Cortical gamma band synchronization through somatostatin interneurons

The authors establish a critical role for somatostatin interneurons in visually induced gamma oscillations in the primary visual cortex of mice. Optogenetic manipulations in awake animals, combined with an innovative computational model with multiple interneuron subtypes, provide a mechanism for the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature neuroscience 2017-07, Vol.20 (7), p.951-959
Hauptverfasser: Veit, Julia, Hakim, Richard, Jadi, Monika P, Sejnowski, Terrence J, Adesnik, Hillel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 959
container_issue 7
container_start_page 951
container_title Nature neuroscience
container_volume 20
creator Veit, Julia
Hakim, Richard
Jadi, Monika P
Sejnowski, Terrence J
Adesnik, Hillel
description The authors establish a critical role for somatostatin interneurons in visually induced gamma oscillations in the primary visual cortex of mice. Optogenetic manipulations in awake animals, combined with an innovative computational model with multiple interneuron subtypes, provide a mechanism for the synchronization of neural firing across the retinotopic map. Gamma band rhythms may synchronize distributed cell assemblies to facilitate information transfer within and across brain areas, yet their underlying mechanisms remain hotly debated. Most circuit models postulate that soma-targeting parvalbumin-positive GABAergic neurons are the essential inhibitory neuron subtype necessary for gamma rhythms. Using cell-type-specific optogenetic manipulations in behaving animals, we show that dendrite-targeting somatostatin (SOM) interneurons are critical for a visually induced, context-dependent gamma rhythm in visual cortex. A computational model independently predicts that context-dependent gamma rhythms depend critically on SOM interneurons. Further in vivo experiments show that SOM neurons are required for long-distance coherence across the visual cortex. Taken together, these data establish an alternative mechanism for synchronizing distributed networks in visual cortex. By operating through dendritic and not just somatic inhibition, SOM-mediated oscillations may expand the computational power of gamma rhythms for optimizing the synthesis and storage of visual perceptions.
doi_str_mv 10.1038/nn.4562
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5511041</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A497045188</galeid><sourcerecordid>A497045188</sourcerecordid><originalsourceid>FETCH-LOGICAL-c597t-48f3895f1636d14923292661fbc6d891b3c8e5bce9b1473c1c3e4968cafc0bf33</originalsourceid><addsrcrecordid>eNptkl1LHTEQhpdSqdaW_oOy0Iu2F3ua2XxsclOQg62CIPTjOmSzyZ7IbmKTbKn-enPQqkckF8nMPPNmZpiqegdoBQjzL96vCGXti-oAKGENdC17Wd5IdA1rKduvXqd0gRDqKBevqv2WEw6Y8IPqeB1idlpN9ajmWdW98kOdrrzexODdtcou-DoXYxk3dQqzyiHl4vW189lEb5bCpTfVnlVTMm_v7sPq97fjX-uT5uz8--n66KzRVHS5IdxiLqgFhtkARLS4FS1jYHvNBi6gx5ob2msjeiAd1qCxIYJxraxGvcX4sPp6q3u59LMZtPE5qkleRjereCWDcnI34t1GjuGvpBQAESgCn-4EYvizmJTl7JI206S8CUuSwAUjQBgSBf3wBL0IS_SlPQkCulJWqf6BGtVkpPM2lH_1VlQeEdEhQoHzQq2eocoZzOx08Ma64t9J-LyTUJhs_uVRLSnJ058_dtmPt6yOIaVo7P08AMntdkjv5XY7Cvn-8fjuuf_r8DCeVEJ-NPFRz0-0bgADtsEw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1917968329</pqid></control><display><type>article</type><title>Cortical gamma band synchronization through somatostatin interneurons</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Veit, Julia ; Hakim, Richard ; Jadi, Monika P ; Sejnowski, Terrence J ; Adesnik, Hillel</creator><creatorcontrib>Veit, Julia ; Hakim, Richard ; Jadi, Monika P ; Sejnowski, Terrence J ; Adesnik, Hillel</creatorcontrib><description>The authors establish a critical role for somatostatin interneurons in visually induced gamma oscillations in the primary visual cortex of mice. Optogenetic manipulations in awake animals, combined with an innovative computational model with multiple interneuron subtypes, provide a mechanism for the synchronization of neural firing across the retinotopic map. Gamma band rhythms may synchronize distributed cell assemblies to facilitate information transfer within and across brain areas, yet their underlying mechanisms remain hotly debated. Most circuit models postulate that soma-targeting parvalbumin-positive GABAergic neurons are the essential inhibitory neuron subtype necessary for gamma rhythms. Using cell-type-specific optogenetic manipulations in behaving animals, we show that dendrite-targeting somatostatin (SOM) interneurons are critical for a visually induced, context-dependent gamma rhythm in visual cortex. A computational model independently predicts that context-dependent gamma rhythms depend critically on SOM interneurons. Further in vivo experiments show that SOM neurons are required for long-distance coherence across the visual cortex. Taken together, these data establish an alternative mechanism for synchronizing distributed networks in visual cortex. By operating through dendritic and not just somatic inhibition, SOM-mediated oscillations may expand the computational power of gamma rhythms for optimizing the synthesis and storage of visual perceptions.</description><identifier>ISSN: 1097-6256</identifier><identifier>EISSN: 1546-1726</identifier><identifier>DOI: 10.1038/nn.4562</identifier><identifier>PMID: 28481348</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/378/2613/1875 ; 631/378/3917 ; 64/110 ; 64/60 ; 9/10 ; 9/30 ; 9/74 ; Animal Genetics and Genomics ; Animals ; Behavioral Sciences ; Biological Techniques ; Biomedicine ; Brain ; Brain research ; Computational neuroscience ; Computer networks ; Computer Simulation ; Cortical Synchronization - physiology ; Dendritic structure ; Female ; Gamma Rhythm - physiology ; Information transfer ; Interneurons ; Interneurons - physiology ; Male ; Mice ; Mice, Transgenic ; Models, Neurological ; Neural circuitry ; Neurobiology ; Neurons ; Neurosciences ; Oscillations ; Parvalbumin ; Photic Stimulation ; Properties ; Psychological aspects ; Rhythm ; Somatostatin ; Somatostatin - genetics ; Somatostatin - physiology ; Synchronization ; Testing ; Visual cortex ; Visual Cortex - physiology ; γ-Aminobutyric acid</subject><ispartof>Nature neuroscience, 2017-07, Vol.20 (7), p.951-959</ispartof><rights>Springer Nature America, Inc. 2017</rights><rights>COPYRIGHT 2017 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jul 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c597t-48f3895f1636d14923292661fbc6d891b3c8e5bce9b1473c1c3e4968cafc0bf33</citedby><cites>FETCH-LOGICAL-c597t-48f3895f1636d14923292661fbc6d891b3c8e5bce9b1473c1c3e4968cafc0bf33</cites><orcidid>0000-0002-6991-1801</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nn.4562$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nn.4562$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28481348$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Veit, Julia</creatorcontrib><creatorcontrib>Hakim, Richard</creatorcontrib><creatorcontrib>Jadi, Monika P</creatorcontrib><creatorcontrib>Sejnowski, Terrence J</creatorcontrib><creatorcontrib>Adesnik, Hillel</creatorcontrib><title>Cortical gamma band synchronization through somatostatin interneurons</title><title>Nature neuroscience</title><addtitle>Nat Neurosci</addtitle><addtitle>Nat Neurosci</addtitle><description>The authors establish a critical role for somatostatin interneurons in visually induced gamma oscillations in the primary visual cortex of mice. Optogenetic manipulations in awake animals, combined with an innovative computational model with multiple interneuron subtypes, provide a mechanism for the synchronization of neural firing across the retinotopic map. Gamma band rhythms may synchronize distributed cell assemblies to facilitate information transfer within and across brain areas, yet their underlying mechanisms remain hotly debated. Most circuit models postulate that soma-targeting parvalbumin-positive GABAergic neurons are the essential inhibitory neuron subtype necessary for gamma rhythms. Using cell-type-specific optogenetic manipulations in behaving animals, we show that dendrite-targeting somatostatin (SOM) interneurons are critical for a visually induced, context-dependent gamma rhythm in visual cortex. A computational model independently predicts that context-dependent gamma rhythms depend critically on SOM interneurons. Further in vivo experiments show that SOM neurons are required for long-distance coherence across the visual cortex. Taken together, these data establish an alternative mechanism for synchronizing distributed networks in visual cortex. By operating through dendritic and not just somatic inhibition, SOM-mediated oscillations may expand the computational power of gamma rhythms for optimizing the synthesis and storage of visual perceptions.</description><subject>631/378/2613/1875</subject><subject>631/378/3917</subject><subject>64/110</subject><subject>64/60</subject><subject>9/10</subject><subject>9/30</subject><subject>9/74</subject><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Behavioral Sciences</subject><subject>Biological Techniques</subject><subject>Biomedicine</subject><subject>Brain</subject><subject>Brain research</subject><subject>Computational neuroscience</subject><subject>Computer networks</subject><subject>Computer Simulation</subject><subject>Cortical Synchronization - physiology</subject><subject>Dendritic structure</subject><subject>Female</subject><subject>Gamma Rhythm - physiology</subject><subject>Information transfer</subject><subject>Interneurons</subject><subject>Interneurons - physiology</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Models, Neurological</subject><subject>Neural circuitry</subject><subject>Neurobiology</subject><subject>Neurons</subject><subject>Neurosciences</subject><subject>Oscillations</subject><subject>Parvalbumin</subject><subject>Photic Stimulation</subject><subject>Properties</subject><subject>Psychological aspects</subject><subject>Rhythm</subject><subject>Somatostatin</subject><subject>Somatostatin - genetics</subject><subject>Somatostatin - physiology</subject><subject>Synchronization</subject><subject>Testing</subject><subject>Visual cortex</subject><subject>Visual Cortex - physiology</subject><subject>γ-Aminobutyric acid</subject><issn>1097-6256</issn><issn>1546-1726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNptkl1LHTEQhpdSqdaW_oOy0Iu2F3ua2XxsclOQg62CIPTjOmSzyZ7IbmKTbKn-enPQqkckF8nMPPNmZpiqegdoBQjzL96vCGXti-oAKGENdC17Wd5IdA1rKduvXqd0gRDqKBevqv2WEw6Y8IPqeB1idlpN9ajmWdW98kOdrrzexODdtcou-DoXYxk3dQqzyiHl4vW189lEb5bCpTfVnlVTMm_v7sPq97fjX-uT5uz8--n66KzRVHS5IdxiLqgFhtkARLS4FS1jYHvNBi6gx5ob2msjeiAd1qCxIYJxraxGvcX4sPp6q3u59LMZtPE5qkleRjereCWDcnI34t1GjuGvpBQAESgCn-4EYvizmJTl7JI206S8CUuSwAUjQBgSBf3wBL0IS_SlPQkCulJWqf6BGtVkpPM2lH_1VlQeEdEhQoHzQq2eocoZzOx08Ma64t9J-LyTUJhs_uVRLSnJ058_dtmPt6yOIaVo7P08AMntdkjv5XY7Cvn-8fjuuf_r8DCeVEJ-NPFRz0-0bgADtsEw</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Veit, Julia</creator><creator>Hakim, Richard</creator><creator>Jadi, Monika P</creator><creator>Sejnowski, Terrence J</creator><creator>Adesnik, Hillel</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6991-1801</orcidid></search><sort><creationdate>20170701</creationdate><title>Cortical gamma band synchronization through somatostatin interneurons</title><author>Veit, Julia ; Hakim, Richard ; Jadi, Monika P ; Sejnowski, Terrence J ; Adesnik, Hillel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c597t-48f3895f1636d14923292661fbc6d891b3c8e5bce9b1473c1c3e4968cafc0bf33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>631/378/2613/1875</topic><topic>631/378/3917</topic><topic>64/110</topic><topic>64/60</topic><topic>9/10</topic><topic>9/30</topic><topic>9/74</topic><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Behavioral Sciences</topic><topic>Biological Techniques</topic><topic>Biomedicine</topic><topic>Brain</topic><topic>Brain research</topic><topic>Computational neuroscience</topic><topic>Computer networks</topic><topic>Computer Simulation</topic><topic>Cortical Synchronization - physiology</topic><topic>Dendritic structure</topic><topic>Female</topic><topic>Gamma Rhythm - physiology</topic><topic>Information transfer</topic><topic>Interneurons</topic><topic>Interneurons - physiology</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Models, Neurological</topic><topic>Neural circuitry</topic><topic>Neurobiology</topic><topic>Neurons</topic><topic>Neurosciences</topic><topic>Oscillations</topic><topic>Parvalbumin</topic><topic>Photic Stimulation</topic><topic>Properties</topic><topic>Psychological aspects</topic><topic>Rhythm</topic><topic>Somatostatin</topic><topic>Somatostatin - genetics</topic><topic>Somatostatin - physiology</topic><topic>Synchronization</topic><topic>Testing</topic><topic>Visual cortex</topic><topic>Visual Cortex - physiology</topic><topic>γ-Aminobutyric acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Veit, Julia</creatorcontrib><creatorcontrib>Hakim, Richard</creatorcontrib><creatorcontrib>Jadi, Monika P</creatorcontrib><creatorcontrib>Sejnowski, Terrence J</creatorcontrib><creatorcontrib>Adesnik, Hillel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Veit, Julia</au><au>Hakim, Richard</au><au>Jadi, Monika P</au><au>Sejnowski, Terrence J</au><au>Adesnik, Hillel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cortical gamma band synchronization through somatostatin interneurons</atitle><jtitle>Nature neuroscience</jtitle><stitle>Nat Neurosci</stitle><addtitle>Nat Neurosci</addtitle><date>2017-07-01</date><risdate>2017</risdate><volume>20</volume><issue>7</issue><spage>951</spage><epage>959</epage><pages>951-959</pages><issn>1097-6256</issn><eissn>1546-1726</eissn><abstract>The authors establish a critical role for somatostatin interneurons in visually induced gamma oscillations in the primary visual cortex of mice. Optogenetic manipulations in awake animals, combined with an innovative computational model with multiple interneuron subtypes, provide a mechanism for the synchronization of neural firing across the retinotopic map. Gamma band rhythms may synchronize distributed cell assemblies to facilitate information transfer within and across brain areas, yet their underlying mechanisms remain hotly debated. Most circuit models postulate that soma-targeting parvalbumin-positive GABAergic neurons are the essential inhibitory neuron subtype necessary for gamma rhythms. Using cell-type-specific optogenetic manipulations in behaving animals, we show that dendrite-targeting somatostatin (SOM) interneurons are critical for a visually induced, context-dependent gamma rhythm in visual cortex. A computational model independently predicts that context-dependent gamma rhythms depend critically on SOM interneurons. Further in vivo experiments show that SOM neurons are required for long-distance coherence across the visual cortex. Taken together, these data establish an alternative mechanism for synchronizing distributed networks in visual cortex. By operating through dendritic and not just somatic inhibition, SOM-mediated oscillations may expand the computational power of gamma rhythms for optimizing the synthesis and storage of visual perceptions.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>28481348</pmid><doi>10.1038/nn.4562</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6991-1801</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1097-6256
ispartof Nature neuroscience, 2017-07, Vol.20 (7), p.951-959
issn 1097-6256
1546-1726
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5511041
source MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online
subjects 631/378/2613/1875
631/378/3917
64/110
64/60
9/10
9/30
9/74
Animal Genetics and Genomics
Animals
Behavioral Sciences
Biological Techniques
Biomedicine
Brain
Brain research
Computational neuroscience
Computer networks
Computer Simulation
Cortical Synchronization - physiology
Dendritic structure
Female
Gamma Rhythm - physiology
Information transfer
Interneurons
Interneurons - physiology
Male
Mice
Mice, Transgenic
Models, Neurological
Neural circuitry
Neurobiology
Neurons
Neurosciences
Oscillations
Parvalbumin
Photic Stimulation
Properties
Psychological aspects
Rhythm
Somatostatin
Somatostatin - genetics
Somatostatin - physiology
Synchronization
Testing
Visual cortex
Visual Cortex - physiology
γ-Aminobutyric acid
title Cortical gamma band synchronization through somatostatin interneurons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T23%3A46%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cortical%20gamma%20band%20synchronization%20through%20somatostatin%20interneurons&rft.jtitle=Nature%20neuroscience&rft.au=Veit,%20Julia&rft.date=2017-07-01&rft.volume=20&rft.issue=7&rft.spage=951&rft.epage=959&rft.pages=951-959&rft.issn=1097-6256&rft.eissn=1546-1726&rft_id=info:doi/10.1038/nn.4562&rft_dat=%3Cgale_pubme%3EA497045188%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1917968329&rft_id=info:pmid/28481348&rft_galeid=A497045188&rfr_iscdi=true