Bayesian nonparametric clustering in phylogenetics: modeling antigenic evolution in influenza

Influenza is responsible for up to 500,000 deaths every year, and antigenic variability represents much of its epidemiological burden. To visualize antigenic differences across many viral strains, antigenic cartography methods use multidimensional scaling on binding assay data to map influenza antig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics in medicine 2018-01, Vol.37 (2), p.195-206
Hauptverfasser: Cybis, Gabriela B., Sinsheimer, Janet S., Bedford, Trevor, Rambaut, Andrew, Lemey, Philippe, Suchard, Marc A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 206
container_issue 2
container_start_page 195
container_title Statistics in medicine
container_volume 37
creator Cybis, Gabriela B.
Sinsheimer, Janet S.
Bedford, Trevor
Rambaut, Andrew
Lemey, Philippe
Suchard, Marc A.
description Influenza is responsible for up to 500,000 deaths every year, and antigenic variability represents much of its epidemiological burden. To visualize antigenic differences across many viral strains, antigenic cartography methods use multidimensional scaling on binding assay data to map influenza antigenicity onto a low‐dimensional space. Analysis of such assay data ideally leads to natural clustering of influenza strains of similar antigenicity that correlate with sequence evolution. To understand the dynamics of these antigenic groups, we present a framework that jointly models genetic and antigenic evolution by combining multidimensional scaling of binding assay data, Bayesian phylogenetic machinery and nonparametric clustering methods. We propose a phylogenetic Chinese restaurant process that extends the current process to incorporate the phylogenetic dependency structure between strains in the modeling of antigenic clusters. With this method, we are able to use the genetic information to better understand the evolution of antigenicity throughout epidemics, as shown in applications of this model to H1N1 influenza. Copyright © 2017 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/sim.7196
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5515700</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1861563571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4386-16aae219202881fdf9bd42b890611d06d6810f56c14d69c2ba9893b26a315b5b3</originalsourceid><addsrcrecordid>eNp1kV1rFTEQhkNR2tNa6C-QBW-82TqTPfnyQqilaqGlF-plCdls9jQlmxyT3crx17vH1lYFrwZmHh7e4SXkCOEYAeib4odjgYrvkAWCEjVQJp-RBVAhai6Q7ZH9Um4BEBkVu2SPSlCyUXRBrt-bjSvexCqmuDbZDG7M3lY2TGV02cdV5WO1vtmEtHLRjd6Wt9WQOhe2JxNHP69n3t2lMI0-xS3uYx8mF3-YF-R5b0Jxhw_zgHz9cPbl9FN9cfXx_PTkorbLRvIauTGOoqJApcS-61XbLWkrFXDEDnjHJULPuMVlx5WlrVFSNS3lpkHWsrY5IO_uveupHVxnXRyzCXqd_WDyRifj9d-X6G_0Kt1pxpAJgFnw-kGQ07fJlVEPvlgXgokuTUWj5Mh4wwTO6Kt_0Ns05Ti_p1EJISiIRj4JbU6lZNc_hkHQ28703JnedjajL_8M_wj-LmkG6nvguw9u81-R_nx--Uv4EwOWofU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1977720738</pqid></control><display><type>article</type><title>Bayesian nonparametric clustering in phylogenetics: modeling antigenic evolution in influenza</title><source>Wiley-Blackwell Journals</source><source>MEDLINE</source><creator>Cybis, Gabriela B. ; Sinsheimer, Janet S. ; Bedford, Trevor ; Rambaut, Andrew ; Lemey, Philippe ; Suchard, Marc A.</creator><creatorcontrib>Cybis, Gabriela B. ; Sinsheimer, Janet S. ; Bedford, Trevor ; Rambaut, Andrew ; Lemey, Philippe ; Suchard, Marc A.</creatorcontrib><description>Influenza is responsible for up to 500,000 deaths every year, and antigenic variability represents much of its epidemiological burden. To visualize antigenic differences across many viral strains, antigenic cartography methods use multidimensional scaling on binding assay data to map influenza antigenicity onto a low‐dimensional space. Analysis of such assay data ideally leads to natural clustering of influenza strains of similar antigenicity that correlate with sequence evolution. To understand the dynamics of these antigenic groups, we present a framework that jointly models genetic and antigenic evolution by combining multidimensional scaling of binding assay data, Bayesian phylogenetic machinery and nonparametric clustering methods. We propose a phylogenetic Chinese restaurant process that extends the current process to incorporate the phylogenetic dependency structure between strains in the modeling of antigenic clusters. With this method, we are able to use the genetic information to better understand the evolution of antigenicity throughout epidemics, as shown in applications of this model to H1N1 influenza. Copyright © 2017 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.7196</identifier><identifier>PMID: 28098392</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>antigenic cartography ; Antigens ; Antigens, Viral - genetics ; Antigens, Viral - immunology ; Bayes Theorem ; Bayesian nonparametric mixture models ; Biostatistics ; Cluster Analysis ; Epidemiology ; Evolution, Molecular ; Humans ; Influenza ; Influenza A Virus, H1N1 Subtype - classification ; Influenza A Virus, H1N1 Subtype - genetics ; Influenza A Virus, H1N1 Subtype - immunology ; Influenza, Human - epidemiology ; Influenza, Human - virology ; Likelihood Functions ; Mathematical models ; Models, Genetic ; Models, Immunological ; Molecular Epidemiology ; Nonparametric statistics ; phylodynamics ; Phylogenetics ; Phylogeny ; Statistics, Nonparametric ; Stochastic Processes</subject><ispartof>Statistics in medicine, 2018-01, Vol.37 (2), p.195-206</ispartof><rights>Copyright © 2017 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright © 2018 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4386-16aae219202881fdf9bd42b890611d06d6810f56c14d69c2ba9893b26a315b5b3</citedby><cites>FETCH-LOGICAL-c4386-16aae219202881fdf9bd42b890611d06d6810f56c14d69c2ba9893b26a315b5b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsim.7196$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsim.7196$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28098392$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cybis, Gabriela B.</creatorcontrib><creatorcontrib>Sinsheimer, Janet S.</creatorcontrib><creatorcontrib>Bedford, Trevor</creatorcontrib><creatorcontrib>Rambaut, Andrew</creatorcontrib><creatorcontrib>Lemey, Philippe</creatorcontrib><creatorcontrib>Suchard, Marc A.</creatorcontrib><title>Bayesian nonparametric clustering in phylogenetics: modeling antigenic evolution in influenza</title><title>Statistics in medicine</title><addtitle>Stat Med</addtitle><description>Influenza is responsible for up to 500,000 deaths every year, and antigenic variability represents much of its epidemiological burden. To visualize antigenic differences across many viral strains, antigenic cartography methods use multidimensional scaling on binding assay data to map influenza antigenicity onto a low‐dimensional space. Analysis of such assay data ideally leads to natural clustering of influenza strains of similar antigenicity that correlate with sequence evolution. To understand the dynamics of these antigenic groups, we present a framework that jointly models genetic and antigenic evolution by combining multidimensional scaling of binding assay data, Bayesian phylogenetic machinery and nonparametric clustering methods. We propose a phylogenetic Chinese restaurant process that extends the current process to incorporate the phylogenetic dependency structure between strains in the modeling of antigenic clusters. With this method, we are able to use the genetic information to better understand the evolution of antigenicity throughout epidemics, as shown in applications of this model to H1N1 influenza. Copyright © 2017 John Wiley &amp; Sons, Ltd.</description><subject>antigenic cartography</subject><subject>Antigens</subject><subject>Antigens, Viral - genetics</subject><subject>Antigens, Viral - immunology</subject><subject>Bayes Theorem</subject><subject>Bayesian nonparametric mixture models</subject><subject>Biostatistics</subject><subject>Cluster Analysis</subject><subject>Epidemiology</subject><subject>Evolution, Molecular</subject><subject>Humans</subject><subject>Influenza</subject><subject>Influenza A Virus, H1N1 Subtype - classification</subject><subject>Influenza A Virus, H1N1 Subtype - genetics</subject><subject>Influenza A Virus, H1N1 Subtype - immunology</subject><subject>Influenza, Human - epidemiology</subject><subject>Influenza, Human - virology</subject><subject>Likelihood Functions</subject><subject>Mathematical models</subject><subject>Models, Genetic</subject><subject>Models, Immunological</subject><subject>Molecular Epidemiology</subject><subject>Nonparametric statistics</subject><subject>phylodynamics</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>Statistics, Nonparametric</subject><subject>Stochastic Processes</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kV1rFTEQhkNR2tNa6C-QBW-82TqTPfnyQqilaqGlF-plCdls9jQlmxyT3crx17vH1lYFrwZmHh7e4SXkCOEYAeib4odjgYrvkAWCEjVQJp-RBVAhai6Q7ZH9Um4BEBkVu2SPSlCyUXRBrt-bjSvexCqmuDbZDG7M3lY2TGV02cdV5WO1vtmEtHLRjd6Wt9WQOhe2JxNHP69n3t2lMI0-xS3uYx8mF3-YF-R5b0Jxhw_zgHz9cPbl9FN9cfXx_PTkorbLRvIauTGOoqJApcS-61XbLWkrFXDEDnjHJULPuMVlx5WlrVFSNS3lpkHWsrY5IO_uveupHVxnXRyzCXqd_WDyRifj9d-X6G_0Kt1pxpAJgFnw-kGQ07fJlVEPvlgXgokuTUWj5Mh4wwTO6Kt_0Ns05Ti_p1EJISiIRj4JbU6lZNc_hkHQ28703JnedjajL_8M_wj-LmkG6nvguw9u81-R_nx--Uv4EwOWofU</recordid><startdate>20180130</startdate><enddate>20180130</enddate><creator>Cybis, Gabriela B.</creator><creator>Sinsheimer, Janet S.</creator><creator>Bedford, Trevor</creator><creator>Rambaut, Andrew</creator><creator>Lemey, Philippe</creator><creator>Suchard, Marc A.</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180130</creationdate><title>Bayesian nonparametric clustering in phylogenetics: modeling antigenic evolution in influenza</title><author>Cybis, Gabriela B. ; Sinsheimer, Janet S. ; Bedford, Trevor ; Rambaut, Andrew ; Lemey, Philippe ; Suchard, Marc A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4386-16aae219202881fdf9bd42b890611d06d6810f56c14d69c2ba9893b26a315b5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>antigenic cartography</topic><topic>Antigens</topic><topic>Antigens, Viral - genetics</topic><topic>Antigens, Viral - immunology</topic><topic>Bayes Theorem</topic><topic>Bayesian nonparametric mixture models</topic><topic>Biostatistics</topic><topic>Cluster Analysis</topic><topic>Epidemiology</topic><topic>Evolution, Molecular</topic><topic>Humans</topic><topic>Influenza</topic><topic>Influenza A Virus, H1N1 Subtype - classification</topic><topic>Influenza A Virus, H1N1 Subtype - genetics</topic><topic>Influenza A Virus, H1N1 Subtype - immunology</topic><topic>Influenza, Human - epidemiology</topic><topic>Influenza, Human - virology</topic><topic>Likelihood Functions</topic><topic>Mathematical models</topic><topic>Models, Genetic</topic><topic>Models, Immunological</topic><topic>Molecular Epidemiology</topic><topic>Nonparametric statistics</topic><topic>phylodynamics</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>Statistics, Nonparametric</topic><topic>Stochastic Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cybis, Gabriela B.</creatorcontrib><creatorcontrib>Sinsheimer, Janet S.</creatorcontrib><creatorcontrib>Bedford, Trevor</creatorcontrib><creatorcontrib>Rambaut, Andrew</creatorcontrib><creatorcontrib>Lemey, Philippe</creatorcontrib><creatorcontrib>Suchard, Marc A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cybis, Gabriela B.</au><au>Sinsheimer, Janet S.</au><au>Bedford, Trevor</au><au>Rambaut, Andrew</au><au>Lemey, Philippe</au><au>Suchard, Marc A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian nonparametric clustering in phylogenetics: modeling antigenic evolution in influenza</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Stat Med</addtitle><date>2018-01-30</date><risdate>2018</risdate><volume>37</volume><issue>2</issue><spage>195</spage><epage>206</epage><pages>195-206</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><abstract>Influenza is responsible for up to 500,000 deaths every year, and antigenic variability represents much of its epidemiological burden. To visualize antigenic differences across many viral strains, antigenic cartography methods use multidimensional scaling on binding assay data to map influenza antigenicity onto a low‐dimensional space. Analysis of such assay data ideally leads to natural clustering of influenza strains of similar antigenicity that correlate with sequence evolution. To understand the dynamics of these antigenic groups, we present a framework that jointly models genetic and antigenic evolution by combining multidimensional scaling of binding assay data, Bayesian phylogenetic machinery and nonparametric clustering methods. We propose a phylogenetic Chinese restaurant process that extends the current process to incorporate the phylogenetic dependency structure between strains in the modeling of antigenic clusters. With this method, we are able to use the genetic information to better understand the evolution of antigenicity throughout epidemics, as shown in applications of this model to H1N1 influenza. Copyright © 2017 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>28098392</pmid><doi>10.1002/sim.7196</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0277-6715
ispartof Statistics in medicine, 2018-01, Vol.37 (2), p.195-206
issn 0277-6715
1097-0258
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5515700
source Wiley-Blackwell Journals; MEDLINE
subjects antigenic cartography
Antigens
Antigens, Viral - genetics
Antigens, Viral - immunology
Bayes Theorem
Bayesian nonparametric mixture models
Biostatistics
Cluster Analysis
Epidemiology
Evolution, Molecular
Humans
Influenza
Influenza A Virus, H1N1 Subtype - classification
Influenza A Virus, H1N1 Subtype - genetics
Influenza A Virus, H1N1 Subtype - immunology
Influenza, Human - epidemiology
Influenza, Human - virology
Likelihood Functions
Mathematical models
Models, Genetic
Models, Immunological
Molecular Epidemiology
Nonparametric statistics
phylodynamics
Phylogenetics
Phylogeny
Statistics, Nonparametric
Stochastic Processes
title Bayesian nonparametric clustering in phylogenetics: modeling antigenic evolution in influenza
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A31%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20nonparametric%20clustering%20in%20phylogenetics:%20modeling%20antigenic%20evolution%20in%20influenza&rft.jtitle=Statistics%20in%20medicine&rft.au=Cybis,%20Gabriela%20B.&rft.date=2018-01-30&rft.volume=37&rft.issue=2&rft.spage=195&rft.epage=206&rft.pages=195-206&rft.issn=0277-6715&rft.eissn=1097-0258&rft_id=info:doi/10.1002/sim.7196&rft_dat=%3Cproquest_pubme%3E1861563571%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1977720738&rft_id=info:pmid/28098392&rfr_iscdi=true