A Three-Dimensional Computational Human Head Model That Captures Live Human Brain Dynamics
Diffuse axonal injury (DAI) is a debilitating consequence of traumatic brain injury (TBI) attributed to abnormal stretching of axons caused by blunt head trauma or acceleration of the head. We developed an anatomically accurate, subject-specific, three-dimensional (3D) computational model of the hum...
Gespeichert in:
Veröffentlicht in: | Journal of neurotrauma 2017-07, Vol.34 (13), p.2154-2166 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2166 |
---|---|
container_issue | 13 |
container_start_page | 2154 |
container_title | Journal of neurotrauma |
container_volume | 34 |
creator | Ganpule, Shailesh Daphalapurkar, Nitin P Ramesh, Kaliat T Knutsen, Andrew K Pham, Dzung L Bayly, Philip V Prince, Jerry L |
description | Diffuse axonal injury (DAI) is a debilitating consequence of traumatic brain injury (TBI) attributed to abnormal stretching of axons caused by blunt head trauma or acceleration of the head. We developed an anatomically accurate, subject-specific, three-dimensional (3D) computational model of the human brain, and used it to study the dynamic deformations in the substructures of the brain when the head is subjected to rotational accelerations. The computational head models use anatomy and morphology of the white matter fibers obtained using MRI. Subject-specific full-field shearing motions in live human brains obtained through a recently developed tagged MRI imaging technique are then used to validate the models by comparing the measured and predicted heterogeneous dynamic mechanical response of the brain. These results are used to elucidate the dynamics of local shearing deformations in the brain substructures caused by rotational acceleration of the head. Our work demonstrates that the rotational dynamics of the brain has a timescale of ∼100 ms as determined by the shearing wave speeds, and thus the injuries associated with rotational accelerations likely occur over these time scales. After subject-specific validation using the live human subject data, a representative subject-specific head model is used to simulate a real life scenario that resulted in a concussive injury. Results suggest that regions of the brain, in the form of a toroid, encompassing the white matter, the cortical gray matter, and outer parts of the limbic system have a higher susceptibility to injury under axial rotations of the head. |
doi_str_mv | 10.1089/neu.2016.4744 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5510681</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1914634794</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-a72bf860272a64e17d3659d7478d21e62f133e6529856df858877ef8be52dba63</originalsourceid><addsrcrecordid>eNpdkU1vEzEQhi1ERUPgyBWtxIXLph5_7wWpTYEgpeqlXLhYzu4sdbVrB3u3Uv89jhIq4GBZ1jx-NTMPIe-AroCa5iLgvGIU1EpoIV6QBUip64YK9pIsSl3XGiSck9c5P1AKXDH9ipwzwxvBqFyQH5fV3X1CrK_9iCH7GNxQreO4nyc3HV-beXSh2qDrqpvY4VA-uKlau_00J8zV1j_iiblKzofq-im40bf5DTnr3ZDx7eleku9fPt-tN_X29uu39eW2bgXIqXaa7XqjKNPMKYGgO65k02mhTccAFeuBc1SSNUaqrjfSGK2xNzuUrNs5xZfk0zF3P-9G7FoMU3KD3Sc_uvRko_P230rw9_ZnfLRSAlUGSsDHU0CKv2bMkx19bnEYXMA4ZwvGKC44lLMkH_5DH-KcypYK1YAomG4OVH2k2hRzTtg_NwPUHqzZYs0erNmDtcK__3uCZ_qPJv4bT6aSVg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1914634794</pqid></control><display><type>article</type><title>A Three-Dimensional Computational Human Head Model That Captures Live Human Brain Dynamics</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Ganpule, Shailesh ; Daphalapurkar, Nitin P ; Ramesh, Kaliat T ; Knutsen, Andrew K ; Pham, Dzung L ; Bayly, Philip V ; Prince, Jerry L</creator><creatorcontrib>Ganpule, Shailesh ; Daphalapurkar, Nitin P ; Ramesh, Kaliat T ; Knutsen, Andrew K ; Pham, Dzung L ; Bayly, Philip V ; Prince, Jerry L</creatorcontrib><description>Diffuse axonal injury (DAI) is a debilitating consequence of traumatic brain injury (TBI) attributed to abnormal stretching of axons caused by blunt head trauma or acceleration of the head. We developed an anatomically accurate, subject-specific, three-dimensional (3D) computational model of the human brain, and used it to study the dynamic deformations in the substructures of the brain when the head is subjected to rotational accelerations. The computational head models use anatomy and morphology of the white matter fibers obtained using MRI. Subject-specific full-field shearing motions in live human brains obtained through a recently developed tagged MRI imaging technique are then used to validate the models by comparing the measured and predicted heterogeneous dynamic mechanical response of the brain. These results are used to elucidate the dynamics of local shearing deformations in the brain substructures caused by rotational acceleration of the head. Our work demonstrates that the rotational dynamics of the brain has a timescale of ∼100 ms as determined by the shearing wave speeds, and thus the injuries associated with rotational accelerations likely occur over these time scales. After subject-specific validation using the live human subject data, a representative subject-specific head model is used to simulate a real life scenario that resulted in a concussive injury. Results suggest that regions of the brain, in the form of a toroid, encompassing the white matter, the cortical gray matter, and outer parts of the limbic system have a higher susceptibility to injury under axial rotations of the head.</description><identifier>ISSN: 0897-7151</identifier><identifier>EISSN: 1557-9042</identifier><identifier>DOI: 10.1089/neu.2016.4744</identifier><identifier>PMID: 28394205</identifier><language>eng</language><publisher>United States: Mary Ann Liebert, Inc</publisher><subject>Anatomy ; Axons ; Brain - anatomy & histology ; Brain - diagnostic imaging ; Brain - physiology ; Computational neuroscience ; Concussion ; Cortex ; Diffuse Axonal Injury - diagnostic imaging ; Diffuse Axonal Injury - physiopathology ; Fibers ; Head ; Head - anatomy & histology ; Head - diagnostic imaging ; Head - physiology ; Humans ; Limbic system ; Magnetic Resonance Imaging ; Models, Biological ; Neurobiology ; Neuroimaging ; Original ; Rotation ; Substantia alba ; Substantia grisea ; Three dimensional imaging ; Traumatic brain injury ; White Matter - diagnostic imaging ; White Matter - injuries ; White Matter - physiopathology</subject><ispartof>Journal of neurotrauma, 2017-07, Vol.34 (13), p.2154-2166</ispartof><rights>(©) Copyright 2017, Mary Ann Liebert, Inc.</rights><rights>Copyright 2017, Mary Ann Liebert, Inc. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-a72bf860272a64e17d3659d7478d21e62f133e6529856df858877ef8be52dba63</citedby><cites>FETCH-LOGICAL-c415t-a72bf860272a64e17d3659d7478d21e62f133e6529856df858877ef8be52dba63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28394205$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ganpule, Shailesh</creatorcontrib><creatorcontrib>Daphalapurkar, Nitin P</creatorcontrib><creatorcontrib>Ramesh, Kaliat T</creatorcontrib><creatorcontrib>Knutsen, Andrew K</creatorcontrib><creatorcontrib>Pham, Dzung L</creatorcontrib><creatorcontrib>Bayly, Philip V</creatorcontrib><creatorcontrib>Prince, Jerry L</creatorcontrib><title>A Three-Dimensional Computational Human Head Model That Captures Live Human Brain Dynamics</title><title>Journal of neurotrauma</title><addtitle>J Neurotrauma</addtitle><description>Diffuse axonal injury (DAI) is a debilitating consequence of traumatic brain injury (TBI) attributed to abnormal stretching of axons caused by blunt head trauma or acceleration of the head. We developed an anatomically accurate, subject-specific, three-dimensional (3D) computational model of the human brain, and used it to study the dynamic deformations in the substructures of the brain when the head is subjected to rotational accelerations. The computational head models use anatomy and morphology of the white matter fibers obtained using MRI. Subject-specific full-field shearing motions in live human brains obtained through a recently developed tagged MRI imaging technique are then used to validate the models by comparing the measured and predicted heterogeneous dynamic mechanical response of the brain. These results are used to elucidate the dynamics of local shearing deformations in the brain substructures caused by rotational acceleration of the head. Our work demonstrates that the rotational dynamics of the brain has a timescale of ∼100 ms as determined by the shearing wave speeds, and thus the injuries associated with rotational accelerations likely occur over these time scales. After subject-specific validation using the live human subject data, a representative subject-specific head model is used to simulate a real life scenario that resulted in a concussive injury. Results suggest that regions of the brain, in the form of a toroid, encompassing the white matter, the cortical gray matter, and outer parts of the limbic system have a higher susceptibility to injury under axial rotations of the head.</description><subject>Anatomy</subject><subject>Axons</subject><subject>Brain - anatomy & histology</subject><subject>Brain - diagnostic imaging</subject><subject>Brain - physiology</subject><subject>Computational neuroscience</subject><subject>Concussion</subject><subject>Cortex</subject><subject>Diffuse Axonal Injury - diagnostic imaging</subject><subject>Diffuse Axonal Injury - physiopathology</subject><subject>Fibers</subject><subject>Head</subject><subject>Head - anatomy & histology</subject><subject>Head - diagnostic imaging</subject><subject>Head - physiology</subject><subject>Humans</subject><subject>Limbic system</subject><subject>Magnetic Resonance Imaging</subject><subject>Models, Biological</subject><subject>Neurobiology</subject><subject>Neuroimaging</subject><subject>Original</subject><subject>Rotation</subject><subject>Substantia alba</subject><subject>Substantia grisea</subject><subject>Three dimensional imaging</subject><subject>Traumatic brain injury</subject><subject>White Matter - diagnostic imaging</subject><subject>White Matter - injuries</subject><subject>White Matter - physiopathology</subject><issn>0897-7151</issn><issn>1557-9042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkU1vEzEQhi1ERUPgyBWtxIXLph5_7wWpTYEgpeqlXLhYzu4sdbVrB3u3Uv89jhIq4GBZ1jx-NTMPIe-AroCa5iLgvGIU1EpoIV6QBUip64YK9pIsSl3XGiSck9c5P1AKXDH9ipwzwxvBqFyQH5fV3X1CrK_9iCH7GNxQreO4nyc3HV-beXSh2qDrqpvY4VA-uKlau_00J8zV1j_iiblKzofq-im40bf5DTnr3ZDx7eleku9fPt-tN_X29uu39eW2bgXIqXaa7XqjKNPMKYGgO65k02mhTccAFeuBc1SSNUaqrjfSGK2xNzuUrNs5xZfk0zF3P-9G7FoMU3KD3Sc_uvRko_P230rw9_ZnfLRSAlUGSsDHU0CKv2bMkx19bnEYXMA4ZwvGKC44lLMkH_5DH-KcypYK1YAomG4OVH2k2hRzTtg_NwPUHqzZYs0erNmDtcK__3uCZ_qPJv4bT6aSVg</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Ganpule, Shailesh</creator><creator>Daphalapurkar, Nitin P</creator><creator>Ramesh, Kaliat T</creator><creator>Knutsen, Andrew K</creator><creator>Pham, Dzung L</creator><creator>Bayly, Philip V</creator><creator>Prince, Jerry L</creator><general>Mary Ann Liebert, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170701</creationdate><title>A Three-Dimensional Computational Human Head Model That Captures Live Human Brain Dynamics</title><author>Ganpule, Shailesh ; Daphalapurkar, Nitin P ; Ramesh, Kaliat T ; Knutsen, Andrew K ; Pham, Dzung L ; Bayly, Philip V ; Prince, Jerry L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-a72bf860272a64e17d3659d7478d21e62f133e6529856df858877ef8be52dba63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Anatomy</topic><topic>Axons</topic><topic>Brain - anatomy & histology</topic><topic>Brain - diagnostic imaging</topic><topic>Brain - physiology</topic><topic>Computational neuroscience</topic><topic>Concussion</topic><topic>Cortex</topic><topic>Diffuse Axonal Injury - diagnostic imaging</topic><topic>Diffuse Axonal Injury - physiopathology</topic><topic>Fibers</topic><topic>Head</topic><topic>Head - anatomy & histology</topic><topic>Head - diagnostic imaging</topic><topic>Head - physiology</topic><topic>Humans</topic><topic>Limbic system</topic><topic>Magnetic Resonance Imaging</topic><topic>Models, Biological</topic><topic>Neurobiology</topic><topic>Neuroimaging</topic><topic>Original</topic><topic>Rotation</topic><topic>Substantia alba</topic><topic>Substantia grisea</topic><topic>Three dimensional imaging</topic><topic>Traumatic brain injury</topic><topic>White Matter - diagnostic imaging</topic><topic>White Matter - injuries</topic><topic>White Matter - physiopathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ganpule, Shailesh</creatorcontrib><creatorcontrib>Daphalapurkar, Nitin P</creatorcontrib><creatorcontrib>Ramesh, Kaliat T</creatorcontrib><creatorcontrib>Knutsen, Andrew K</creatorcontrib><creatorcontrib>Pham, Dzung L</creatorcontrib><creatorcontrib>Bayly, Philip V</creatorcontrib><creatorcontrib>Prince, Jerry L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of neurotrauma</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ganpule, Shailesh</au><au>Daphalapurkar, Nitin P</au><au>Ramesh, Kaliat T</au><au>Knutsen, Andrew K</au><au>Pham, Dzung L</au><au>Bayly, Philip V</au><au>Prince, Jerry L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Three-Dimensional Computational Human Head Model That Captures Live Human Brain Dynamics</atitle><jtitle>Journal of neurotrauma</jtitle><addtitle>J Neurotrauma</addtitle><date>2017-07-01</date><risdate>2017</risdate><volume>34</volume><issue>13</issue><spage>2154</spage><epage>2166</epage><pages>2154-2166</pages><issn>0897-7151</issn><eissn>1557-9042</eissn><abstract>Diffuse axonal injury (DAI) is a debilitating consequence of traumatic brain injury (TBI) attributed to abnormal stretching of axons caused by blunt head trauma or acceleration of the head. We developed an anatomically accurate, subject-specific, three-dimensional (3D) computational model of the human brain, and used it to study the dynamic deformations in the substructures of the brain when the head is subjected to rotational accelerations. The computational head models use anatomy and morphology of the white matter fibers obtained using MRI. Subject-specific full-field shearing motions in live human brains obtained through a recently developed tagged MRI imaging technique are then used to validate the models by comparing the measured and predicted heterogeneous dynamic mechanical response of the brain. These results are used to elucidate the dynamics of local shearing deformations in the brain substructures caused by rotational acceleration of the head. Our work demonstrates that the rotational dynamics of the brain has a timescale of ∼100 ms as determined by the shearing wave speeds, and thus the injuries associated with rotational accelerations likely occur over these time scales. After subject-specific validation using the live human subject data, a representative subject-specific head model is used to simulate a real life scenario that resulted in a concussive injury. Results suggest that regions of the brain, in the form of a toroid, encompassing the white matter, the cortical gray matter, and outer parts of the limbic system have a higher susceptibility to injury under axial rotations of the head.</abstract><cop>United States</cop><pub>Mary Ann Liebert, Inc</pub><pmid>28394205</pmid><doi>10.1089/neu.2016.4744</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0897-7151 |
ispartof | Journal of neurotrauma, 2017-07, Vol.34 (13), p.2154-2166 |
issn | 0897-7151 1557-9042 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5510681 |
source | MEDLINE; Alma/SFX Local Collection |
subjects | Anatomy Axons Brain - anatomy & histology Brain - diagnostic imaging Brain - physiology Computational neuroscience Concussion Cortex Diffuse Axonal Injury - diagnostic imaging Diffuse Axonal Injury - physiopathology Fibers Head Head - anatomy & histology Head - diagnostic imaging Head - physiology Humans Limbic system Magnetic Resonance Imaging Models, Biological Neurobiology Neuroimaging Original Rotation Substantia alba Substantia grisea Three dimensional imaging Traumatic brain injury White Matter - diagnostic imaging White Matter - injuries White Matter - physiopathology |
title | A Three-Dimensional Computational Human Head Model That Captures Live Human Brain Dynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T05%3A07%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Three-Dimensional%20Computational%20Human%20Head%20Model%20That%20Captures%20Live%20Human%20Brain%20Dynamics&rft.jtitle=Journal%20of%20neurotrauma&rft.au=Ganpule,%20Shailesh&rft.date=2017-07-01&rft.volume=34&rft.issue=13&rft.spage=2154&rft.epage=2166&rft.pages=2154-2166&rft.issn=0897-7151&rft.eissn=1557-9042&rft_id=info:doi/10.1089/neu.2016.4744&rft_dat=%3Cproquest_pubme%3E1914634794%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1914634794&rft_id=info:pmid/28394205&rfr_iscdi=true |