Structure of the Bacillus subtilis hibernating 100S ribosome reveals the basis for 70S dimerization

Under stress conditions, such as nutrient deprivation, bacteria enter into a hibernation stage, which is characterized by the appearance of 100S ribosomal particles. In Escherichia coli , dimerization of 70S ribosomes into 100S requires the action of the ribosome modulation factor (RMF) and the hibe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The EMBO journal 2017-07, Vol.36 (14), p.2061-2072
Hauptverfasser: Beckert, Bertrand, Abdelshahid, Maha, Schäfer, Heinrich, Steinchen, Wieland, Arenz, Stefan, Berninghausen, Otto, Beckmann, Roland, Bange, Gert, Turgay, Kürşad, Wilson, Daniel N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2072
container_issue 14
container_start_page 2061
container_title The EMBO journal
container_volume 36
creator Beckert, Bertrand
Abdelshahid, Maha
Schäfer, Heinrich
Steinchen, Wieland
Arenz, Stefan
Berninghausen, Otto
Beckmann, Roland
Bange, Gert
Turgay, Kürşad
Wilson, Daniel N
description Under stress conditions, such as nutrient deprivation, bacteria enter into a hibernation stage, which is characterized by the appearance of 100S ribosomal particles. In Escherichia coli , dimerization of 70S ribosomes into 100S requires the action of the ribosome modulation factor (RMF) and the hibernation‐promoting factor (HPF). Most other bacteria lack RMF and instead contain a long form HPF (LHPF), which is necessary and sufficient for 100S formation. While some structural information exists as to how RMF and HPF mediate formation of E. coli 100S ( Ec 100S), structural insight into 100S formation by LHPF has so far been lacking. Here we present a cryo‐EM structure of the Bacillus subtilis hibernating 100S ( Bs 100S), revealing that the C‐terminal domain (CTD) of the LHPF occupies a site on the 30S platform distinct from RMF. Moreover, unlike RMF, the Bs HPF‐CTD is directly involved in forming the dimer interface, thereby illustrating the divergent mechanisms by which 100S formation is mediated in the majority of bacteria that contain LHPF, compared to some γ‐proteobacteria, such as E. coli . Synopsis Upon entering stationary phase, bacteria reduce translation by forming inactive 100S ribosome dimers (disomes), held together by the long‐form hibernation promotion factor (LHPF). The structure of B. subtilis 100S in complex with LHPF reveals the basis for disome formation. In stationary phase bacteria, 70S ribosomes dimerize to form inactive 100S ribosomes. 100S formation in most bacteria requires the long‐form hibernation promotion factor (LHPF). The binding site of the N‐terminal domain of LHPF overlaps with mRNA and tRNA preventing active translation on the 100S. The C‐terminal domain of LHPF forms a homodimer that mediates 100S formation. The 70S arrangement in the LHPF induced 100S is distinct from 100S formed by HPF and RMF in Gram‐negative bacteria, such as E. coli . Graphical Abstract The structure of two ribosomes held together by hibernation promotion factor reveals how bacteria form inactive 100S disomes to limit translation when entering stationary phase.
doi_str_mv 10.15252/embj.201696189
format Article
fullrecord <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5509997</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1895273361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5139-ab6a6d22a30d7a3578364a9484ea45de1e7a3aa05502dcbb8f3d4680031acdf93</originalsourceid><addsrcrecordid>eNqFkUtv1DAUhS0EotPCmh2KxIZNWj_iFwskWpVHVcSisLZs52bGoyQudtKq_fV1O2U0VEKsLF1_5-jcexB6Q_Ah4ZTTIxjc-pBiIrQgSj9DC9IIXFMs-XO0wFSQuinzPbSf8xpjzJUkL9EeVY1QkrMF8hdTmv00J6hiV00rqI6tD30_5yrPbgp9yNUqOEijncK4rAjGF1UKLuY4QJXgCmyfH3TO5sJ2MVWyIG0YIIXbIorjK_SiKxS8fnwP0K_Ppz9PvtbnP758O_l0XntOmK6tE1a0lFqGW2kZl4qJxupGNWAb3gKBMrUWc45p651THWvLGhgzYn3baXaAPm58L2c3QOthnJLtzWUKg003Jtpg_v4Zw8os45UpjlprWQzePxqk-HuGPJkhZA99b0eIczblkpxKxgQp6Lsn6DrO5Uh9oTRRUksl7g2PNpRPMecE3TYMweahQHNfoNkWWBRvd3fY8n8aK8CHDXAderj5n585_X58tuuON-JcdOMS0k7qfwS6A-ejuMo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1918797867</pqid></control><display><type>article</type><title>Structure of the Bacillus subtilis hibernating 100S ribosome reveals the basis for 70S dimerization</title><source>Springer Nature OA Free Journals</source><creator>Beckert, Bertrand ; Abdelshahid, Maha ; Schäfer, Heinrich ; Steinchen, Wieland ; Arenz, Stefan ; Berninghausen, Otto ; Beckmann, Roland ; Bange, Gert ; Turgay, Kürşad ; Wilson, Daniel N</creator><creatorcontrib>Beckert, Bertrand ; Abdelshahid, Maha ; Schäfer, Heinrich ; Steinchen, Wieland ; Arenz, Stefan ; Berninghausen, Otto ; Beckmann, Roland ; Bange, Gert ; Turgay, Kürşad ; Wilson, Daniel N</creatorcontrib><description>Under stress conditions, such as nutrient deprivation, bacteria enter into a hibernation stage, which is characterized by the appearance of 100S ribosomal particles. In Escherichia coli , dimerization of 70S ribosomes into 100S requires the action of the ribosome modulation factor (RMF) and the hibernation‐promoting factor (HPF). Most other bacteria lack RMF and instead contain a long form HPF (LHPF), which is necessary and sufficient for 100S formation. While some structural information exists as to how RMF and HPF mediate formation of E. coli 100S ( Ec 100S), structural insight into 100S formation by LHPF has so far been lacking. Here we present a cryo‐EM structure of the Bacillus subtilis hibernating 100S ( Bs 100S), revealing that the C‐terminal domain (CTD) of the LHPF occupies a site on the 30S platform distinct from RMF. Moreover, unlike RMF, the Bs HPF‐CTD is directly involved in forming the dimer interface, thereby illustrating the divergent mechanisms by which 100S formation is mediated in the majority of bacteria that contain LHPF, compared to some γ‐proteobacteria, such as E. coli . Synopsis Upon entering stationary phase, bacteria reduce translation by forming inactive 100S ribosome dimers (disomes), held together by the long‐form hibernation promotion factor (LHPF). The structure of B. subtilis 100S in complex with LHPF reveals the basis for disome formation. In stationary phase bacteria, 70S ribosomes dimerize to form inactive 100S ribosomes. 100S formation in most bacteria requires the long‐form hibernation promotion factor (LHPF). The binding site of the N‐terminal domain of LHPF overlaps with mRNA and tRNA preventing active translation on the 100S. The C‐terminal domain of LHPF forms a homodimer that mediates 100S formation. The 70S arrangement in the LHPF induced 100S is distinct from 100S formed by HPF and RMF in Gram‐negative bacteria, such as E. coli . Graphical Abstract The structure of two ribosomes held together by hibernation promotion factor reveals how bacteria form inactive 100S disomes to limit translation when entering stationary phase.</description><identifier>ISSN: 0261-4189</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.15252/embj.201696189</identifier><identifier>PMID: 28468753</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Bacillus subtilis - metabolism ; Bacillus subtilis - ultrastructure ; Bacteria ; Bacterial Proteins - metabolism ; Binding sites ; Cryoelectron Microscopy ; cryo‐EM ; Deprivation ; Dimerization ; Dimers ; E coli ; EMBO23 ; EMBO32 ; EMBO40 ; Forming ; Gram-negative bacteria ; Heat-Shock Proteins - metabolism ; Hibernation ; HPF ; Models, Molecular ; mRNA ; Promotion ; Protein Binding ; Ribosomes ; Ribosomes - metabolism ; Ribosomes - ultrastructure ; RMF ; Stationary phase ; Translation ; tRNA</subject><ispartof>The EMBO journal, 2017-07, Vol.36 (14), p.2061-2072</ispartof><rights>The Authors 2017</rights><rights>2017 The Authors</rights><rights>2017 The Authors.</rights><rights>2017 EMBO</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5139-ab6a6d22a30d7a3578364a9484ea45de1e7a3aa05502dcbb8f3d4680031acdf93</citedby><cites>FETCH-LOGICAL-c5139-ab6a6d22a30d7a3578364a9484ea45de1e7a3aa05502dcbb8f3d4680031acdf93</cites><orcidid>0000-0002-7826-0932 ; 0000-0002-8959-492X ; 0000-0003-3816-3828</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5509997/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5509997/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,1417,1433,27924,27925,41120,42189,45574,45575,46409,46833,51576,53791,53793</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.15252/embj.201696189$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28468753$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Beckert, Bertrand</creatorcontrib><creatorcontrib>Abdelshahid, Maha</creatorcontrib><creatorcontrib>Schäfer, Heinrich</creatorcontrib><creatorcontrib>Steinchen, Wieland</creatorcontrib><creatorcontrib>Arenz, Stefan</creatorcontrib><creatorcontrib>Berninghausen, Otto</creatorcontrib><creatorcontrib>Beckmann, Roland</creatorcontrib><creatorcontrib>Bange, Gert</creatorcontrib><creatorcontrib>Turgay, Kürşad</creatorcontrib><creatorcontrib>Wilson, Daniel N</creatorcontrib><title>Structure of the Bacillus subtilis hibernating 100S ribosome reveals the basis for 70S dimerization</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>Under stress conditions, such as nutrient deprivation, bacteria enter into a hibernation stage, which is characterized by the appearance of 100S ribosomal particles. In Escherichia coli , dimerization of 70S ribosomes into 100S requires the action of the ribosome modulation factor (RMF) and the hibernation‐promoting factor (HPF). Most other bacteria lack RMF and instead contain a long form HPF (LHPF), which is necessary and sufficient for 100S formation. While some structural information exists as to how RMF and HPF mediate formation of E. coli 100S ( Ec 100S), structural insight into 100S formation by LHPF has so far been lacking. Here we present a cryo‐EM structure of the Bacillus subtilis hibernating 100S ( Bs 100S), revealing that the C‐terminal domain (CTD) of the LHPF occupies a site on the 30S platform distinct from RMF. Moreover, unlike RMF, the Bs HPF‐CTD is directly involved in forming the dimer interface, thereby illustrating the divergent mechanisms by which 100S formation is mediated in the majority of bacteria that contain LHPF, compared to some γ‐proteobacteria, such as E. coli . Synopsis Upon entering stationary phase, bacteria reduce translation by forming inactive 100S ribosome dimers (disomes), held together by the long‐form hibernation promotion factor (LHPF). The structure of B. subtilis 100S in complex with LHPF reveals the basis for disome formation. In stationary phase bacteria, 70S ribosomes dimerize to form inactive 100S ribosomes. 100S formation in most bacteria requires the long‐form hibernation promotion factor (LHPF). The binding site of the N‐terminal domain of LHPF overlaps with mRNA and tRNA preventing active translation on the 100S. The C‐terminal domain of LHPF forms a homodimer that mediates 100S formation. The 70S arrangement in the LHPF induced 100S is distinct from 100S formed by HPF and RMF in Gram‐negative bacteria, such as E. coli . Graphical Abstract The structure of two ribosomes held together by hibernation promotion factor reveals how bacteria form inactive 100S disomes to limit translation when entering stationary phase.</description><subject>Bacillus subtilis - metabolism</subject><subject>Bacillus subtilis - ultrastructure</subject><subject>Bacteria</subject><subject>Bacterial Proteins - metabolism</subject><subject>Binding sites</subject><subject>Cryoelectron Microscopy</subject><subject>cryo‐EM</subject><subject>Deprivation</subject><subject>Dimerization</subject><subject>Dimers</subject><subject>E coli</subject><subject>EMBO23</subject><subject>EMBO32</subject><subject>EMBO40</subject><subject>Forming</subject><subject>Gram-negative bacteria</subject><subject>Heat-Shock Proteins - metabolism</subject><subject>Hibernation</subject><subject>HPF</subject><subject>Models, Molecular</subject><subject>mRNA</subject><subject>Promotion</subject><subject>Protein Binding</subject><subject>Ribosomes</subject><subject>Ribosomes - metabolism</subject><subject>Ribosomes - ultrastructure</subject><subject>RMF</subject><subject>Stationary phase</subject><subject>Translation</subject><subject>tRNA</subject><issn>0261-4189</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtv1DAUhS0EotPCmh2KxIZNWj_iFwskWpVHVcSisLZs52bGoyQudtKq_fV1O2U0VEKsLF1_5-jcexB6Q_Ah4ZTTIxjc-pBiIrQgSj9DC9IIXFMs-XO0wFSQuinzPbSf8xpjzJUkL9EeVY1QkrMF8hdTmv00J6hiV00rqI6tD30_5yrPbgp9yNUqOEijncK4rAjGF1UKLuY4QJXgCmyfH3TO5sJ2MVWyIG0YIIXbIorjK_SiKxS8fnwP0K_Ppz9PvtbnP758O_l0XntOmK6tE1a0lFqGW2kZl4qJxupGNWAb3gKBMrUWc45p651THWvLGhgzYn3baXaAPm58L2c3QOthnJLtzWUKg003Jtpg_v4Zw8os45UpjlprWQzePxqk-HuGPJkhZA99b0eIczblkpxKxgQp6Lsn6DrO5Uh9oTRRUksl7g2PNpRPMecE3TYMweahQHNfoNkWWBRvd3fY8n8aK8CHDXAderj5n585_X58tuuON-JcdOMS0k7qfwS6A-ejuMo</recordid><startdate>20170714</startdate><enddate>20170714</enddate><creator>Beckert, Bertrand</creator><creator>Abdelshahid, Maha</creator><creator>Schäfer, Heinrich</creator><creator>Steinchen, Wieland</creator><creator>Arenz, Stefan</creator><creator>Berninghausen, Otto</creator><creator>Beckmann, Roland</creator><creator>Bange, Gert</creator><creator>Turgay, Kürşad</creator><creator>Wilson, Daniel N</creator><general>Nature Publishing Group UK</general><general>Blackwell Publishing Ltd</general><general>John Wiley and Sons Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7826-0932</orcidid><orcidid>https://orcid.org/0000-0002-8959-492X</orcidid><orcidid>https://orcid.org/0000-0003-3816-3828</orcidid></search><sort><creationdate>20170714</creationdate><title>Structure of the Bacillus subtilis hibernating 100S ribosome reveals the basis for 70S dimerization</title><author>Beckert, Bertrand ; Abdelshahid, Maha ; Schäfer, Heinrich ; Steinchen, Wieland ; Arenz, Stefan ; Berninghausen, Otto ; Beckmann, Roland ; Bange, Gert ; Turgay, Kürşad ; Wilson, Daniel N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5139-ab6a6d22a30d7a3578364a9484ea45de1e7a3aa05502dcbb8f3d4680031acdf93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bacillus subtilis - metabolism</topic><topic>Bacillus subtilis - ultrastructure</topic><topic>Bacteria</topic><topic>Bacterial Proteins - metabolism</topic><topic>Binding sites</topic><topic>Cryoelectron Microscopy</topic><topic>cryo‐EM</topic><topic>Deprivation</topic><topic>Dimerization</topic><topic>Dimers</topic><topic>E coli</topic><topic>EMBO23</topic><topic>EMBO32</topic><topic>EMBO40</topic><topic>Forming</topic><topic>Gram-negative bacteria</topic><topic>Heat-Shock Proteins - metabolism</topic><topic>Hibernation</topic><topic>HPF</topic><topic>Models, Molecular</topic><topic>mRNA</topic><topic>Promotion</topic><topic>Protein Binding</topic><topic>Ribosomes</topic><topic>Ribosomes - metabolism</topic><topic>Ribosomes - ultrastructure</topic><topic>RMF</topic><topic>Stationary phase</topic><topic>Translation</topic><topic>tRNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beckert, Bertrand</creatorcontrib><creatorcontrib>Abdelshahid, Maha</creatorcontrib><creatorcontrib>Schäfer, Heinrich</creatorcontrib><creatorcontrib>Steinchen, Wieland</creatorcontrib><creatorcontrib>Arenz, Stefan</creatorcontrib><creatorcontrib>Berninghausen, Otto</creatorcontrib><creatorcontrib>Beckmann, Roland</creatorcontrib><creatorcontrib>Bange, Gert</creatorcontrib><creatorcontrib>Turgay, Kürşad</creatorcontrib><creatorcontrib>Wilson, Daniel N</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Beckert, Bertrand</au><au>Abdelshahid, Maha</au><au>Schäfer, Heinrich</au><au>Steinchen, Wieland</au><au>Arenz, Stefan</au><au>Berninghausen, Otto</au><au>Beckmann, Roland</au><au>Bange, Gert</au><au>Turgay, Kürşad</au><au>Wilson, Daniel N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure of the Bacillus subtilis hibernating 100S ribosome reveals the basis for 70S dimerization</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2017-07-14</date><risdate>2017</risdate><volume>36</volume><issue>14</issue><spage>2061</spage><epage>2072</epage><pages>2061-2072</pages><issn>0261-4189</issn><eissn>1460-2075</eissn><abstract>Under stress conditions, such as nutrient deprivation, bacteria enter into a hibernation stage, which is characterized by the appearance of 100S ribosomal particles. In Escherichia coli , dimerization of 70S ribosomes into 100S requires the action of the ribosome modulation factor (RMF) and the hibernation‐promoting factor (HPF). Most other bacteria lack RMF and instead contain a long form HPF (LHPF), which is necessary and sufficient for 100S formation. While some structural information exists as to how RMF and HPF mediate formation of E. coli 100S ( Ec 100S), structural insight into 100S formation by LHPF has so far been lacking. Here we present a cryo‐EM structure of the Bacillus subtilis hibernating 100S ( Bs 100S), revealing that the C‐terminal domain (CTD) of the LHPF occupies a site on the 30S platform distinct from RMF. Moreover, unlike RMF, the Bs HPF‐CTD is directly involved in forming the dimer interface, thereby illustrating the divergent mechanisms by which 100S formation is mediated in the majority of bacteria that contain LHPF, compared to some γ‐proteobacteria, such as E. coli . Synopsis Upon entering stationary phase, bacteria reduce translation by forming inactive 100S ribosome dimers (disomes), held together by the long‐form hibernation promotion factor (LHPF). The structure of B. subtilis 100S in complex with LHPF reveals the basis for disome formation. In stationary phase bacteria, 70S ribosomes dimerize to form inactive 100S ribosomes. 100S formation in most bacteria requires the long‐form hibernation promotion factor (LHPF). The binding site of the N‐terminal domain of LHPF overlaps with mRNA and tRNA preventing active translation on the 100S. The C‐terminal domain of LHPF forms a homodimer that mediates 100S formation. The 70S arrangement in the LHPF induced 100S is distinct from 100S formed by HPF and RMF in Gram‐negative bacteria, such as E. coli . Graphical Abstract The structure of two ribosomes held together by hibernation promotion factor reveals how bacteria form inactive 100S disomes to limit translation when entering stationary phase.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28468753</pmid><doi>10.15252/embj.201696189</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7826-0932</orcidid><orcidid>https://orcid.org/0000-0002-8959-492X</orcidid><orcidid>https://orcid.org/0000-0003-3816-3828</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0261-4189
ispartof The EMBO journal, 2017-07, Vol.36 (14), p.2061-2072
issn 0261-4189
1460-2075
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5509997
source Springer Nature OA Free Journals
subjects Bacillus subtilis - metabolism
Bacillus subtilis - ultrastructure
Bacteria
Bacterial Proteins - metabolism
Binding sites
Cryoelectron Microscopy
cryo‐EM
Deprivation
Dimerization
Dimers
E coli
EMBO23
EMBO32
EMBO40
Forming
Gram-negative bacteria
Heat-Shock Proteins - metabolism
Hibernation
HPF
Models, Molecular
mRNA
Promotion
Protein Binding
Ribosomes
Ribosomes - metabolism
Ribosomes - ultrastructure
RMF
Stationary phase
Translation
tRNA
title Structure of the Bacillus subtilis hibernating 100S ribosome reveals the basis for 70S dimerization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-31T00%3A33%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20of%20the%20Bacillus%20subtilis%20hibernating%20100S%20ribosome%20reveals%20the%20basis%20for%2070S%20dimerization&rft.jtitle=The%20EMBO%20journal&rft.au=Beckert,%20Bertrand&rft.date=2017-07-14&rft.volume=36&rft.issue=14&rft.spage=2061&rft.epage=2072&rft.pages=2061-2072&rft.issn=0261-4189&rft.eissn=1460-2075&rft_id=info:doi/10.15252/embj.201696189&rft_dat=%3Cproquest_C6C%3E1895273361%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1918797867&rft_id=info:pmid/28468753&rfr_iscdi=true