A Three-Dimensional Computational Human Head Model That Captures Live Human Brain Dynamics

Diffuse axonal injury (DAI) is a debilitating consequence of traumatic brain injury (TBI) attributed to abnormal stretching of axons caused by blunt head trauma or acceleration of the head. We developed an anatomically accurate, subject-specific, three-dimensional (3D) computational model of the hum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neurotrauma 2017-07, Vol.34 (13), p.2154-2166
Hauptverfasser: Ganpule, Shailesh, Daphalapurkar, Nitin P, Ramesh, Kaliat T, Knutsen, Andrew K, Pham, Dzung L, Bayly, Philip V, Prince, Jerry L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2166
container_issue 13
container_start_page 2154
container_title Journal of neurotrauma
container_volume 34
creator Ganpule, Shailesh
Daphalapurkar, Nitin P
Ramesh, Kaliat T
Knutsen, Andrew K
Pham, Dzung L
Bayly, Philip V
Prince, Jerry L
description Diffuse axonal injury (DAI) is a debilitating consequence of traumatic brain injury (TBI) attributed to abnormal stretching of axons caused by blunt head trauma or acceleration of the head. We developed an anatomically accurate, subject-specific, three-dimensional (3D) computational model of the human brain, and used it to study the dynamic deformations in the substructures of the brain when the head is subjected to rotational accelerations. The computational head models use anatomy and morphology of the white matter fibers obtained using MRI. Subject-specific full-field shearing motions in live human brains obtained through a recently developed tagged MRI imaging technique are then used to validate the models by comparing the measured and predicted heterogeneous dynamic mechanical response of the brain. These results are used to elucidate the dynamics of local shearing deformations in the brain substructures caused by rotational acceleration of the head. Our work demonstrates that the rotational dynamics of the brain has a timescale of ∼100 ms as determined by the shearing wave speeds, and thus the injuries associated with rotational accelerations likely occur over these time scales. After subject-specific validation using the live human subject data, a representative subject-specific head model is used to simulate a real life scenario that resulted in a concussive injury. Results suggest that regions of the brain, in the form of a toroid, encompassing the white matter, the cortical gray matter, and outer parts of the limbic system have a higher susceptibility to injury under axial rotations of the head.
doi_str_mv 10.1089/neu.2016.4744
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5510681</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1914634794</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-a72bf860272a64e17d3659d7478d21e62f133e6529856df858877ef8be52dba63</originalsourceid><addsrcrecordid>eNpdkU1vEzEQhi1ERUPgyBWtxIXLph5_7wWpTYEgpeqlXLhYzu4sdbVrB3u3Uv89jhIq4GBZ1jx-NTMPIe-AroCa5iLgvGIU1EpoIV6QBUip64YK9pIsSl3XGiSck9c5P1AKXDH9ipwzwxvBqFyQH5fV3X1CrK_9iCH7GNxQreO4nyc3HV-beXSh2qDrqpvY4VA-uKlau_00J8zV1j_iiblKzofq-im40bf5DTnr3ZDx7eleku9fPt-tN_X29uu39eW2bgXIqXaa7XqjKNPMKYGgO65k02mhTccAFeuBc1SSNUaqrjfSGK2xNzuUrNs5xZfk0zF3P-9G7FoMU3KD3Sc_uvRko_P230rw9_ZnfLRSAlUGSsDHU0CKv2bMkx19bnEYXMA4ZwvGKC44lLMkH_5DH-KcypYK1YAomG4OVH2k2hRzTtg_NwPUHqzZYs0erNmDtcK__3uCZ_qPJv4bT6aSVg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1914634794</pqid></control><display><type>article</type><title>A Three-Dimensional Computational Human Head Model That Captures Live Human Brain Dynamics</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Ganpule, Shailesh ; Daphalapurkar, Nitin P ; Ramesh, Kaliat T ; Knutsen, Andrew K ; Pham, Dzung L ; Bayly, Philip V ; Prince, Jerry L</creator><creatorcontrib>Ganpule, Shailesh ; Daphalapurkar, Nitin P ; Ramesh, Kaliat T ; Knutsen, Andrew K ; Pham, Dzung L ; Bayly, Philip V ; Prince, Jerry L</creatorcontrib><description>Diffuse axonal injury (DAI) is a debilitating consequence of traumatic brain injury (TBI) attributed to abnormal stretching of axons caused by blunt head trauma or acceleration of the head. We developed an anatomically accurate, subject-specific, three-dimensional (3D) computational model of the human brain, and used it to study the dynamic deformations in the substructures of the brain when the head is subjected to rotational accelerations. The computational head models use anatomy and morphology of the white matter fibers obtained using MRI. Subject-specific full-field shearing motions in live human brains obtained through a recently developed tagged MRI imaging technique are then used to validate the models by comparing the measured and predicted heterogeneous dynamic mechanical response of the brain. These results are used to elucidate the dynamics of local shearing deformations in the brain substructures caused by rotational acceleration of the head. Our work demonstrates that the rotational dynamics of the brain has a timescale of ∼100 ms as determined by the shearing wave speeds, and thus the injuries associated with rotational accelerations likely occur over these time scales. After subject-specific validation using the live human subject data, a representative subject-specific head model is used to simulate a real life scenario that resulted in a concussive injury. Results suggest that regions of the brain, in the form of a toroid, encompassing the white matter, the cortical gray matter, and outer parts of the limbic system have a higher susceptibility to injury under axial rotations of the head.</description><identifier>ISSN: 0897-7151</identifier><identifier>EISSN: 1557-9042</identifier><identifier>DOI: 10.1089/neu.2016.4744</identifier><identifier>PMID: 28394205</identifier><language>eng</language><publisher>United States: Mary Ann Liebert, Inc</publisher><subject>Anatomy ; Axons ; Brain - anatomy &amp; histology ; Brain - diagnostic imaging ; Brain - physiology ; Computational neuroscience ; Concussion ; Cortex ; Diffuse Axonal Injury - diagnostic imaging ; Diffuse Axonal Injury - physiopathology ; Fibers ; Head ; Head - anatomy &amp; histology ; Head - diagnostic imaging ; Head - physiology ; Humans ; Limbic system ; Magnetic Resonance Imaging ; Models, Biological ; Neurobiology ; Neuroimaging ; Original ; Rotation ; Substantia alba ; Substantia grisea ; Three dimensional imaging ; Traumatic brain injury ; White Matter - diagnostic imaging ; White Matter - injuries ; White Matter - physiopathology</subject><ispartof>Journal of neurotrauma, 2017-07, Vol.34 (13), p.2154-2166</ispartof><rights>(©) Copyright 2017, Mary Ann Liebert, Inc.</rights><rights>Copyright 2017, Mary Ann Liebert, Inc. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-a72bf860272a64e17d3659d7478d21e62f133e6529856df858877ef8be52dba63</citedby><cites>FETCH-LOGICAL-c415t-a72bf860272a64e17d3659d7478d21e62f133e6529856df858877ef8be52dba63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28394205$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ganpule, Shailesh</creatorcontrib><creatorcontrib>Daphalapurkar, Nitin P</creatorcontrib><creatorcontrib>Ramesh, Kaliat T</creatorcontrib><creatorcontrib>Knutsen, Andrew K</creatorcontrib><creatorcontrib>Pham, Dzung L</creatorcontrib><creatorcontrib>Bayly, Philip V</creatorcontrib><creatorcontrib>Prince, Jerry L</creatorcontrib><title>A Three-Dimensional Computational Human Head Model That Captures Live Human Brain Dynamics</title><title>Journal of neurotrauma</title><addtitle>J Neurotrauma</addtitle><description>Diffuse axonal injury (DAI) is a debilitating consequence of traumatic brain injury (TBI) attributed to abnormal stretching of axons caused by blunt head trauma or acceleration of the head. We developed an anatomically accurate, subject-specific, three-dimensional (3D) computational model of the human brain, and used it to study the dynamic deformations in the substructures of the brain when the head is subjected to rotational accelerations. The computational head models use anatomy and morphology of the white matter fibers obtained using MRI. Subject-specific full-field shearing motions in live human brains obtained through a recently developed tagged MRI imaging technique are then used to validate the models by comparing the measured and predicted heterogeneous dynamic mechanical response of the brain. These results are used to elucidate the dynamics of local shearing deformations in the brain substructures caused by rotational acceleration of the head. Our work demonstrates that the rotational dynamics of the brain has a timescale of ∼100 ms as determined by the shearing wave speeds, and thus the injuries associated with rotational accelerations likely occur over these time scales. After subject-specific validation using the live human subject data, a representative subject-specific head model is used to simulate a real life scenario that resulted in a concussive injury. Results suggest that regions of the brain, in the form of a toroid, encompassing the white matter, the cortical gray matter, and outer parts of the limbic system have a higher susceptibility to injury under axial rotations of the head.</description><subject>Anatomy</subject><subject>Axons</subject><subject>Brain - anatomy &amp; histology</subject><subject>Brain - diagnostic imaging</subject><subject>Brain - physiology</subject><subject>Computational neuroscience</subject><subject>Concussion</subject><subject>Cortex</subject><subject>Diffuse Axonal Injury - diagnostic imaging</subject><subject>Diffuse Axonal Injury - physiopathology</subject><subject>Fibers</subject><subject>Head</subject><subject>Head - anatomy &amp; histology</subject><subject>Head - diagnostic imaging</subject><subject>Head - physiology</subject><subject>Humans</subject><subject>Limbic system</subject><subject>Magnetic Resonance Imaging</subject><subject>Models, Biological</subject><subject>Neurobiology</subject><subject>Neuroimaging</subject><subject>Original</subject><subject>Rotation</subject><subject>Substantia alba</subject><subject>Substantia grisea</subject><subject>Three dimensional imaging</subject><subject>Traumatic brain injury</subject><subject>White Matter - diagnostic imaging</subject><subject>White Matter - injuries</subject><subject>White Matter - physiopathology</subject><issn>0897-7151</issn><issn>1557-9042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkU1vEzEQhi1ERUPgyBWtxIXLph5_7wWpTYEgpeqlXLhYzu4sdbVrB3u3Uv89jhIq4GBZ1jx-NTMPIe-AroCa5iLgvGIU1EpoIV6QBUip64YK9pIsSl3XGiSck9c5P1AKXDH9ipwzwxvBqFyQH5fV3X1CrK_9iCH7GNxQreO4nyc3HV-beXSh2qDrqpvY4VA-uKlau_00J8zV1j_iiblKzofq-im40bf5DTnr3ZDx7eleku9fPt-tN_X29uu39eW2bgXIqXaa7XqjKNPMKYGgO65k02mhTccAFeuBc1SSNUaqrjfSGK2xNzuUrNs5xZfk0zF3P-9G7FoMU3KD3Sc_uvRko_P230rw9_ZnfLRSAlUGSsDHU0CKv2bMkx19bnEYXMA4ZwvGKC44lLMkH_5DH-KcypYK1YAomG4OVH2k2hRzTtg_NwPUHqzZYs0erNmDtcK__3uCZ_qPJv4bT6aSVg</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Ganpule, Shailesh</creator><creator>Daphalapurkar, Nitin P</creator><creator>Ramesh, Kaliat T</creator><creator>Knutsen, Andrew K</creator><creator>Pham, Dzung L</creator><creator>Bayly, Philip V</creator><creator>Prince, Jerry L</creator><general>Mary Ann Liebert, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170701</creationdate><title>A Three-Dimensional Computational Human Head Model That Captures Live Human Brain Dynamics</title><author>Ganpule, Shailesh ; Daphalapurkar, Nitin P ; Ramesh, Kaliat T ; Knutsen, Andrew K ; Pham, Dzung L ; Bayly, Philip V ; Prince, Jerry L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-a72bf860272a64e17d3659d7478d21e62f133e6529856df858877ef8be52dba63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Anatomy</topic><topic>Axons</topic><topic>Brain - anatomy &amp; histology</topic><topic>Brain - diagnostic imaging</topic><topic>Brain - physiology</topic><topic>Computational neuroscience</topic><topic>Concussion</topic><topic>Cortex</topic><topic>Diffuse Axonal Injury - diagnostic imaging</topic><topic>Diffuse Axonal Injury - physiopathology</topic><topic>Fibers</topic><topic>Head</topic><topic>Head - anatomy &amp; histology</topic><topic>Head - diagnostic imaging</topic><topic>Head - physiology</topic><topic>Humans</topic><topic>Limbic system</topic><topic>Magnetic Resonance Imaging</topic><topic>Models, Biological</topic><topic>Neurobiology</topic><topic>Neuroimaging</topic><topic>Original</topic><topic>Rotation</topic><topic>Substantia alba</topic><topic>Substantia grisea</topic><topic>Three dimensional imaging</topic><topic>Traumatic brain injury</topic><topic>White Matter - diagnostic imaging</topic><topic>White Matter - injuries</topic><topic>White Matter - physiopathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ganpule, Shailesh</creatorcontrib><creatorcontrib>Daphalapurkar, Nitin P</creatorcontrib><creatorcontrib>Ramesh, Kaliat T</creatorcontrib><creatorcontrib>Knutsen, Andrew K</creatorcontrib><creatorcontrib>Pham, Dzung L</creatorcontrib><creatorcontrib>Bayly, Philip V</creatorcontrib><creatorcontrib>Prince, Jerry L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of neurotrauma</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ganpule, Shailesh</au><au>Daphalapurkar, Nitin P</au><au>Ramesh, Kaliat T</au><au>Knutsen, Andrew K</au><au>Pham, Dzung L</au><au>Bayly, Philip V</au><au>Prince, Jerry L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Three-Dimensional Computational Human Head Model That Captures Live Human Brain Dynamics</atitle><jtitle>Journal of neurotrauma</jtitle><addtitle>J Neurotrauma</addtitle><date>2017-07-01</date><risdate>2017</risdate><volume>34</volume><issue>13</issue><spage>2154</spage><epage>2166</epage><pages>2154-2166</pages><issn>0897-7151</issn><eissn>1557-9042</eissn><abstract>Diffuse axonal injury (DAI) is a debilitating consequence of traumatic brain injury (TBI) attributed to abnormal stretching of axons caused by blunt head trauma or acceleration of the head. We developed an anatomically accurate, subject-specific, three-dimensional (3D) computational model of the human brain, and used it to study the dynamic deformations in the substructures of the brain when the head is subjected to rotational accelerations. The computational head models use anatomy and morphology of the white matter fibers obtained using MRI. Subject-specific full-field shearing motions in live human brains obtained through a recently developed tagged MRI imaging technique are then used to validate the models by comparing the measured and predicted heterogeneous dynamic mechanical response of the brain. These results are used to elucidate the dynamics of local shearing deformations in the brain substructures caused by rotational acceleration of the head. Our work demonstrates that the rotational dynamics of the brain has a timescale of ∼100 ms as determined by the shearing wave speeds, and thus the injuries associated with rotational accelerations likely occur over these time scales. After subject-specific validation using the live human subject data, a representative subject-specific head model is used to simulate a real life scenario that resulted in a concussive injury. Results suggest that regions of the brain, in the form of a toroid, encompassing the white matter, the cortical gray matter, and outer parts of the limbic system have a higher susceptibility to injury under axial rotations of the head.</abstract><cop>United States</cop><pub>Mary Ann Liebert, Inc</pub><pmid>28394205</pmid><doi>10.1089/neu.2016.4744</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0897-7151
ispartof Journal of neurotrauma, 2017-07, Vol.34 (13), p.2154-2166
issn 0897-7151
1557-9042
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5510681
source MEDLINE; Alma/SFX Local Collection
subjects Anatomy
Axons
Brain - anatomy & histology
Brain - diagnostic imaging
Brain - physiology
Computational neuroscience
Concussion
Cortex
Diffuse Axonal Injury - diagnostic imaging
Diffuse Axonal Injury - physiopathology
Fibers
Head
Head - anatomy & histology
Head - diagnostic imaging
Head - physiology
Humans
Limbic system
Magnetic Resonance Imaging
Models, Biological
Neurobiology
Neuroimaging
Original
Rotation
Substantia alba
Substantia grisea
Three dimensional imaging
Traumatic brain injury
White Matter - diagnostic imaging
White Matter - injuries
White Matter - physiopathology
title A Three-Dimensional Computational Human Head Model That Captures Live Human Brain Dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T05%3A07%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Three-Dimensional%20Computational%20Human%20Head%20Model%20That%20Captures%20Live%20Human%20Brain%20Dynamics&rft.jtitle=Journal%20of%20neurotrauma&rft.au=Ganpule,%20Shailesh&rft.date=2017-07-01&rft.volume=34&rft.issue=13&rft.spage=2154&rft.epage=2166&rft.pages=2154-2166&rft.issn=0897-7151&rft.eissn=1557-9042&rft_id=info:doi/10.1089/neu.2016.4744&rft_dat=%3Cproquest_pubme%3E1914634794%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1914634794&rft_id=info:pmid/28394205&rfr_iscdi=true