametric</topic><topic>Stochastic Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cybis, Gabriela B.</creatorcontrib><creatorcontrib>Sinsheimer, Janet S.</creatorcontrib><creatorcontrib>Bedford, Trevor</creatorcontrib><creatorcontrib>Rambaut, Andrew</creatorcontrib><creatorcontrib>Lemey, Philippe</creatorcontrib><creatorcontrib>Suchard, Marc A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cybis, Gabriela B.</au><au>Sinsheimer, Janet S.</au><au>Bedford, Trevor</au><au>Rambaut, Andrew</au><au>Lemey, Philippe</au><au>Suchard, Marc A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian nonparametric clustering in phylogenetics: modeling antigenic evolution in influenza</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Stat Med</addtitle><date>2018-01-30</date><risdate>2018</risdate><volume>37</volume><issue>2</issue><spage>195</spage><epage>206</epage><pages>195-206</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><abstract>Influenza is responsible for up to 500,000 deaths every year, and antigenic variability represents much of its epidemiological burden. To visualize antigenic differences across many viral strains, antigenic cartography methods use multidimensional scaling on binding assay data to map influenza antigenicity onto a low‐dimensional space. Analysis of such assay data ideally leads to natural clustering of influenza strains of similar antigenicity that correlate with sequence evolution. To understand the dynamics of these antigenic groups, we present a framework that jointly models genetic and antigenic evolution by combining multidimensional scaling of binding assay data, Bayesian phylogenetic machinery and nonparametric clustering methods. We propose a phylogenetic Chinese restaurant process that extends the current process to incorporate the phylogenetic dependency structure between strains in the modeling of antigenic clusters. With this method, we are able to use the genetic information to better understand the evolution of antigenicity throughout epidemics, as shown in applications of this model to H1N1 influenza. Copyright © 2017 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><pmid>28098392</pmid><doi>10.1002/sim.7196</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0277-6715 |
ispartof | Statistics in medicine, 2018-01, Vol.37 (2), p.195-206 |
issn | 0277-6715 1097-0258 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5515700 |
source | Wiley-Blackwell Journals; MEDLINE |
subjects | antigenic cartography Antigens Antigens, Viral - genetics Antigens, Viral - immunology Bayes Theorem Bayesian nonparametric mixture models Biostatistics Cluster Analysis Epidemiology Evolution, Molecular Humans Influenza Influenza A Virus, H1N1 Subtype - classification Influenza A Virus, H1N1 Subtype - genetics Influenza A Virus, H1N1 Subtype - immunology Influenza, Human - epidemiology Influenza, Human - virology Likelihood Functions Mathematical models Models, Genetic Models, Immunological Molecular Epidemiology Nonparametric statistics phylodynamics Phylogenetics Phylogeny Statistics, Nonparametric Stochastic Processes |
title | Bayesian nonparametric clustering in phylogenetics: modeling antigenic evolution in influenza |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A31%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20nonparametric%20clustering%20in%20phylogenetics:%20modeling%20antigenic%20evolution%20in%20influenza&rft.jtitle=Statistics%20in%20medicine&rft.au=Cybis,%20Gabriela%20B.&rft.date=2018-01-30&rft.volume=37&rft.issue=2&rft.spage=195&rft.epage=206&rft.pages=195-206&rft.issn=0277-6715&rft.eissn=1097-0258&rft_id=info:doi/10.1002/sim.7196&rft_dat=%3Cproquest_pubme%3E1861563571%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1977720738&rft_id=info:pmid/28098392&rfr_iscdi=true |