Virus-like Particles Identify an HIV V1V2 Apex-Binding Neutralizing Antibody that Lacks a Protruding Loop

Most HIV-1-specific neutralizing antibodies isolated to date exhibit unusual characteristics that complicate their elicitation. Neutralizing antibodies that target the V1V2 apex of the HIV-1 envelope (Env) trimer feature unusually long protruding loops, which enable them to penetrate the HIV-1 glyca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Immunity (Cambridge, Mass.) Mass.), 2017-05, Vol.46 (5), p.777-791.e10
Hauptverfasser: Cale, Evan M., Gorman, Jason, Radakovich, Nathan A., Crooks, Ema T., Osawa, Keiko, Tong, Tommy, Li, Jiaqi, Nagarajan, Raju, Ozorowski, Gabriel, Ambrozak, David R., Asokan, Mangai, Bailer, Robert T., Bennici, Anthony K., Chen, Xuejun, Doria-Rose, Nicole A., Druz, Aliaksandr, Feng, Yu, Joyce, M. Gordon, Louder, Mark K., O’Dell, Sijy, Oliver, Courtney, Pancera, Marie, Connors, Mark, Hope, Thomas J., Kepler, Thomas B., Wyatt, Richard T., Ward, Andrew B., Georgiev, Ivelin S., Kwong, Peter D., Mascola, John R., Binley, James M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 791.e10
container_issue 5
container_start_page 777
container_title Immunity (Cambridge, Mass.)
container_volume 46
creator Cale, Evan M.
Gorman, Jason
Radakovich, Nathan A.
Crooks, Ema T.
Osawa, Keiko
Tong, Tommy
Li, Jiaqi
Nagarajan, Raju
Ozorowski, Gabriel
Ambrozak, David R.
Asokan, Mangai
Bailer, Robert T.
Bennici, Anthony K.
Chen, Xuejun
Doria-Rose, Nicole A.
Druz, Aliaksandr
Feng, Yu
Joyce, M. Gordon
Louder, Mark K.
O’Dell, Sijy
Oliver, Courtney
Pancera, Marie
Connors, Mark
Hope, Thomas J.
Kepler, Thomas B.
Wyatt, Richard T.
Ward, Andrew B.
Georgiev, Ivelin S.
Kwong, Peter D.
Mascola, John R.
Binley, James M.
description Most HIV-1-specific neutralizing antibodies isolated to date exhibit unusual characteristics that complicate their elicitation. Neutralizing antibodies that target the V1V2 apex of the HIV-1 envelope (Env) trimer feature unusually long protruding loops, which enable them to penetrate the HIV-1 glycan shield. As antibodies with loops of requisite length are created through uncommon recombination events, an alternative mode of apex binding has been sought. Here, we isolated a lineage of Env apex-directed neutralizing antibodies, N90-VRC38.01-11, by using virus-like particles and conformationally stabilized Env trimers as B cell probes. A crystal structure of N90-VRC38.01 with a scaffolded V1V2 revealed a binding mode involving side-chain-to-side-chain interactions that reduced the distance the antibody loop must traverse the glycan shield, thereby facilitating V1V2 binding via a non-protruding loop. The N90-VRC38 lineage thus identifies a solution for V1V2-apex binding that provides a more conventional B cell pathway for vaccine design. •VLPs and stabilized Env trimers identify HIV-1-neutralizing N90-VRC38 Ab lineage•Co-crystal structure of Ab N90-VRC38.01 with scaffolded V1V2-Env apex•N90-VRC38 lineage targets the apex of HIV-1 Env trimer with non-protruding loops•New mechanism of Ab:trimer-apex binding informs V1V2 vaccine strategies To date, long recognition loops have been a hallmark of apex-targeting antibodies. Cale et al. identify a lineage of HIV-1-neutralizing antibodies that target the envelope trimer apex. The N90-VRC38 lineage uses a loop of average length—a feature that may make it a useful prototype for vaccine design.
doi_str_mv 10.1016/j.immuni.2017.04.011
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5512451</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1074761317301760</els_id><sourcerecordid>1901359211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-2fd4d14cedefa40c4647c4145c78eb87d465896794545e2c15c8289bcce7fd7f3</originalsourceid><addsrcrecordid>eNp9UcFu1DAQjRAVLQt_gJAFFy4JnsSOkwvSUgFdaQU9wF4trzPpepu1F9upWL4ep1ta4MDF9shv3sx7L8teAC2AQv12W5jdbrSmKCmIgrKCAjzKzoC2ImfQ0MfTW7Bc1FCdZk9D2FIKjLf0SXZaNhxY3fCzzKyMH0M-mGskl8pHowcMZNGhjaY_EGXJxWJFVrAqyXyPP_L3xnbGXpHPOEavBvNzKuYJvHbdgcSNimSp9HUgilx6F_14i146t3-WnfRqCPj87p5l3z5--Hp-kS-_fFqcz5e55tDEvOw71gHT2GGvGNWsZkKztLgWDa4b0bGaN20tWsYZx1ID103ZtGutUfSd6KtZ9u7Iux_XO-x0UpIWlXtvdsofpFNG_v1jzUZeuRvJOZSMQyJ4dSRwIRoZtImoN9pZizpKYJWo0jHL3txN8e77iCHKnQkah0FZdGOQ0Ca3QUApEvT1P9CtG71NHkwoqHhbwjSVHVHauxA89vcbA5VT4HIrj4HLKXBJmaS3bS__VHvf9DvhBzsweX5j0E-K0CZ_jZ8Edc78f8Iv20m-Bg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1901359211</pqid></control><display><type>article</type><title>Virus-like Particles Identify an HIV V1V2 Apex-Binding Neutralizing Antibody that Lacks a Protruding Loop</title><source>ScienceDirect</source><source>MEDLINE</source><source>Cell Press Archives</source><source>EZB Free E-Journals</source><creator>Cale, Evan M. ; Gorman, Jason ; Radakovich, Nathan A. ; Crooks, Ema T. ; Osawa, Keiko ; Tong, Tommy ; Li, Jiaqi ; Nagarajan, Raju ; Ozorowski, Gabriel ; Ambrozak, David R. ; Asokan, Mangai ; Bailer, Robert T. ; Bennici, Anthony K. ; Chen, Xuejun ; Doria-Rose, Nicole A. ; Druz, Aliaksandr ; Feng, Yu ; Joyce, M. Gordon ; Louder, Mark K. ; O’Dell, Sijy ; Oliver, Courtney ; Pancera, Marie ; Connors, Mark ; Hope, Thomas J. ; Kepler, Thomas B. ; Wyatt, Richard T. ; Ward, Andrew B. ; Georgiev, Ivelin S. ; Kwong, Peter D. ; Mascola, John R. ; Binley, James M.</creator><creatorcontrib>Cale, Evan M. ; Gorman, Jason ; Radakovich, Nathan A. ; Crooks, Ema T. ; Osawa, Keiko ; Tong, Tommy ; Li, Jiaqi ; Nagarajan, Raju ; Ozorowski, Gabriel ; Ambrozak, David R. ; Asokan, Mangai ; Bailer, Robert T. ; Bennici, Anthony K. ; Chen, Xuejun ; Doria-Rose, Nicole A. ; Druz, Aliaksandr ; Feng, Yu ; Joyce, M. Gordon ; Louder, Mark K. ; O’Dell, Sijy ; Oliver, Courtney ; Pancera, Marie ; Connors, Mark ; Hope, Thomas J. ; Kepler, Thomas B. ; Wyatt, Richard T. ; Ward, Andrew B. ; Georgiev, Ivelin S. ; Kwong, Peter D. ; Mascola, John R. ; Binley, James M. ; Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><description>Most HIV-1-specific neutralizing antibodies isolated to date exhibit unusual characteristics that complicate their elicitation. Neutralizing antibodies that target the V1V2 apex of the HIV-1 envelope (Env) trimer feature unusually long protruding loops, which enable them to penetrate the HIV-1 glycan shield. As antibodies with loops of requisite length are created through uncommon recombination events, an alternative mode of apex binding has been sought. Here, we isolated a lineage of Env apex-directed neutralizing antibodies, N90-VRC38.01-11, by using virus-like particles and conformationally stabilized Env trimers as B cell probes. A crystal structure of N90-VRC38.01 with a scaffolded V1V2 revealed a binding mode involving side-chain-to-side-chain interactions that reduced the distance the antibody loop must traverse the glycan shield, thereby facilitating V1V2 binding via a non-protruding loop. The N90-VRC38 lineage thus identifies a solution for V1V2-apex binding that provides a more conventional B cell pathway for vaccine design. •VLPs and stabilized Env trimers identify HIV-1-neutralizing N90-VRC38 Ab lineage•Co-crystal structure of Ab N90-VRC38.01 with scaffolded V1V2-Env apex•N90-VRC38 lineage targets the apex of HIV-1 Env trimer with non-protruding loops•New mechanism of Ab:trimer-apex binding informs V1V2 vaccine strategies To date, long recognition loops have been a hallmark of apex-targeting antibodies. Cale et al. identify a lineage of HIV-1-neutralizing antibodies that target the envelope trimer apex. The N90-VRC38 lineage uses a loop of average length—a feature that may make it a useful prototype for vaccine design.</description><identifier>ISSN: 1074-7613</identifier><identifier>EISSN: 1097-4180</identifier><identifier>DOI: 10.1016/j.immuni.2017.04.011</identifier><identifier>PMID: 28514685</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Amino Acid Sequence ; Antibodies ; Antibodies, Neutralizing - chemistry ; Antibodies, Neutralizing - immunology ; Antibodies, Neutralizing - metabolism ; antibody ; B cell ontogeny ; B-Lymphocytes - immunology ; B-Lymphocytes - metabolism ; BASIC BIOLOGICAL SCIENCES ; Binding ; Binding Sites ; bnAb ; CDRH3 ; Complementarity Determining Regions - chemistry ; Complementarity Determining Regions - immunology ; Crystal structure ; env Gene Products, Human Immunodeficiency Virus - immunology ; Glycan ; glycan shield ; HIV ; HIV Antibodies - chemistry ; HIV Antibodies - immunology ; HIV Antibodies - metabolism ; HIV Envelope Protein gp120 - chemistry ; HIV Envelope Protein gp120 - immunology ; HIV Envelope Protein gp120 - metabolism ; HIV Infections - immunology ; HIV Infections - virology ; HIV-1 - immunology ; Human immunodeficiency virus ; Humans ; Immunoglobulins ; Lymphocytes B ; Models, Molecular ; NAb ; neutralization ; Neutralizing ; Peptide Fragments - chemistry ; Peptide Fragments - immunology ; Peptide Fragments - metabolism ; Phylogeny ; Plasmids ; Probes ; Protein Binding ; Protein Conformation ; Protein Interaction Domains and Motifs ; Protein Multimerization ; Recombination ; trimer ; Trimers ; V1V2 ; vaccine-design template ; Vaccines ; Vaccines, Virus-Like Particle - chemistry ; Vaccines, Virus-Like Particle - immunology ; Vaccines, Virus-Like Particle - metabolism ; Virus-like particles ; Viruses ; VLP</subject><ispartof>Immunity (Cambridge, Mass.), 2017-05, Vol.46 (5), p.777-791.e10</ispartof><rights>2017 Elsevier Inc.</rights><rights>Copyright © 2017 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited May 16, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-2fd4d14cedefa40c4647c4145c78eb87d465896794545e2c15c8289bcce7fd7f3</citedby><cites>FETCH-LOGICAL-c518t-2fd4d14cedefa40c4647c4145c78eb87d465896794545e2c15c8289bcce7fd7f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1074761317301760$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28514685$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1437314$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Cale, Evan M.</creatorcontrib><creatorcontrib>Gorman, Jason</creatorcontrib><creatorcontrib>Radakovich, Nathan A.</creatorcontrib><creatorcontrib>Crooks, Ema T.</creatorcontrib><creatorcontrib>Osawa, Keiko</creatorcontrib><creatorcontrib>Tong, Tommy</creatorcontrib><creatorcontrib>Li, Jiaqi</creatorcontrib><creatorcontrib>Nagarajan, Raju</creatorcontrib><creatorcontrib>Ozorowski, Gabriel</creatorcontrib><creatorcontrib>Ambrozak, David R.</creatorcontrib><creatorcontrib>Asokan, Mangai</creatorcontrib><creatorcontrib>Bailer, Robert T.</creatorcontrib><creatorcontrib>Bennici, Anthony K.</creatorcontrib><creatorcontrib>Chen, Xuejun</creatorcontrib><creatorcontrib>Doria-Rose, Nicole A.</creatorcontrib><creatorcontrib>Druz, Aliaksandr</creatorcontrib><creatorcontrib>Feng, Yu</creatorcontrib><creatorcontrib>Joyce, M. Gordon</creatorcontrib><creatorcontrib>Louder, Mark K.</creatorcontrib><creatorcontrib>O’Dell, Sijy</creatorcontrib><creatorcontrib>Oliver, Courtney</creatorcontrib><creatorcontrib>Pancera, Marie</creatorcontrib><creatorcontrib>Connors, Mark</creatorcontrib><creatorcontrib>Hope, Thomas J.</creatorcontrib><creatorcontrib>Kepler, Thomas B.</creatorcontrib><creatorcontrib>Wyatt, Richard T.</creatorcontrib><creatorcontrib>Ward, Andrew B.</creatorcontrib><creatorcontrib>Georgiev, Ivelin S.</creatorcontrib><creatorcontrib>Kwong, Peter D.</creatorcontrib><creatorcontrib>Mascola, John R.</creatorcontrib><creatorcontrib>Binley, James M.</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><title>Virus-like Particles Identify an HIV V1V2 Apex-Binding Neutralizing Antibody that Lacks a Protruding Loop</title><title>Immunity (Cambridge, Mass.)</title><addtitle>Immunity</addtitle><description>Most HIV-1-specific neutralizing antibodies isolated to date exhibit unusual characteristics that complicate their elicitation. Neutralizing antibodies that target the V1V2 apex of the HIV-1 envelope (Env) trimer feature unusually long protruding loops, which enable them to penetrate the HIV-1 glycan shield. As antibodies with loops of requisite length are created through uncommon recombination events, an alternative mode of apex binding has been sought. Here, we isolated a lineage of Env apex-directed neutralizing antibodies, N90-VRC38.01-11, by using virus-like particles and conformationally stabilized Env trimers as B cell probes. A crystal structure of N90-VRC38.01 with a scaffolded V1V2 revealed a binding mode involving side-chain-to-side-chain interactions that reduced the distance the antibody loop must traverse the glycan shield, thereby facilitating V1V2 binding via a non-protruding loop. The N90-VRC38 lineage thus identifies a solution for V1V2-apex binding that provides a more conventional B cell pathway for vaccine design. •VLPs and stabilized Env trimers identify HIV-1-neutralizing N90-VRC38 Ab lineage•Co-crystal structure of Ab N90-VRC38.01 with scaffolded V1V2-Env apex•N90-VRC38 lineage targets the apex of HIV-1 Env trimer with non-protruding loops•New mechanism of Ab:trimer-apex binding informs V1V2 vaccine strategies To date, long recognition loops have been a hallmark of apex-targeting antibodies. Cale et al. identify a lineage of HIV-1-neutralizing antibodies that target the envelope trimer apex. The N90-VRC38 lineage uses a loop of average length—a feature that may make it a useful prototype for vaccine design.</description><subject>Amino Acid Sequence</subject><subject>Antibodies</subject><subject>Antibodies, Neutralizing - chemistry</subject><subject>Antibodies, Neutralizing - immunology</subject><subject>Antibodies, Neutralizing - metabolism</subject><subject>antibody</subject><subject>B cell ontogeny</subject><subject>B-Lymphocytes - immunology</subject><subject>B-Lymphocytes - metabolism</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Binding</subject><subject>Binding Sites</subject><subject>bnAb</subject><subject>CDRH3</subject><subject>Complementarity Determining Regions - chemistry</subject><subject>Complementarity Determining Regions - immunology</subject><subject>Crystal structure</subject><subject>env Gene Products, Human Immunodeficiency Virus - immunology</subject><subject>Glycan</subject><subject>glycan shield</subject><subject>HIV</subject><subject>HIV Antibodies - chemistry</subject><subject>HIV Antibodies - immunology</subject><subject>HIV Antibodies - metabolism</subject><subject>HIV Envelope Protein gp120 - chemistry</subject><subject>HIV Envelope Protein gp120 - immunology</subject><subject>HIV Envelope Protein gp120 - metabolism</subject><subject>HIV Infections - immunology</subject><subject>HIV Infections - virology</subject><subject>HIV-1 - immunology</subject><subject>Human immunodeficiency virus</subject><subject>Humans</subject><subject>Immunoglobulins</subject><subject>Lymphocytes B</subject><subject>Models, Molecular</subject><subject>NAb</subject><subject>neutralization</subject><subject>Neutralizing</subject><subject>Peptide Fragments - chemistry</subject><subject>Peptide Fragments - immunology</subject><subject>Peptide Fragments - metabolism</subject><subject>Phylogeny</subject><subject>Plasmids</subject><subject>Probes</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Protein Interaction Domains and Motifs</subject><subject>Protein Multimerization</subject><subject>Recombination</subject><subject>trimer</subject><subject>Trimers</subject><subject>V1V2</subject><subject>vaccine-design template</subject><subject>Vaccines</subject><subject>Vaccines, Virus-Like Particle - chemistry</subject><subject>Vaccines, Virus-Like Particle - immunology</subject><subject>Vaccines, Virus-Like Particle - metabolism</subject><subject>Virus-like particles</subject><subject>Viruses</subject><subject>VLP</subject><issn>1074-7613</issn><issn>1097-4180</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UcFu1DAQjRAVLQt_gJAFFy4JnsSOkwvSUgFdaQU9wF4trzPpepu1F9upWL4ep1ta4MDF9shv3sx7L8teAC2AQv12W5jdbrSmKCmIgrKCAjzKzoC2ImfQ0MfTW7Bc1FCdZk9D2FIKjLf0SXZaNhxY3fCzzKyMH0M-mGskl8pHowcMZNGhjaY_EGXJxWJFVrAqyXyPP_L3xnbGXpHPOEavBvNzKuYJvHbdgcSNimSp9HUgilx6F_14i146t3-WnfRqCPj87p5l3z5--Hp-kS-_fFqcz5e55tDEvOw71gHT2GGvGNWsZkKztLgWDa4b0bGaN20tWsYZx1ID103ZtGutUfSd6KtZ9u7Iux_XO-x0UpIWlXtvdsofpFNG_v1jzUZeuRvJOZSMQyJ4dSRwIRoZtImoN9pZizpKYJWo0jHL3txN8e77iCHKnQkah0FZdGOQ0Ca3QUApEvT1P9CtG71NHkwoqHhbwjSVHVHauxA89vcbA5VT4HIrj4HLKXBJmaS3bS__VHvf9DvhBzsweX5j0E-K0CZ_jZ8Edc78f8Iv20m-Bg</recordid><startdate>20170516</startdate><enddate>20170516</enddate><creator>Cale, Evan M.</creator><creator>Gorman, Jason</creator><creator>Radakovich, Nathan A.</creator><creator>Crooks, Ema T.</creator><creator>Osawa, Keiko</creator><creator>Tong, Tommy</creator><creator>Li, Jiaqi</creator><creator>Nagarajan, Raju</creator><creator>Ozorowski, Gabriel</creator><creator>Ambrozak, David R.</creator><creator>Asokan, Mangai</creator><creator>Bailer, Robert T.</creator><creator>Bennici, Anthony K.</creator><creator>Chen, Xuejun</creator><creator>Doria-Rose, Nicole A.</creator><creator>Druz, Aliaksandr</creator><creator>Feng, Yu</creator><creator>Joyce, M. Gordon</creator><creator>Louder, Mark K.</creator><creator>O’Dell, Sijy</creator><creator>Oliver, Courtney</creator><creator>Pancera, Marie</creator><creator>Connors, Mark</creator><creator>Hope, Thomas J.</creator><creator>Kepler, Thomas B.</creator><creator>Wyatt, Richard T.</creator><creator>Ward, Andrew B.</creator><creator>Georgiev, Ivelin S.</creator><creator>Kwong, Peter D.</creator><creator>Mascola, John R.</creator><creator>Binley, James M.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><general>Cell Press</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20170516</creationdate><title>Virus-like Particles Identify an HIV V1V2 Apex-Binding Neutralizing Antibody that Lacks a Protruding Loop</title><author>Cale, Evan M. ; Gorman, Jason ; Radakovich, Nathan A. ; Crooks, Ema T. ; Osawa, Keiko ; Tong, Tommy ; Li, Jiaqi ; Nagarajan, Raju ; Ozorowski, Gabriel ; Ambrozak, David R. ; Asokan, Mangai ; Bailer, Robert T. ; Bennici, Anthony K. ; Chen, Xuejun ; Doria-Rose, Nicole A. ; Druz, Aliaksandr ; Feng, Yu ; Joyce, M. Gordon ; Louder, Mark K. ; O’Dell, Sijy ; Oliver, Courtney ; Pancera, Marie ; Connors, Mark ; Hope, Thomas J. ; Kepler, Thomas B. ; Wyatt, Richard T. ; Ward, Andrew B. ; Georgiev, Ivelin S. ; Kwong, Peter D. ; Mascola, John R. ; Binley, James M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-2fd4d14cedefa40c4647c4145c78eb87d465896794545e2c15c8289bcce7fd7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Amino Acid Sequence</topic><topic>Antibodies</topic><topic>Antibodies, Neutralizing - chemistry</topic><topic>Antibodies, Neutralizing - immunology</topic><topic>Antibodies, Neutralizing - metabolism</topic><topic>antibody</topic><topic>B cell ontogeny</topic><topic>B-Lymphocytes - immunology</topic><topic>B-Lymphocytes - metabolism</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Binding</topic><topic>Binding Sites</topic><topic>bnAb</topic><topic>CDRH3</topic><topic>Complementarity Determining Regions - chemistry</topic><topic>Complementarity Determining Regions - immunology</topic><topic>Crystal structure</topic><topic>env Gene Products, Human Immunodeficiency Virus - immunology</topic><topic>Glycan</topic><topic>glycan shield</topic><topic>HIV</topic><topic>HIV Antibodies - chemistry</topic><topic>HIV Antibodies - immunology</topic><topic>HIV Antibodies - metabolism</topic><topic>HIV Envelope Protein gp120 - chemistry</topic><topic>HIV Envelope Protein gp120 - immunology</topic><topic>HIV Envelope Protein gp120 - metabolism</topic><topic>HIV Infections - immunology</topic><topic>HIV Infections - virology</topic><topic>HIV-1 - immunology</topic><topic>Human immunodeficiency virus</topic><topic>Humans</topic><topic>Immunoglobulins</topic><topic>Lymphocytes B</topic><topic>Models, Molecular</topic><topic>NAb</topic><topic>neutralization</topic><topic>Neutralizing</topic><topic>Peptide Fragments - chemistry</topic><topic>Peptide Fragments - immunology</topic><topic>Peptide Fragments - metabolism</topic><topic>Phylogeny</topic><topic>Plasmids</topic><topic>Probes</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Protein Interaction Domains and Motifs</topic><topic>Protein Multimerization</topic><topic>Recombination</topic><topic>trimer</topic><topic>Trimers</topic><topic>V1V2</topic><topic>vaccine-design template</topic><topic>Vaccines</topic><topic>Vaccines, Virus-Like Particle - chemistry</topic><topic>Vaccines, Virus-Like Particle - immunology</topic><topic>Vaccines, Virus-Like Particle - metabolism</topic><topic>Virus-like particles</topic><topic>Viruses</topic><topic>VLP</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cale, Evan M.</creatorcontrib><creatorcontrib>Gorman, Jason</creatorcontrib><creatorcontrib>Radakovich, Nathan A.</creatorcontrib><creatorcontrib>Crooks, Ema T.</creatorcontrib><creatorcontrib>Osawa, Keiko</creatorcontrib><creatorcontrib>Tong, Tommy</creatorcontrib><creatorcontrib>Li, Jiaqi</creatorcontrib><creatorcontrib>Nagarajan, Raju</creatorcontrib><creatorcontrib>Ozorowski, Gabriel</creatorcontrib><creatorcontrib>Ambrozak, David R.</creatorcontrib><creatorcontrib>Asokan, Mangai</creatorcontrib><creatorcontrib>Bailer, Robert T.</creatorcontrib><creatorcontrib>Bennici, Anthony K.</creatorcontrib><creatorcontrib>Chen, Xuejun</creatorcontrib><creatorcontrib>Doria-Rose, Nicole A.</creatorcontrib><creatorcontrib>Druz, Aliaksandr</creatorcontrib><creatorcontrib>Feng, Yu</creatorcontrib><creatorcontrib>Joyce, M. Gordon</creatorcontrib><creatorcontrib>Louder, Mark K.</creatorcontrib><creatorcontrib>O’Dell, Sijy</creatorcontrib><creatorcontrib>Oliver, Courtney</creatorcontrib><creatorcontrib>Pancera, Marie</creatorcontrib><creatorcontrib>Connors, Mark</creatorcontrib><creatorcontrib>Hope, Thomas J.</creatorcontrib><creatorcontrib>Kepler, Thomas B.</creatorcontrib><creatorcontrib>Wyatt, Richard T.</creatorcontrib><creatorcontrib>Ward, Andrew B.</creatorcontrib><creatorcontrib>Georgiev, Ivelin S.</creatorcontrib><creatorcontrib>Kwong, Peter D.</creatorcontrib><creatorcontrib>Mascola, John R.</creatorcontrib><creatorcontrib>Binley, James M.</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Immunity (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cale, Evan M.</au><au>Gorman, Jason</au><au>Radakovich, Nathan A.</au><au>Crooks, Ema T.</au><au>Osawa, Keiko</au><au>Tong, Tommy</au><au>Li, Jiaqi</au><au>Nagarajan, Raju</au><au>Ozorowski, Gabriel</au><au>Ambrozak, David R.</au><au>Asokan, Mangai</au><au>Bailer, Robert T.</au><au>Bennici, Anthony K.</au><au>Chen, Xuejun</au><au>Doria-Rose, Nicole A.</au><au>Druz, Aliaksandr</au><au>Feng, Yu</au><au>Joyce, M. Gordon</au><au>Louder, Mark K.</au><au>O’Dell, Sijy</au><au>Oliver, Courtney</au><au>Pancera, Marie</au><au>Connors, Mark</au><au>Hope, Thomas J.</au><au>Kepler, Thomas B.</au><au>Wyatt, Richard T.</au><au>Ward, Andrew B.</au><au>Georgiev, Ivelin S.</au><au>Kwong, Peter D.</au><au>Mascola, John R.</au><au>Binley, James M.</au><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Virus-like Particles Identify an HIV V1V2 Apex-Binding Neutralizing Antibody that Lacks a Protruding Loop</atitle><jtitle>Immunity (Cambridge, Mass.)</jtitle><addtitle>Immunity</addtitle><date>2017-05-16</date><risdate>2017</risdate><volume>46</volume><issue>5</issue><spage>777</spage><epage>791.e10</epage><pages>777-791.e10</pages><issn>1074-7613</issn><eissn>1097-4180</eissn><abstract>Most HIV-1-specific neutralizing antibodies isolated to date exhibit unusual characteristics that complicate their elicitation. Neutralizing antibodies that target the V1V2 apex of the HIV-1 envelope (Env) trimer feature unusually long protruding loops, which enable them to penetrate the HIV-1 glycan shield. As antibodies with loops of requisite length are created through uncommon recombination events, an alternative mode of apex binding has been sought. Here, we isolated a lineage of Env apex-directed neutralizing antibodies, N90-VRC38.01-11, by using virus-like particles and conformationally stabilized Env trimers as B cell probes. A crystal structure of N90-VRC38.01 with a scaffolded V1V2 revealed a binding mode involving side-chain-to-side-chain interactions that reduced the distance the antibody loop must traverse the glycan shield, thereby facilitating V1V2 binding via a non-protruding loop. The N90-VRC38 lineage thus identifies a solution for V1V2-apex binding that provides a more conventional B cell pathway for vaccine design. •VLPs and stabilized Env trimers identify HIV-1-neutralizing N90-VRC38 Ab lineage•Co-crystal structure of Ab N90-VRC38.01 with scaffolded V1V2-Env apex•N90-VRC38 lineage targets the apex of HIV-1 Env trimer with non-protruding loops•New mechanism of Ab:trimer-apex binding informs V1V2 vaccine strategies To date, long recognition loops have been a hallmark of apex-targeting antibodies. Cale et al. identify a lineage of HIV-1-neutralizing antibodies that target the envelope trimer apex. The N90-VRC38 lineage uses a loop of average length—a feature that may make it a useful prototype for vaccine design.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>28514685</pmid><doi>10.1016/j.immuni.2017.04.011</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1074-7613
ispartof Immunity (Cambridge, Mass.), 2017-05, Vol.46 (5), p.777-791.e10
issn 1074-7613
1097-4180
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5512451
source ScienceDirect; MEDLINE; Cell Press Archives; EZB Free E-Journals
subjects Amino Acid Sequence
Antibodies
Antibodies, Neutralizing - chemistry
Antibodies, Neutralizing - immunology
Antibodies, Neutralizing - metabolism
antibody
B cell ontogeny
B-Lymphocytes - immunology
B-Lymphocytes - metabolism
BASIC BIOLOGICAL SCIENCES
Binding
Binding Sites
bnAb
CDRH3
Complementarity Determining Regions - chemistry
Complementarity Determining Regions - immunology
Crystal structure
env Gene Products, Human Immunodeficiency Virus - immunology
Glycan
glycan shield
HIV
HIV Antibodies - chemistry
HIV Antibodies - immunology
HIV Antibodies - metabolism
HIV Envelope Protein gp120 - chemistry
HIV Envelope Protein gp120 - immunology
HIV Envelope Protein gp120 - metabolism
HIV Infections - immunology
HIV Infections - virology
HIV-1 - immunology
Human immunodeficiency virus
Humans
Immunoglobulins
Lymphocytes B
Models, Molecular
NAb
neutralization
Neutralizing
Peptide Fragments - chemistry
Peptide Fragments - immunology
Peptide Fragments - metabolism
Phylogeny
Plasmids
Probes
Protein Binding
Protein Conformation
Protein Interaction Domains and Motifs
Protein Multimerization
Recombination
trimer
Trimers
V1V2
vaccine-design template
Vaccines
Vaccines, Virus-Like Particle - chemistry
Vaccines, Virus-Like Particle - immunology
Vaccines, Virus-Like Particle - metabolism
Virus-like particles
Viruses
VLP
title Virus-like Particles Identify an HIV V1V2 Apex-Binding Neutralizing Antibody that Lacks a Protruding Loop
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T17%3A42%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Virus-like%20Particles%20Identify%20an%20HIV%20V1V2%20Apex-Binding%20Neutralizing%20Antibody%20that%20Lacks%20a%20Protruding%20Loop&rft.jtitle=Immunity%20(Cambridge,%20Mass.)&rft.au=Cale,%20Evan%20M.&rft.aucorp=Argonne%20National%20Laboratory%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2017-05-16&rft.volume=46&rft.issue=5&rft.spage=777&rft.epage=791.e10&rft.pages=777-791.e10&rft.issn=1074-7613&rft.eissn=1097-4180&rft_id=info:doi/10.1016/j.immuni.2017.04.011&rft_dat=%3Cproquest_pubme%3E1901359211%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1901359211&rft_id=info:pmid/28514685&rft_els_id=S1074761317301760&rfr_iscdi=true