Bayesian inference for biomarker discovery in proteomics: an analytic solution

This paper addresses the question of biomarker discovery in proteomics. Given clinical data regarding a list of proteins for a set of individuals, the tackled problem is to extract a short subset of proteins the concentrations of which are an indicator of the biological status (healthy or pathologic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:EURASIP journal on bioinformatics & systems biology 2017-07, Vol.2017 (1), p.9-9, Article 9
Hauptverfasser: Dridi, Noura, Giremus, Audrey, Giovannelli, Jean-Francois, Truntzer, Caroline, Hadzagic, Melita, Charrier, Jean-Philippe, Gerfault, Laurent, Ducoroy, Patrick, Lacroix, Bruno, Grangeat, Pierre, Roy, Pascal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue 1
container_start_page 9
container_title EURASIP journal on bioinformatics & systems biology
container_volume 2017
creator Dridi, Noura
Giremus, Audrey
Giovannelli, Jean-Francois
Truntzer, Caroline
Hadzagic, Melita
Charrier, Jean-Philippe
Gerfault, Laurent
Ducoroy, Patrick
Lacroix, Bruno
Grangeat, Pierre
Roy, Pascal
description This paper addresses the question of biomarker discovery in proteomics. Given clinical data regarding a list of proteins for a set of individuals, the tackled problem is to extract a short subset of proteins the concentrations of which are an indicator of the biological status (healthy or pathological). In this paper, it is formulated as a specific instance of variable selection. The originality is that the proteins are not investigated one after the other but the best partition between discriminant and non-discriminant proteins is directly sought. In this way, correlations between the proteins are intrinsically taken into account in the decision. The developed strategy is derived in a Bayesian setting, and the decision is optimal in the sense that it minimizes a global mean error. It is finally based on the posterior probabilities of the partitions. The main difficulty is to calculate these probabilities since they are based on the so-called evidence that require marginalization of all the unknown model parameters. Two models are presented that relate the status to the protein concentrations, depending whether the latter are biomarkers or not. The first model accounts for biological variabilities by assuming that the concentrations are Gaussian distributed with a mean and a covariance matrix that depend on the status only for the biomarkers. The second one is an extension that also takes into account the technical variabilities that may significantly impact the observed concentrations. The main contributions of the paper are: (1) a new Bayesian formulation of the biomarker selection problem, (2) the closed-form expression of the posterior probabilities in the noiseless case, and (3) a suitable approximated solution in the noisy case. The methods are numerically assessed and compared to the state-of-the-art methods ( t test, LASSO, Battacharyya distance, FOHSIC) on synthetic and real data from proteins quantified in human serum by mass spectrometry in selected reaction monitoring mode.
doi_str_mv 10.1186/s13637-017-0062-4
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5511129</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1919073812</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-b14cede14c8e61f7506f2409a3b82d97d2b3aca950719de3a7f3736f8e7841453</originalsourceid><addsrcrecordid>eNp1kU1v1DAQhi0EoqXwA7igSFzgEPD4M-FQqVRAkVZwgbPlOJPWJWsvdrLS_nscpaxKJQ5jW57nnU9CXgJ9B9Co9xm44rqmUIwqVotH5BRUo2sBkj8-voU8Ic9yvqVUKCn1U3LCGg1UU3ZKvn20B8zehsqHARMGh9UQU9X5uLXpF6aq99nFPaZDIapdihPGrXf5Q1U0NtjxMHlX5TjOk4_hOXky2DHji7v7jPz8_OnH5VW9-f7l6-XFpnaSiqnuQDjssZwNKhi0pGpggraWdw3rW92zjltnW0k1tD1yqweuuRoa1M3SDz8j52vc3dxtsXcYpmRHs0u-VH0w0Xrzryf4G3Md90ZKAGBtCfB2DXDzQHZ1sTHLHwXVSq7VHgr75i5Zir9nzJPZlpngONqAcc4GWkah1YKzgr5-gN7GOZUpLRS0VPMGFgpWyqWYc8LhWAFQs2zWrJstRRQrmzWiaF7d7_io-LvKArAVyMUVrjHdS_3fqH8AH3uuMA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1919073812</pqid></control><display><type>article</type><title>Bayesian inference for biomarker discovery in proteomics: an analytic solution</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><creator>Dridi, Noura ; Giremus, Audrey ; Giovannelli, Jean-Francois ; Truntzer, Caroline ; Hadzagic, Melita ; Charrier, Jean-Philippe ; Gerfault, Laurent ; Ducoroy, Patrick ; Lacroix, Bruno ; Grangeat, Pierre ; Roy, Pascal</creator><creatorcontrib>Dridi, Noura ; Giremus, Audrey ; Giovannelli, Jean-Francois ; Truntzer, Caroline ; Hadzagic, Melita ; Charrier, Jean-Philippe ; Gerfault, Laurent ; Ducoroy, Patrick ; Lacroix, Bruno ; Grangeat, Pierre ; Roy, Pascal</creatorcontrib><description>This paper addresses the question of biomarker discovery in proteomics. Given clinical data regarding a list of proteins for a set of individuals, the tackled problem is to extract a short subset of proteins the concentrations of which are an indicator of the biological status (healthy or pathological). In this paper, it is formulated as a specific instance of variable selection. The originality is that the proteins are not investigated one after the other but the best partition between discriminant and non-discriminant proteins is directly sought. In this way, correlations between the proteins are intrinsically taken into account in the decision. The developed strategy is derived in a Bayesian setting, and the decision is optimal in the sense that it minimizes a global mean error. It is finally based on the posterior probabilities of the partitions. The main difficulty is to calculate these probabilities since they are based on the so-called evidence that require marginalization of all the unknown model parameters. Two models are presented that relate the status to the protein concentrations, depending whether the latter are biomarkers or not. The first model accounts for biological variabilities by assuming that the concentrations are Gaussian distributed with a mean and a covariance matrix that depend on the status only for the biomarkers. The second one is an extension that also takes into account the technical variabilities that may significantly impact the observed concentrations. The main contributions of the paper are: (1) a new Bayesian formulation of the biomarker selection problem, (2) the closed-form expression of the posterior probabilities in the noiseless case, and (3) a suitable approximated solution in the noisy case. The methods are numerically assessed and compared to the state-of-the-art methods ( t test, LASSO, Battacharyya distance, FOHSIC) on synthetic and real data from proteins quantified in human serum by mass spectrometry in selected reaction monitoring mode.</description><identifier>ISSN: 1687-4145</identifier><identifier>ISSN: 1687-4153</identifier><identifier>EISSN: 1687-4153</identifier><identifier>DOI: 10.1186/s13637-017-0062-4</identifier><identifier>PMID: 28710702</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Approximation ; Bayesian analysis ; Biochemistry, Molecular Biology ; Bioindicators ; Bioinformatics ; Biological models (mathematics) ; Biomarkers ; Biomedical Engineering and Bioengineering ; Computational Biology/Bioinformatics ; Computer Science ; Covariance matrix ; Engineering ; Error detection ; Exact solutions ; Genomics ; Life Sciences ; Mass spectrometry ; Mass spectroscopy ; Mathematical models ; Numerical methods ; Partitions ; Proteins ; Proteomics ; Signal,Image and Speech Processing ; Statistical inference ; Systems Biology ; Test procedures ; Water analysis</subject><ispartof>EURASIP journal on bioinformatics &amp; systems biology, 2017-07, Vol.2017 (1), p.9-9, Article 9</ispartof><rights>The Author(s) 2017</rights><rights>EURASIP Journal on Bioinformatics and Systems Biology is a copyright of Springer, 2017.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-b14cede14c8e61f7506f2409a3b82d97d2b3aca950719de3a7f3736f8e7841453</citedby><cites>FETCH-LOGICAL-c504t-b14cede14c8e61f7506f2409a3b82d97d2b3aca950719de3a7f3736f8e7841453</cites><orcidid>0000-0003-3837-3198 ; 0000-0003-4414-3604</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5511129/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5511129/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28710702$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01695376$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dridi, Noura</creatorcontrib><creatorcontrib>Giremus, Audrey</creatorcontrib><creatorcontrib>Giovannelli, Jean-Francois</creatorcontrib><creatorcontrib>Truntzer, Caroline</creatorcontrib><creatorcontrib>Hadzagic, Melita</creatorcontrib><creatorcontrib>Charrier, Jean-Philippe</creatorcontrib><creatorcontrib>Gerfault, Laurent</creatorcontrib><creatorcontrib>Ducoroy, Patrick</creatorcontrib><creatorcontrib>Lacroix, Bruno</creatorcontrib><creatorcontrib>Grangeat, Pierre</creatorcontrib><creatorcontrib>Roy, Pascal</creatorcontrib><title>Bayesian inference for biomarker discovery in proteomics: an analytic solution</title><title>EURASIP journal on bioinformatics &amp; systems biology</title><addtitle>J Bioinform Sys Biology</addtitle><addtitle>EURASIP J Bioinform Syst Biol</addtitle><description>This paper addresses the question of biomarker discovery in proteomics. Given clinical data regarding a list of proteins for a set of individuals, the tackled problem is to extract a short subset of proteins the concentrations of which are an indicator of the biological status (healthy or pathological). In this paper, it is formulated as a specific instance of variable selection. The originality is that the proteins are not investigated one after the other but the best partition between discriminant and non-discriminant proteins is directly sought. In this way, correlations between the proteins are intrinsically taken into account in the decision. The developed strategy is derived in a Bayesian setting, and the decision is optimal in the sense that it minimizes a global mean error. It is finally based on the posterior probabilities of the partitions. The main difficulty is to calculate these probabilities since they are based on the so-called evidence that require marginalization of all the unknown model parameters. Two models are presented that relate the status to the protein concentrations, depending whether the latter are biomarkers or not. The first model accounts for biological variabilities by assuming that the concentrations are Gaussian distributed with a mean and a covariance matrix that depend on the status only for the biomarkers. The second one is an extension that also takes into account the technical variabilities that may significantly impact the observed concentrations. The main contributions of the paper are: (1) a new Bayesian formulation of the biomarker selection problem, (2) the closed-form expression of the posterior probabilities in the noiseless case, and (3) a suitable approximated solution in the noisy case. The methods are numerically assessed and compared to the state-of-the-art methods ( t test, LASSO, Battacharyya distance, FOHSIC) on synthetic and real data from proteins quantified in human serum by mass spectrometry in selected reaction monitoring mode.</description><subject>Approximation</subject><subject>Bayesian analysis</subject><subject>Biochemistry, Molecular Biology</subject><subject>Bioindicators</subject><subject>Bioinformatics</subject><subject>Biological models (mathematics)</subject><subject>Biomarkers</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computer Science</subject><subject>Covariance matrix</subject><subject>Engineering</subject><subject>Error detection</subject><subject>Exact solutions</subject><subject>Genomics</subject><subject>Life Sciences</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Mathematical models</subject><subject>Numerical methods</subject><subject>Partitions</subject><subject>Proteins</subject><subject>Proteomics</subject><subject>Signal,Image and Speech Processing</subject><subject>Statistical inference</subject><subject>Systems Biology</subject><subject>Test procedures</subject><subject>Water analysis</subject><issn>1687-4145</issn><issn>1687-4153</issn><issn>1687-4153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kU1v1DAQhi0EoqXwA7igSFzgEPD4M-FQqVRAkVZwgbPlOJPWJWsvdrLS_nscpaxKJQ5jW57nnU9CXgJ9B9Co9xm44rqmUIwqVotH5BRUo2sBkj8-voU8Ic9yvqVUKCn1U3LCGg1UU3ZKvn20B8zehsqHARMGh9UQU9X5uLXpF6aq99nFPaZDIapdihPGrXf5Q1U0NtjxMHlX5TjOk4_hOXky2DHji7v7jPz8_OnH5VW9-f7l6-XFpnaSiqnuQDjssZwNKhi0pGpggraWdw3rW92zjltnW0k1tD1yqweuuRoa1M3SDz8j52vc3dxtsXcYpmRHs0u-VH0w0Xrzryf4G3Md90ZKAGBtCfB2DXDzQHZ1sTHLHwXVSq7VHgr75i5Zir9nzJPZlpngONqAcc4GWkah1YKzgr5-gN7GOZUpLRS0VPMGFgpWyqWYc8LhWAFQs2zWrJstRRQrmzWiaF7d7_io-LvKArAVyMUVrjHdS_3fqH8AH3uuMA</recordid><startdate>20170714</startdate><enddate>20170714</enddate><creator>Dridi, Noura</creator><creator>Giremus, Audrey</creator><creator>Giovannelli, Jean-Francois</creator><creator>Truntzer, Caroline</creator><creator>Hadzagic, Melita</creator><creator>Charrier, Jean-Philippe</creator><creator>Gerfault, Laurent</creator><creator>Ducoroy, Patrick</creator><creator>Lacroix, Bruno</creator><creator>Grangeat, Pierre</creator><creator>Roy, Pascal</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7XB</scope><scope>8AL</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3837-3198</orcidid><orcidid>https://orcid.org/0000-0003-4414-3604</orcidid></search><sort><creationdate>20170714</creationdate><title>Bayesian inference for biomarker discovery in proteomics: an analytic solution</title><author>Dridi, Noura ; Giremus, Audrey ; Giovannelli, Jean-Francois ; Truntzer, Caroline ; Hadzagic, Melita ; Charrier, Jean-Philippe ; Gerfault, Laurent ; Ducoroy, Patrick ; Lacroix, Bruno ; Grangeat, Pierre ; Roy, Pascal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-b14cede14c8e61f7506f2409a3b82d97d2b3aca950719de3a7f3736f8e7841453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Approximation</topic><topic>Bayesian analysis</topic><topic>Biochemistry, Molecular Biology</topic><topic>Bioindicators</topic><topic>Bioinformatics</topic><topic>Biological models (mathematics)</topic><topic>Biomarkers</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computer Science</topic><topic>Covariance matrix</topic><topic>Engineering</topic><topic>Error detection</topic><topic>Exact solutions</topic><topic>Genomics</topic><topic>Life Sciences</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Mathematical models</topic><topic>Numerical methods</topic><topic>Partitions</topic><topic>Proteins</topic><topic>Proteomics</topic><topic>Signal,Image and Speech Processing</topic><topic>Statistical inference</topic><topic>Systems Biology</topic><topic>Test procedures</topic><topic>Water analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dridi, Noura</creatorcontrib><creatorcontrib>Giremus, Audrey</creatorcontrib><creatorcontrib>Giovannelli, Jean-Francois</creatorcontrib><creatorcontrib>Truntzer, Caroline</creatorcontrib><creatorcontrib>Hadzagic, Melita</creatorcontrib><creatorcontrib>Charrier, Jean-Philippe</creatorcontrib><creatorcontrib>Gerfault, Laurent</creatorcontrib><creatorcontrib>Ducoroy, Patrick</creatorcontrib><creatorcontrib>Lacroix, Bruno</creatorcontrib><creatorcontrib>Grangeat, Pierre</creatorcontrib><creatorcontrib>Roy, Pascal</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>EURASIP journal on bioinformatics &amp; systems biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dridi, Noura</au><au>Giremus, Audrey</au><au>Giovannelli, Jean-Francois</au><au>Truntzer, Caroline</au><au>Hadzagic, Melita</au><au>Charrier, Jean-Philippe</au><au>Gerfault, Laurent</au><au>Ducoroy, Patrick</au><au>Lacroix, Bruno</au><au>Grangeat, Pierre</au><au>Roy, Pascal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian inference for biomarker discovery in proteomics: an analytic solution</atitle><jtitle>EURASIP journal on bioinformatics &amp; systems biology</jtitle><stitle>J Bioinform Sys Biology</stitle><addtitle>EURASIP J Bioinform Syst Biol</addtitle><date>2017-07-14</date><risdate>2017</risdate><volume>2017</volume><issue>1</issue><spage>9</spage><epage>9</epage><pages>9-9</pages><artnum>9</artnum><issn>1687-4145</issn><issn>1687-4153</issn><eissn>1687-4153</eissn><abstract>This paper addresses the question of biomarker discovery in proteomics. Given clinical data regarding a list of proteins for a set of individuals, the tackled problem is to extract a short subset of proteins the concentrations of which are an indicator of the biological status (healthy or pathological). In this paper, it is formulated as a specific instance of variable selection. The originality is that the proteins are not investigated one after the other but the best partition between discriminant and non-discriminant proteins is directly sought. In this way, correlations between the proteins are intrinsically taken into account in the decision. The developed strategy is derived in a Bayesian setting, and the decision is optimal in the sense that it minimizes a global mean error. It is finally based on the posterior probabilities of the partitions. The main difficulty is to calculate these probabilities since they are based on the so-called evidence that require marginalization of all the unknown model parameters. Two models are presented that relate the status to the protein concentrations, depending whether the latter are biomarkers or not. The first model accounts for biological variabilities by assuming that the concentrations are Gaussian distributed with a mean and a covariance matrix that depend on the status only for the biomarkers. The second one is an extension that also takes into account the technical variabilities that may significantly impact the observed concentrations. The main contributions of the paper are: (1) a new Bayesian formulation of the biomarker selection problem, (2) the closed-form expression of the posterior probabilities in the noiseless case, and (3) a suitable approximated solution in the noisy case. The methods are numerically assessed and compared to the state-of-the-art methods ( t test, LASSO, Battacharyya distance, FOHSIC) on synthetic and real data from proteins quantified in human serum by mass spectrometry in selected reaction monitoring mode.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>28710702</pmid><doi>10.1186/s13637-017-0062-4</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-3837-3198</orcidid><orcidid>https://orcid.org/0000-0003-4414-3604</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-4145
ispartof EURASIP journal on bioinformatics & systems biology, 2017-07, Vol.2017 (1), p.9-9, Article 9
issn 1687-4145
1687-4153
1687-4153
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5511129
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access; Springer Nature OA Free Journals
subjects Approximation
Bayesian analysis
Biochemistry, Molecular Biology
Bioindicators
Bioinformatics
Biological models (mathematics)
Biomarkers
Biomedical Engineering and Bioengineering
Computational Biology/Bioinformatics
Computer Science
Covariance matrix
Engineering
Error detection
Exact solutions
Genomics
Life Sciences
Mass spectrometry
Mass spectroscopy
Mathematical models
Numerical methods
Partitions
Proteins
Proteomics
Signal,Image and Speech Processing
Statistical inference
Systems Biology
Test procedures
Water analysis
title Bayesian inference for biomarker discovery in proteomics: an analytic solution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T23%3A40%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20inference%20for%20biomarker%20discovery%20in%20proteomics:%20an%20analytic%20solution&rft.jtitle=EURASIP%20journal%20on%20bioinformatics%20&%20systems%20biology&rft.au=Dridi,%20Noura&rft.date=2017-07-14&rft.volume=2017&rft.issue=1&rft.spage=9&rft.epage=9&rft.pages=9-9&rft.artnum=9&rft.issn=1687-4145&rft.eissn=1687-4153&rft_id=info:doi/10.1186/s13637-017-0062-4&rft_dat=%3Cproquest_pubme%3E1919073812%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1919073812&rft_id=info:pmid/28710702&rfr_iscdi=true