Cortical gamma band synchronization through somatostatin interneurons
The authors establish a critical role for somatostatin interneurons in visually induced gamma oscillations in the primary visual cortex of mice. Optogenetic manipulations in awake animals, combined with an innovative computational model with multiple interneuron subtypes, provide a mechanism for the...
Gespeichert in:
Veröffentlicht in: | Nature neuroscience 2017-07, Vol.20 (7), p.951-959 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 959 |
---|---|
container_issue | 7 |
container_start_page | 951 |
container_title | Nature neuroscience |
container_volume | 20 |
creator | Veit, Julia Hakim, Richard Jadi, Monika P Sejnowski, Terrence J Adesnik, Hillel |
description | The authors establish a critical role for somatostatin interneurons in visually induced gamma oscillations in the primary visual cortex of mice. Optogenetic manipulations in awake animals, combined with an innovative computational model with multiple interneuron subtypes, provide a mechanism for the synchronization of neural firing across the retinotopic map.
Gamma band rhythms may synchronize distributed cell assemblies to facilitate information transfer within and across brain areas, yet their underlying mechanisms remain hotly debated. Most circuit models postulate that soma-targeting parvalbumin-positive GABAergic neurons are the essential inhibitory neuron subtype necessary for gamma rhythms. Using cell-type-specific optogenetic manipulations in behaving animals, we show that dendrite-targeting somatostatin (SOM) interneurons are critical for a visually induced, context-dependent gamma rhythm in visual cortex. A computational model independently predicts that context-dependent gamma rhythms depend critically on SOM interneurons. Further
in vivo
experiments show that SOM neurons are required for long-distance coherence across the visual cortex. Taken together, these data establish an alternative mechanism for synchronizing distributed networks in visual cortex. By operating through dendritic and not just somatic inhibition, SOM-mediated oscillations may expand the computational power of gamma rhythms for optimizing the synthesis and storage of visual perceptions. |
doi_str_mv | 10.1038/nn.4562 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5511041</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A497045188</galeid><sourcerecordid>A497045188</sourcerecordid><originalsourceid>FETCH-LOGICAL-c597t-48f3895f1636d14923292661fbc6d891b3c8e5bce9b1473c1c3e4968cafc0bf33</originalsourceid><addsrcrecordid>eNptkl1LHTEQhpdSqdaW_oOy0Iu2F3ua2XxsclOQg62CIPTjOmSzyZ7IbmKTbKn-enPQqkckF8nMPPNmZpiqegdoBQjzL96vCGXti-oAKGENdC17Wd5IdA1rKduvXqd0gRDqKBevqv2WEw6Y8IPqeB1idlpN9ajmWdW98kOdrrzexODdtcou-DoXYxk3dQqzyiHl4vW189lEb5bCpTfVnlVTMm_v7sPq97fjX-uT5uz8--n66KzRVHS5IdxiLqgFhtkARLS4FS1jYHvNBi6gx5ob2msjeiAd1qCxIYJxraxGvcX4sPp6q3u59LMZtPE5qkleRjereCWDcnI34t1GjuGvpBQAESgCn-4EYvizmJTl7JI206S8CUuSwAUjQBgSBf3wBL0IS_SlPQkCulJWqf6BGtVkpPM2lH_1VlQeEdEhQoHzQq2eocoZzOx08Ma64t9J-LyTUJhs_uVRLSnJ058_dtmPt6yOIaVo7P08AMntdkjv5XY7Cvn-8fjuuf_r8DCeVEJ-NPFRz0-0bgADtsEw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1917968329</pqid></control><display><type>article</type><title>Cortical gamma band synchronization through somatostatin interneurons</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Veit, Julia ; Hakim, Richard ; Jadi, Monika P ; Sejnowski, Terrence J ; Adesnik, Hillel</creator><creatorcontrib>Veit, Julia ; Hakim, Richard ; Jadi, Monika P ; Sejnowski, Terrence J ; Adesnik, Hillel</creatorcontrib><description>The authors establish a critical role for somatostatin interneurons in visually induced gamma oscillations in the primary visual cortex of mice. Optogenetic manipulations in awake animals, combined with an innovative computational model with multiple interneuron subtypes, provide a mechanism for the synchronization of neural firing across the retinotopic map.
Gamma band rhythms may synchronize distributed cell assemblies to facilitate information transfer within and across brain areas, yet their underlying mechanisms remain hotly debated. Most circuit models postulate that soma-targeting parvalbumin-positive GABAergic neurons are the essential inhibitory neuron subtype necessary for gamma rhythms. Using cell-type-specific optogenetic manipulations in behaving animals, we show that dendrite-targeting somatostatin (SOM) interneurons are critical for a visually induced, context-dependent gamma rhythm in visual cortex. A computational model independently predicts that context-dependent gamma rhythms depend critically on SOM interneurons. Further
in vivo
experiments show that SOM neurons are required for long-distance coherence across the visual cortex. Taken together, these data establish an alternative mechanism for synchronizing distributed networks in visual cortex. By operating through dendritic and not just somatic inhibition, SOM-mediated oscillations may expand the computational power of gamma rhythms for optimizing the synthesis and storage of visual perceptions.</description><identifier>ISSN: 1097-6256</identifier><identifier>EISSN: 1546-1726</identifier><identifier>DOI: 10.1038/nn.4562</identifier><identifier>PMID: 28481348</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/378/2613/1875 ; 631/378/3917 ; 64/110 ; 64/60 ; 9/10 ; 9/30 ; 9/74 ; Animal Genetics and Genomics ; Animals ; Behavioral Sciences ; Biological Techniques ; Biomedicine ; Brain ; Brain research ; Computational neuroscience ; Computer networks ; Computer Simulation ; Cortical Synchronization - physiology ; Dendritic structure ; Female ; Gamma Rhythm - physiology ; Information transfer ; Interneurons ; Interneurons - physiology ; Male ; Mice ; Mice, Transgenic ; Models, Neurological ; Neural circuitry ; Neurobiology ; Neurons ; Neurosciences ; Oscillations ; Parvalbumin ; Photic Stimulation ; Properties ; Psychological aspects ; Rhythm ; Somatostatin ; Somatostatin - genetics ; Somatostatin - physiology ; Synchronization ; Testing ; Visual cortex ; Visual Cortex - physiology ; γ-Aminobutyric acid</subject><ispartof>Nature neuroscience, 2017-07, Vol.20 (7), p.951-959</ispartof><rights>Springer Nature America, Inc. 2017</rights><rights>COPYRIGHT 2017 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jul 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c597t-48f3895f1636d14923292661fbc6d891b3c8e5bce9b1473c1c3e4968cafc0bf33</citedby><cites>FETCH-LOGICAL-c597t-48f3895f1636d14923292661fbc6d891b3c8e5bce9b1473c1c3e4968cafc0bf33</cites><orcidid>0000-0002-6991-1801</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nn.4562$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nn.4562$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28481348$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Veit, Julia</creatorcontrib><creatorcontrib>Hakim, Richard</creatorcontrib><creatorcontrib>Jadi, Monika P</creatorcontrib><creatorcontrib>Sejnowski, Terrence J</creatorcontrib><creatorcontrib>Adesnik, Hillel</creatorcontrib><title>Cortical gamma band synchronization through somatostatin interneurons</title><title>Nature neuroscience</title><addtitle>Nat Neurosci</addtitle><addtitle>Nat Neurosci</addtitle><description>The authors establish a critical role for somatostatin interneurons in visually induced gamma oscillations in the primary visual cortex of mice. Optogenetic manipulations in awake animals, combined with an innovative computational model with multiple interneuron subtypes, provide a mechanism for the synchronization of neural firing across the retinotopic map.
Gamma band rhythms may synchronize distributed cell assemblies to facilitate information transfer within and across brain areas, yet their underlying mechanisms remain hotly debated. Most circuit models postulate that soma-targeting parvalbumin-positive GABAergic neurons are the essential inhibitory neuron subtype necessary for gamma rhythms. Using cell-type-specific optogenetic manipulations in behaving animals, we show that dendrite-targeting somatostatin (SOM) interneurons are critical for a visually induced, context-dependent gamma rhythm in visual cortex. A computational model independently predicts that context-dependent gamma rhythms depend critically on SOM interneurons. Further
in vivo
experiments show that SOM neurons are required for long-distance coherence across the visual cortex. Taken together, these data establish an alternative mechanism for synchronizing distributed networks in visual cortex. By operating through dendritic and not just somatic inhibition, SOM-mediated oscillations may expand the computational power of gamma rhythms for optimizing the synthesis and storage of visual perceptions.</description><subject>631/378/2613/1875</subject><subject>631/378/3917</subject><subject>64/110</subject><subject>64/60</subject><subject>9/10</subject><subject>9/30</subject><subject>9/74</subject><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Behavioral Sciences</subject><subject>Biological Techniques</subject><subject>Biomedicine</subject><subject>Brain</subject><subject>Brain research</subject><subject>Computational neuroscience</subject><subject>Computer networks</subject><subject>Computer Simulation</subject><subject>Cortical Synchronization - physiology</subject><subject>Dendritic structure</subject><subject>Female</subject><subject>Gamma Rhythm - physiology</subject><subject>Information transfer</subject><subject>Interneurons</subject><subject>Interneurons - physiology</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Models, Neurological</subject><subject>Neural circuitry</subject><subject>Neurobiology</subject><subject>Neurons</subject><subject>Neurosciences</subject><subject>Oscillations</subject><subject>Parvalbumin</subject><subject>Photic Stimulation</subject><subject>Properties</subject><subject>Psychological aspects</subject><subject>Rhythm</subject><subject>Somatostatin</subject><subject>Somatostatin - genetics</subject><subject>Somatostatin - physiology</subject><subject>Synchronization</subject><subject>Testing</subject><subject>Visual cortex</subject><subject>Visual Cortex - physiology</subject><subject>γ-Aminobutyric acid</subject><issn>1097-6256</issn><issn>1546-1726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNptkl1LHTEQhpdSqdaW_oOy0Iu2F3ua2XxsclOQg62CIPTjOmSzyZ7IbmKTbKn-enPQqkckF8nMPPNmZpiqegdoBQjzL96vCGXti-oAKGENdC17Wd5IdA1rKduvXqd0gRDqKBevqv2WEw6Y8IPqeB1idlpN9ajmWdW98kOdrrzexODdtcou-DoXYxk3dQqzyiHl4vW189lEb5bCpTfVnlVTMm_v7sPq97fjX-uT5uz8--n66KzRVHS5IdxiLqgFhtkARLS4FS1jYHvNBi6gx5ob2msjeiAd1qCxIYJxraxGvcX4sPp6q3u59LMZtPE5qkleRjereCWDcnI34t1GjuGvpBQAESgCn-4EYvizmJTl7JI206S8CUuSwAUjQBgSBf3wBL0IS_SlPQkCulJWqf6BGtVkpPM2lH_1VlQeEdEhQoHzQq2eocoZzOx08Ma64t9J-LyTUJhs_uVRLSnJ058_dtmPt6yOIaVo7P08AMntdkjv5XY7Cvn-8fjuuf_r8DCeVEJ-NPFRz0-0bgADtsEw</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Veit, Julia</creator><creator>Hakim, Richard</creator><creator>Jadi, Monika P</creator><creator>Sejnowski, Terrence J</creator><creator>Adesnik, Hillel</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6991-1801</orcidid></search><sort><creationdate>20170701</creationdate><title>Cortical gamma band synchronization through somatostatin interneurons</title><author>Veit, Julia ; Hakim, Richard ; Jadi, Monika P ; Sejnowski, Terrence J ; Adesnik, Hillel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c597t-48f3895f1636d14923292661fbc6d891b3c8e5bce9b1473c1c3e4968cafc0bf33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>631/378/2613/1875</topic><topic>631/378/3917</topic><topic>64/110</topic><topic>64/60</topic><topic>9/10</topic><topic>9/30</topic><topic>9/74</topic><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Behavioral Sciences</topic><topic>Biological Techniques</topic><topic>Biomedicine</topic><topic>Brain</topic><topic>Brain research</topic><topic>Computational neuroscience</topic><topic>Computer networks</topic><topic>Computer Simulation</topic><topic>Cortical Synchronization - physiology</topic><topic>Dendritic structure</topic><topic>Female</topic><topic>Gamma Rhythm - physiology</topic><topic>Information transfer</topic><topic>Interneurons</topic><topic>Interneurons - physiology</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Models, Neurological</topic><topic>Neural circuitry</topic><topic>Neurobiology</topic><topic>Neurons</topic><topic>Neurosciences</topic><topic>Oscillations</topic><topic>Parvalbumin</topic><topic>Photic Stimulation</topic><topic>Properties</topic><topic>Psychological aspects</topic><topic>Rhythm</topic><topic>Somatostatin</topic><topic>Somatostatin - genetics</topic><topic>Somatostatin - physiology</topic><topic>Synchronization</topic><topic>Testing</topic><topic>Visual cortex</topic><topic>Visual Cortex - physiology</topic><topic>γ-Aminobutyric acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Veit, Julia</creatorcontrib><creatorcontrib>Hakim, Richard</creatorcontrib><creatorcontrib>Jadi, Monika P</creatorcontrib><creatorcontrib>Sejnowski, Terrence J</creatorcontrib><creatorcontrib>Adesnik, Hillel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Veit, Julia</au><au>Hakim, Richard</au><au>Jadi, Monika P</au><au>Sejnowski, Terrence J</au><au>Adesnik, Hillel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cortical gamma band synchronization through somatostatin interneurons</atitle><jtitle>Nature neuroscience</jtitle><stitle>Nat Neurosci</stitle><addtitle>Nat Neurosci</addtitle><date>2017-07-01</date><risdate>2017</risdate><volume>20</volume><issue>7</issue><spage>951</spage><epage>959</epage><pages>951-959</pages><issn>1097-6256</issn><eissn>1546-1726</eissn><abstract>The authors establish a critical role for somatostatin interneurons in visually induced gamma oscillations in the primary visual cortex of mice. Optogenetic manipulations in awake animals, combined with an innovative computational model with multiple interneuron subtypes, provide a mechanism for the synchronization of neural firing across the retinotopic map.
Gamma band rhythms may synchronize distributed cell assemblies to facilitate information transfer within and across brain areas, yet their underlying mechanisms remain hotly debated. Most circuit models postulate that soma-targeting parvalbumin-positive GABAergic neurons are the essential inhibitory neuron subtype necessary for gamma rhythms. Using cell-type-specific optogenetic manipulations in behaving animals, we show that dendrite-targeting somatostatin (SOM) interneurons are critical for a visually induced, context-dependent gamma rhythm in visual cortex. A computational model independently predicts that context-dependent gamma rhythms depend critically on SOM interneurons. Further
in vivo
experiments show that SOM neurons are required for long-distance coherence across the visual cortex. Taken together, these data establish an alternative mechanism for synchronizing distributed networks in visual cortex. By operating through dendritic and not just somatic inhibition, SOM-mediated oscillations may expand the computational power of gamma rhythms for optimizing the synthesis and storage of visual perceptions.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>28481348</pmid><doi>10.1038/nn.4562</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6991-1801</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1097-6256 |
ispartof | Nature neuroscience, 2017-07, Vol.20 (7), p.951-959 |
issn | 1097-6256 1546-1726 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5511041 |
source | MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | 631/378/2613/1875 631/378/3917 64/110 64/60 9/10 9/30 9/74 Animal Genetics and Genomics Animals Behavioral Sciences Biological Techniques Biomedicine Brain Brain research Computational neuroscience Computer networks Computer Simulation Cortical Synchronization - physiology Dendritic structure Female Gamma Rhythm - physiology Information transfer Interneurons Interneurons - physiology Male Mice Mice, Transgenic Models, Neurological Neural circuitry Neurobiology Neurons Neurosciences Oscillations Parvalbumin Photic Stimulation Properties Psychological aspects Rhythm Somatostatin Somatostatin - genetics Somatostatin - physiology Synchronization Testing Visual cortex Visual Cortex - physiology γ-Aminobutyric acid |
title | Cortical gamma band synchronization through somatostatin interneurons |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T23%3A46%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cortical%20gamma%20band%20synchronization%20through%20somatostatin%20interneurons&rft.jtitle=Nature%20neuroscience&rft.au=Veit,%20Julia&rft.date=2017-07-01&rft.volume=20&rft.issue=7&rft.spage=951&rft.epage=959&rft.pages=951-959&rft.issn=1097-6256&rft.eissn=1546-1726&rft_id=info:doi/10.1038/nn.4562&rft_dat=%3Cgale_pubme%3EA497045188%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1917968329&rft_id=info:pmid/28481348&rft_galeid=A497045188&rfr_iscdi=true |