Crack Mitigation in Concrete: Superabsorbent Polymers as Key to Success?

Cracking is a major concern in building applications. Cracks may arise from shrinkage, freeze/thawing and/or structural stresses, amongst others. Several solutions can be found but superabsorbent polymers (SAPs) seem to be interesting to counteract these problems. At an early age, the absorbed water...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2017-02, Vol.10 (3), p.237
Hauptverfasser: Mignon, Arn, Snoeck, Didier, Dubruel, Peter, Van Vlierberghe, Sandra, De Belie, Nele
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cracking is a major concern in building applications. Cracks may arise from shrinkage, freeze/thawing and/or structural stresses, amongst others. Several solutions can be found but superabsorbent polymers (SAPs) seem to be interesting to counteract these problems. At an early age, the absorbed water by the SAPs may be used to mitigate autogenous and plastic shrinkage. The formed macro pores may increase the freeze/thaw resistance. The swelling upon water ingress may seal a crack from intruding fluids and may regain the overall water-tightness. The latter water may promote autogenous healing. The use of superabsorbent polymers is thus very interesting. This review paper summarizes the current research and gives a critical note towards the use of superabsorbent polymers in cementitious materials.
ISSN:1996-1944
1996-1944
DOI:10.3390/ma10030237