A Series of Suppressive Signals within the Drosophila Circadian Neural Circuit Generates Sequential Daily Outputs

We studied the Drosophila circadian neural circuit using whole-brain imaging in vivo. Five major groups of pacemaker neurons display synchronized molecular clocks, yet each exhibits a distinct phase of daily Ca2+ activation. Light and neuropeptide pigment dispersing factor (PDF) from morning cells (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuron (Cambridge, Mass.) Mass.), 2017-06, Vol.94 (6), p.1173-1189.e4
Hauptverfasser: Liang, Xitong, Holy, Timothy E., Taghert, Paul H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1189.e4
container_issue 6
container_start_page 1173
container_title Neuron (Cambridge, Mass.)
container_volume 94
creator Liang, Xitong
Holy, Timothy E.
Taghert, Paul H.
description We studied the Drosophila circadian neural circuit using whole-brain imaging in vivo. Five major groups of pacemaker neurons display synchronized molecular clocks, yet each exhibits a distinct phase of daily Ca2+ activation. Light and neuropeptide pigment dispersing factor (PDF) from morning cells (s-LNv) together delay the phase of the evening (LNd) group by ∼12 hr; PDF alone delays the phase of the DN3 group by ∼17 hr. Neuropeptide sNPF, released from s-LNv and LNd pacemakers, produces Ca2+ activation in the DN1 group late in the night. The circuit also features negative feedback by PDF to truncate the s-LNv Ca2+ wave and terminate PDF release. Both PDF and sNPF suppress basal Ca2+ levels in target pacemakers with long durations by cell-autonomous actions. Thus, light and neuropeptides act dynamically at distinct hubs of the circuit to produce multiple suppressive events that create the proper tempo and sequence of circadian pacemaker neuronal activities. •In vivo imaging reveals sequential Ca2+ activity phases in circadian pacemakers•Neuropeptides (PDF and sNPF) help set non-morning activity phases•Light independently sets the daily evening pacemaker activity phase•Ca2+ activity phases are set by hours-long suppression of basal Ca2+ levels Liang et al. record 24-hr Ca2+ activity patterns in all the major circadian pacemaker neurons of the Drosophila brain in vivo. Their results reveal a series of suppressive signals that creates a dynamic and patterned sequence of temporal outputs.
doi_str_mv 10.1016/j.neuron.2017.05.007
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5502710</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627317304087</els_id><sourcerecordid>1903438760</sourcerecordid><originalsourceid>FETCH-LOGICAL-c557t-4686a901f86a0e2fe40dc3fec43d86fd14c4c1ce892c43aa0260ef272a73b2963</originalsourceid><addsrcrecordid>eNp9UU1v1DAQtRCILoV_gJAlLlw2jB3HiS9I1RYKUkUPC2fLdSZdr7J2ajtb9d_jZUv5OHAaaebNm_fmEfKaQcWAyffbyuMcg684sLaCpgJon5AFA9UuBVPqKVlAp-RS8rY-IS9S2gIw0Sj2nJzwrml4zcSC3J7RNUaHiYaBrudpipiS2yNduxtvxkTvXN44T_MG6XkMKUwbNxq6ctGa3hlPvxYRZvzZmF2mF-gxmlz41ng7o8-uDM-NG-_p1ZynOaeX5NlQiPHVQz0l3z99_Lb6vLy8uviyOrtc2qZp81LIThoFbCgFkA8ooLf1gFbUfSeHngkrLLPYKV5axgCXgANvuWnra65kfUo-HHmn-XqHvS1ailA9Rbcz8V4H4_TfE-82-ibsddMAbxkUgncPBDEUKynrnUsWx9F4DHPSTEEt6q6VB-jbf6DbMMfD_wqKcSmVAFVQ4oiy5ZEp4vAohoE-ZKq3-pipPmSqodEl07L25k8jj0u_QvztFMs79w6jTtaht9i7iDbrPrj_X_gBUq-25g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1912669409</pqid></control><display><type>article</type><title>A Series of Suppressive Signals within the Drosophila Circadian Neural Circuit Generates Sequential Daily Outputs</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Liang, Xitong ; Holy, Timothy E. ; Taghert, Paul H.</creator><creatorcontrib>Liang, Xitong ; Holy, Timothy E. ; Taghert, Paul H.</creatorcontrib><description>We studied the Drosophila circadian neural circuit using whole-brain imaging in vivo. Five major groups of pacemaker neurons display synchronized molecular clocks, yet each exhibits a distinct phase of daily Ca2+ activation. Light and neuropeptide pigment dispersing factor (PDF) from morning cells (s-LNv) together delay the phase of the evening (LNd) group by ∼12 hr; PDF alone delays the phase of the DN3 group by ∼17 hr. Neuropeptide sNPF, released from s-LNv and LNd pacemakers, produces Ca2+ activation in the DN1 group late in the night. The circuit also features negative feedback by PDF to truncate the s-LNv Ca2+ wave and terminate PDF release. Both PDF and sNPF suppress basal Ca2+ levels in target pacemakers with long durations by cell-autonomous actions. Thus, light and neuropeptides act dynamically at distinct hubs of the circuit to produce multiple suppressive events that create the proper tempo and sequence of circadian pacemaker neuronal activities. •In vivo imaging reveals sequential Ca2+ activity phases in circadian pacemakers•Neuropeptides (PDF and sNPF) help set non-morning activity phases•Light independently sets the daily evening pacemaker activity phase•Ca2+ activity phases are set by hours-long suppression of basal Ca2+ levels Liang et al. record 24-hr Ca2+ activity patterns in all the major circadian pacemaker neurons of the Drosophila brain in vivo. Their results reveal a series of suppressive signals that creates a dynamic and patterned sequence of temporal outputs.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2017.05.007</identifier><identifier>PMID: 28552314</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Activation ; Animal behavior ; Animals ; Animals, Genetically Modified ; calcium ; Calcium - metabolism ; circadian physiology ; Circadian rhythm ; Circadian Rhythm - genetics ; Circadian rhythms ; Clocks ; Drosophila ; Drosophila Proteins - genetics ; Drosophila Proteins - metabolism ; Feedback ; Feedback, Physiological ; Fruit flies ; Gene expression ; Hubs ; Insects ; Light ; Light levels ; Locomotion ; Models, Theoretical ; modulation ; Negative feedback ; Neuroimaging ; Neurons ; Neurons - metabolism ; Neurons - physiology ; neuropeptide ; Neuropeptides ; Neuropeptides - genetics ; Neuropeptides - metabolism ; Optical Imaging ; Pacemakers ; Photoreceptors ; Rodents ; Wave dispersion</subject><ispartof>Neuron (Cambridge, Mass.), 2017-06, Vol.94 (6), p.1173-1189.e4</ispartof><rights>2017 Elsevier Inc.</rights><rights>Copyright © 2017 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Jun 21, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c557t-4686a901f86a0e2fe40dc3fec43d86fd14c4c1ce892c43aa0260ef272a73b2963</citedby><cites>FETCH-LOGICAL-c557t-4686a901f86a0e2fe40dc3fec43d86fd14c4c1ce892c43aa0260ef272a73b2963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neuron.2017.05.007$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,315,782,786,887,3554,27933,27934,46004</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28552314$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liang, Xitong</creatorcontrib><creatorcontrib>Holy, Timothy E.</creatorcontrib><creatorcontrib>Taghert, Paul H.</creatorcontrib><title>A Series of Suppressive Signals within the Drosophila Circadian Neural Circuit Generates Sequential Daily Outputs</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>We studied the Drosophila circadian neural circuit using whole-brain imaging in vivo. Five major groups of pacemaker neurons display synchronized molecular clocks, yet each exhibits a distinct phase of daily Ca2+ activation. Light and neuropeptide pigment dispersing factor (PDF) from morning cells (s-LNv) together delay the phase of the evening (LNd) group by ∼12 hr; PDF alone delays the phase of the DN3 group by ∼17 hr. Neuropeptide sNPF, released from s-LNv and LNd pacemakers, produces Ca2+ activation in the DN1 group late in the night. The circuit also features negative feedback by PDF to truncate the s-LNv Ca2+ wave and terminate PDF release. Both PDF and sNPF suppress basal Ca2+ levels in target pacemakers with long durations by cell-autonomous actions. Thus, light and neuropeptides act dynamically at distinct hubs of the circuit to produce multiple suppressive events that create the proper tempo and sequence of circadian pacemaker neuronal activities. •In vivo imaging reveals sequential Ca2+ activity phases in circadian pacemakers•Neuropeptides (PDF and sNPF) help set non-morning activity phases•Light independently sets the daily evening pacemaker activity phase•Ca2+ activity phases are set by hours-long suppression of basal Ca2+ levels Liang et al. record 24-hr Ca2+ activity patterns in all the major circadian pacemaker neurons of the Drosophila brain in vivo. Their results reveal a series of suppressive signals that creates a dynamic and patterned sequence of temporal outputs.</description><subject>Activation</subject><subject>Animal behavior</subject><subject>Animals</subject><subject>Animals, Genetically Modified</subject><subject>calcium</subject><subject>Calcium - metabolism</subject><subject>circadian physiology</subject><subject>Circadian rhythm</subject><subject>Circadian Rhythm - genetics</subject><subject>Circadian rhythms</subject><subject>Clocks</subject><subject>Drosophila</subject><subject>Drosophila Proteins - genetics</subject><subject>Drosophila Proteins - metabolism</subject><subject>Feedback</subject><subject>Feedback, Physiological</subject><subject>Fruit flies</subject><subject>Gene expression</subject><subject>Hubs</subject><subject>Insects</subject><subject>Light</subject><subject>Light levels</subject><subject>Locomotion</subject><subject>Models, Theoretical</subject><subject>modulation</subject><subject>Negative feedback</subject><subject>Neuroimaging</subject><subject>Neurons</subject><subject>Neurons - metabolism</subject><subject>Neurons - physiology</subject><subject>neuropeptide</subject><subject>Neuropeptides</subject><subject>Neuropeptides - genetics</subject><subject>Neuropeptides - metabolism</subject><subject>Optical Imaging</subject><subject>Pacemakers</subject><subject>Photoreceptors</subject><subject>Rodents</subject><subject>Wave dispersion</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UU1v1DAQtRCILoV_gJAlLlw2jB3HiS9I1RYKUkUPC2fLdSZdr7J2ajtb9d_jZUv5OHAaaebNm_fmEfKaQcWAyffbyuMcg684sLaCpgJon5AFA9UuBVPqKVlAp-RS8rY-IS9S2gIw0Sj2nJzwrml4zcSC3J7RNUaHiYaBrudpipiS2yNduxtvxkTvXN44T_MG6XkMKUwbNxq6ctGa3hlPvxYRZvzZmF2mF-gxmlz41ng7o8-uDM-NG-_p1ZynOaeX5NlQiPHVQz0l3z99_Lb6vLy8uviyOrtc2qZp81LIThoFbCgFkA8ooLf1gFbUfSeHngkrLLPYKV5axgCXgANvuWnra65kfUo-HHmn-XqHvS1ailA9Rbcz8V4H4_TfE-82-ibsddMAbxkUgncPBDEUKynrnUsWx9F4DHPSTEEt6q6VB-jbf6DbMMfD_wqKcSmVAFVQ4oiy5ZEp4vAohoE-ZKq3-pipPmSqodEl07L25k8jj0u_QvztFMs79w6jTtaht9i7iDbrPrj_X_gBUq-25g</recordid><startdate>20170621</startdate><enddate>20170621</enddate><creator>Liang, Xitong</creator><creator>Holy, Timothy E.</creator><creator>Taghert, Paul H.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170621</creationdate><title>A Series of Suppressive Signals within the Drosophila Circadian Neural Circuit Generates Sequential Daily Outputs</title><author>Liang, Xitong ; Holy, Timothy E. ; Taghert, Paul H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c557t-4686a901f86a0e2fe40dc3fec43d86fd14c4c1ce892c43aa0260ef272a73b2963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Activation</topic><topic>Animal behavior</topic><topic>Animals</topic><topic>Animals, Genetically Modified</topic><topic>calcium</topic><topic>Calcium - metabolism</topic><topic>circadian physiology</topic><topic>Circadian rhythm</topic><topic>Circadian Rhythm - genetics</topic><topic>Circadian rhythms</topic><topic>Clocks</topic><topic>Drosophila</topic><topic>Drosophila Proteins - genetics</topic><topic>Drosophila Proteins - metabolism</topic><topic>Feedback</topic><topic>Feedback, Physiological</topic><topic>Fruit flies</topic><topic>Gene expression</topic><topic>Hubs</topic><topic>Insects</topic><topic>Light</topic><topic>Light levels</topic><topic>Locomotion</topic><topic>Models, Theoretical</topic><topic>modulation</topic><topic>Negative feedback</topic><topic>Neuroimaging</topic><topic>Neurons</topic><topic>Neurons - metabolism</topic><topic>Neurons - physiology</topic><topic>neuropeptide</topic><topic>Neuropeptides</topic><topic>Neuropeptides - genetics</topic><topic>Neuropeptides - metabolism</topic><topic>Optical Imaging</topic><topic>Pacemakers</topic><topic>Photoreceptors</topic><topic>Rodents</topic><topic>Wave dispersion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Xitong</creatorcontrib><creatorcontrib>Holy, Timothy E.</creatorcontrib><creatorcontrib>Taghert, Paul H.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Xitong</au><au>Holy, Timothy E.</au><au>Taghert, Paul H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Series of Suppressive Signals within the Drosophila Circadian Neural Circuit Generates Sequential Daily Outputs</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2017-06-21</date><risdate>2017</risdate><volume>94</volume><issue>6</issue><spage>1173</spage><epage>1189.e4</epage><pages>1173-1189.e4</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>We studied the Drosophila circadian neural circuit using whole-brain imaging in vivo. Five major groups of pacemaker neurons display synchronized molecular clocks, yet each exhibits a distinct phase of daily Ca2+ activation. Light and neuropeptide pigment dispersing factor (PDF) from morning cells (s-LNv) together delay the phase of the evening (LNd) group by ∼12 hr; PDF alone delays the phase of the DN3 group by ∼17 hr. Neuropeptide sNPF, released from s-LNv and LNd pacemakers, produces Ca2+ activation in the DN1 group late in the night. The circuit also features negative feedback by PDF to truncate the s-LNv Ca2+ wave and terminate PDF release. Both PDF and sNPF suppress basal Ca2+ levels in target pacemakers with long durations by cell-autonomous actions. Thus, light and neuropeptides act dynamically at distinct hubs of the circuit to produce multiple suppressive events that create the proper tempo and sequence of circadian pacemaker neuronal activities. •In vivo imaging reveals sequential Ca2+ activity phases in circadian pacemakers•Neuropeptides (PDF and sNPF) help set non-morning activity phases•Light independently sets the daily evening pacemaker activity phase•Ca2+ activity phases are set by hours-long suppression of basal Ca2+ levels Liang et al. record 24-hr Ca2+ activity patterns in all the major circadian pacemaker neurons of the Drosophila brain in vivo. Their results reveal a series of suppressive signals that creates a dynamic and patterned sequence of temporal outputs.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>28552314</pmid><doi>10.1016/j.neuron.2017.05.007</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0896-6273
ispartof Neuron (Cambridge, Mass.), 2017-06, Vol.94 (6), p.1173-1189.e4
issn 0896-6273
1097-4199
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5502710
source MEDLINE; Cell Press Free Archives; Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals
subjects Activation
Animal behavior
Animals
Animals, Genetically Modified
calcium
Calcium - metabolism
circadian physiology
Circadian rhythm
Circadian Rhythm - genetics
Circadian rhythms
Clocks
Drosophila
Drosophila Proteins - genetics
Drosophila Proteins - metabolism
Feedback
Feedback, Physiological
Fruit flies
Gene expression
Hubs
Insects
Light
Light levels
Locomotion
Models, Theoretical
modulation
Negative feedback
Neuroimaging
Neurons
Neurons - metabolism
Neurons - physiology
neuropeptide
Neuropeptides
Neuropeptides - genetics
Neuropeptides - metabolism
Optical Imaging
Pacemakers
Photoreceptors
Rodents
Wave dispersion
title A Series of Suppressive Signals within the Drosophila Circadian Neural Circuit Generates Sequential Daily Outputs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T11%3A25%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Series%20of%20Suppressive%20Signals%20within%20the%20Drosophila%20Circadian%20Neural%20Circuit%20Generates%20Sequential%20Daily%20Outputs&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Liang,%20Xitong&rft.date=2017-06-21&rft.volume=94&rft.issue=6&rft.spage=1173&rft.epage=1189.e4&rft.pages=1173-1189.e4&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2017.05.007&rft_dat=%3Cproquest_pubme%3E1903438760%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1912669409&rft_id=info:pmid/28552314&rft_els_id=S0896627317304087&rfr_iscdi=true