A Series of Suppressive Signals within the Drosophila Circadian Neural Circuit Generates Sequential Daily Outputs
We studied the Drosophila circadian neural circuit using whole-brain imaging in vivo. Five major groups of pacemaker neurons display synchronized molecular clocks, yet each exhibits a distinct phase of daily Ca2+ activation. Light and neuropeptide pigment dispersing factor (PDF) from morning cells (...
Gespeichert in:
Veröffentlicht in: | Neuron (Cambridge, Mass.) Mass.), 2017-06, Vol.94 (6), p.1173-1189.e4 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1189.e4 |
---|---|
container_issue | 6 |
container_start_page | 1173 |
container_title | Neuron (Cambridge, Mass.) |
container_volume | 94 |
creator | Liang, Xitong Holy, Timothy E. Taghert, Paul H. |
description | We studied the Drosophila circadian neural circuit using whole-brain imaging in vivo. Five major groups of pacemaker neurons display synchronized molecular clocks, yet each exhibits a distinct phase of daily Ca2+ activation. Light and neuropeptide pigment dispersing factor (PDF) from morning cells (s-LNv) together delay the phase of the evening (LNd) group by ∼12 hr; PDF alone delays the phase of the DN3 group by ∼17 hr. Neuropeptide sNPF, released from s-LNv and LNd pacemakers, produces Ca2+ activation in the DN1 group late in the night. The circuit also features negative feedback by PDF to truncate the s-LNv Ca2+ wave and terminate PDF release. Both PDF and sNPF suppress basal Ca2+ levels in target pacemakers with long durations by cell-autonomous actions. Thus, light and neuropeptides act dynamically at distinct hubs of the circuit to produce multiple suppressive events that create the proper tempo and sequence of circadian pacemaker neuronal activities.
•In vivo imaging reveals sequential Ca2+ activity phases in circadian pacemakers•Neuropeptides (PDF and sNPF) help set non-morning activity phases•Light independently sets the daily evening pacemaker activity phase•Ca2+ activity phases are set by hours-long suppression of basal Ca2+ levels
Liang et al. record 24-hr Ca2+ activity patterns in all the major circadian pacemaker neurons of the Drosophila brain in vivo. Their results reveal a series of suppressive signals that creates a dynamic and patterned sequence of temporal outputs. |
doi_str_mv | 10.1016/j.neuron.2017.05.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5502710</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627317304087</els_id><sourcerecordid>1903438760</sourcerecordid><originalsourceid>FETCH-LOGICAL-c557t-4686a901f86a0e2fe40dc3fec43d86fd14c4c1ce892c43aa0260ef272a73b2963</originalsourceid><addsrcrecordid>eNp9UU1v1DAQtRCILoV_gJAlLlw2jB3HiS9I1RYKUkUPC2fLdSZdr7J2ajtb9d_jZUv5OHAaaebNm_fmEfKaQcWAyffbyuMcg684sLaCpgJon5AFA9UuBVPqKVlAp-RS8rY-IS9S2gIw0Sj2nJzwrml4zcSC3J7RNUaHiYaBrudpipiS2yNduxtvxkTvXN44T_MG6XkMKUwbNxq6ctGa3hlPvxYRZvzZmF2mF-gxmlz41ng7o8-uDM-NG-_p1ZynOaeX5NlQiPHVQz0l3z99_Lb6vLy8uviyOrtc2qZp81LIThoFbCgFkA8ooLf1gFbUfSeHngkrLLPYKV5axgCXgANvuWnra65kfUo-HHmn-XqHvS1ailA9Rbcz8V4H4_TfE-82-ibsddMAbxkUgncPBDEUKynrnUsWx9F4DHPSTEEt6q6VB-jbf6DbMMfD_wqKcSmVAFVQ4oiy5ZEp4vAohoE-ZKq3-pipPmSqodEl07L25k8jj0u_QvztFMs79w6jTtaht9i7iDbrPrj_X_gBUq-25g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1912669409</pqid></control><display><type>article</type><title>A Series of Suppressive Signals within the Drosophila Circadian Neural Circuit Generates Sequential Daily Outputs</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Liang, Xitong ; Holy, Timothy E. ; Taghert, Paul H.</creator><creatorcontrib>Liang, Xitong ; Holy, Timothy E. ; Taghert, Paul H.</creatorcontrib><description>We studied the Drosophila circadian neural circuit using whole-brain imaging in vivo. Five major groups of pacemaker neurons display synchronized molecular clocks, yet each exhibits a distinct phase of daily Ca2+ activation. Light and neuropeptide pigment dispersing factor (PDF) from morning cells (s-LNv) together delay the phase of the evening (LNd) group by ∼12 hr; PDF alone delays the phase of the DN3 group by ∼17 hr. Neuropeptide sNPF, released from s-LNv and LNd pacemakers, produces Ca2+ activation in the DN1 group late in the night. The circuit also features negative feedback by PDF to truncate the s-LNv Ca2+ wave and terminate PDF release. Both PDF and sNPF suppress basal Ca2+ levels in target pacemakers with long durations by cell-autonomous actions. Thus, light and neuropeptides act dynamically at distinct hubs of the circuit to produce multiple suppressive events that create the proper tempo and sequence of circadian pacemaker neuronal activities.
•In vivo imaging reveals sequential Ca2+ activity phases in circadian pacemakers•Neuropeptides (PDF and sNPF) help set non-morning activity phases•Light independently sets the daily evening pacemaker activity phase•Ca2+ activity phases are set by hours-long suppression of basal Ca2+ levels
Liang et al. record 24-hr Ca2+ activity patterns in all the major circadian pacemaker neurons of the Drosophila brain in vivo. Their results reveal a series of suppressive signals that creates a dynamic and patterned sequence of temporal outputs.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2017.05.007</identifier><identifier>PMID: 28552314</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Activation ; Animal behavior ; Animals ; Animals, Genetically Modified ; calcium ; Calcium - metabolism ; circadian physiology ; Circadian rhythm ; Circadian Rhythm - genetics ; Circadian rhythms ; Clocks ; Drosophila ; Drosophila Proteins - genetics ; Drosophila Proteins - metabolism ; Feedback ; Feedback, Physiological ; Fruit flies ; Gene expression ; Hubs ; Insects ; Light ; Light levels ; Locomotion ; Models, Theoretical ; modulation ; Negative feedback ; Neuroimaging ; Neurons ; Neurons - metabolism ; Neurons - physiology ; neuropeptide ; Neuropeptides ; Neuropeptides - genetics ; Neuropeptides - metabolism ; Optical Imaging ; Pacemakers ; Photoreceptors ; Rodents ; Wave dispersion</subject><ispartof>Neuron (Cambridge, Mass.), 2017-06, Vol.94 (6), p.1173-1189.e4</ispartof><rights>2017 Elsevier Inc.</rights><rights>Copyright © 2017 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Jun 21, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c557t-4686a901f86a0e2fe40dc3fec43d86fd14c4c1ce892c43aa0260ef272a73b2963</citedby><cites>FETCH-LOGICAL-c557t-4686a901f86a0e2fe40dc3fec43d86fd14c4c1ce892c43aa0260ef272a73b2963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neuron.2017.05.007$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,315,782,786,887,3554,27933,27934,46004</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28552314$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liang, Xitong</creatorcontrib><creatorcontrib>Holy, Timothy E.</creatorcontrib><creatorcontrib>Taghert, Paul H.</creatorcontrib><title>A Series of Suppressive Signals within the Drosophila Circadian Neural Circuit Generates Sequential Daily Outputs</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>We studied the Drosophila circadian neural circuit using whole-brain imaging in vivo. Five major groups of pacemaker neurons display synchronized molecular clocks, yet each exhibits a distinct phase of daily Ca2+ activation. Light and neuropeptide pigment dispersing factor (PDF) from morning cells (s-LNv) together delay the phase of the evening (LNd) group by ∼12 hr; PDF alone delays the phase of the DN3 group by ∼17 hr. Neuropeptide sNPF, released from s-LNv and LNd pacemakers, produces Ca2+ activation in the DN1 group late in the night. The circuit also features negative feedback by PDF to truncate the s-LNv Ca2+ wave and terminate PDF release. Both PDF and sNPF suppress basal Ca2+ levels in target pacemakers with long durations by cell-autonomous actions. Thus, light and neuropeptides act dynamically at distinct hubs of the circuit to produce multiple suppressive events that create the proper tempo and sequence of circadian pacemaker neuronal activities.
•In vivo imaging reveals sequential Ca2+ activity phases in circadian pacemakers•Neuropeptides (PDF and sNPF) help set non-morning activity phases•Light independently sets the daily evening pacemaker activity phase•Ca2+ activity phases are set by hours-long suppression of basal Ca2+ levels
Liang et al. record 24-hr Ca2+ activity patterns in all the major circadian pacemaker neurons of the Drosophila brain in vivo. Their results reveal a series of suppressive signals that creates a dynamic and patterned sequence of temporal outputs.</description><subject>Activation</subject><subject>Animal behavior</subject><subject>Animals</subject><subject>Animals, Genetically Modified</subject><subject>calcium</subject><subject>Calcium - metabolism</subject><subject>circadian physiology</subject><subject>Circadian rhythm</subject><subject>Circadian Rhythm - genetics</subject><subject>Circadian rhythms</subject><subject>Clocks</subject><subject>Drosophila</subject><subject>Drosophila Proteins - genetics</subject><subject>Drosophila Proteins - metabolism</subject><subject>Feedback</subject><subject>Feedback, Physiological</subject><subject>Fruit flies</subject><subject>Gene expression</subject><subject>Hubs</subject><subject>Insects</subject><subject>Light</subject><subject>Light levels</subject><subject>Locomotion</subject><subject>Models, Theoretical</subject><subject>modulation</subject><subject>Negative feedback</subject><subject>Neuroimaging</subject><subject>Neurons</subject><subject>Neurons - metabolism</subject><subject>Neurons - physiology</subject><subject>neuropeptide</subject><subject>Neuropeptides</subject><subject>Neuropeptides - genetics</subject><subject>Neuropeptides - metabolism</subject><subject>Optical Imaging</subject><subject>Pacemakers</subject><subject>Photoreceptors</subject><subject>Rodents</subject><subject>Wave dispersion</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UU1v1DAQtRCILoV_gJAlLlw2jB3HiS9I1RYKUkUPC2fLdSZdr7J2ajtb9d_jZUv5OHAaaebNm_fmEfKaQcWAyffbyuMcg684sLaCpgJon5AFA9UuBVPqKVlAp-RS8rY-IS9S2gIw0Sj2nJzwrml4zcSC3J7RNUaHiYaBrudpipiS2yNduxtvxkTvXN44T_MG6XkMKUwbNxq6ctGa3hlPvxYRZvzZmF2mF-gxmlz41ng7o8-uDM-NG-_p1ZynOaeX5NlQiPHVQz0l3z99_Lb6vLy8uviyOrtc2qZp81LIThoFbCgFkA8ooLf1gFbUfSeHngkrLLPYKV5axgCXgANvuWnra65kfUo-HHmn-XqHvS1ailA9Rbcz8V4H4_TfE-82-ibsddMAbxkUgncPBDEUKynrnUsWx9F4DHPSTEEt6q6VB-jbf6DbMMfD_wqKcSmVAFVQ4oiy5ZEp4vAohoE-ZKq3-pipPmSqodEl07L25k8jj0u_QvztFMs79w6jTtaht9i7iDbrPrj_X_gBUq-25g</recordid><startdate>20170621</startdate><enddate>20170621</enddate><creator>Liang, Xitong</creator><creator>Holy, Timothy E.</creator><creator>Taghert, Paul H.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170621</creationdate><title>A Series of Suppressive Signals within the Drosophila Circadian Neural Circuit Generates Sequential Daily Outputs</title><author>Liang, Xitong ; Holy, Timothy E. ; Taghert, Paul H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c557t-4686a901f86a0e2fe40dc3fec43d86fd14c4c1ce892c43aa0260ef272a73b2963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Activation</topic><topic>Animal behavior</topic><topic>Animals</topic><topic>Animals, Genetically Modified</topic><topic>calcium</topic><topic>Calcium - metabolism</topic><topic>circadian physiology</topic><topic>Circadian rhythm</topic><topic>Circadian Rhythm - genetics</topic><topic>Circadian rhythms</topic><topic>Clocks</topic><topic>Drosophila</topic><topic>Drosophila Proteins - genetics</topic><topic>Drosophila Proteins - metabolism</topic><topic>Feedback</topic><topic>Feedback, Physiological</topic><topic>Fruit flies</topic><topic>Gene expression</topic><topic>Hubs</topic><topic>Insects</topic><topic>Light</topic><topic>Light levels</topic><topic>Locomotion</topic><topic>Models, Theoretical</topic><topic>modulation</topic><topic>Negative feedback</topic><topic>Neuroimaging</topic><topic>Neurons</topic><topic>Neurons - metabolism</topic><topic>Neurons - physiology</topic><topic>neuropeptide</topic><topic>Neuropeptides</topic><topic>Neuropeptides - genetics</topic><topic>Neuropeptides - metabolism</topic><topic>Optical Imaging</topic><topic>Pacemakers</topic><topic>Photoreceptors</topic><topic>Rodents</topic><topic>Wave dispersion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Xitong</creatorcontrib><creatorcontrib>Holy, Timothy E.</creatorcontrib><creatorcontrib>Taghert, Paul H.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Xitong</au><au>Holy, Timothy E.</au><au>Taghert, Paul H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Series of Suppressive Signals within the Drosophila Circadian Neural Circuit Generates Sequential Daily Outputs</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2017-06-21</date><risdate>2017</risdate><volume>94</volume><issue>6</issue><spage>1173</spage><epage>1189.e4</epage><pages>1173-1189.e4</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>We studied the Drosophila circadian neural circuit using whole-brain imaging in vivo. Five major groups of pacemaker neurons display synchronized molecular clocks, yet each exhibits a distinct phase of daily Ca2+ activation. Light and neuropeptide pigment dispersing factor (PDF) from morning cells (s-LNv) together delay the phase of the evening (LNd) group by ∼12 hr; PDF alone delays the phase of the DN3 group by ∼17 hr. Neuropeptide sNPF, released from s-LNv and LNd pacemakers, produces Ca2+ activation in the DN1 group late in the night. The circuit also features negative feedback by PDF to truncate the s-LNv Ca2+ wave and terminate PDF release. Both PDF and sNPF suppress basal Ca2+ levels in target pacemakers with long durations by cell-autonomous actions. Thus, light and neuropeptides act dynamically at distinct hubs of the circuit to produce multiple suppressive events that create the proper tempo and sequence of circadian pacemaker neuronal activities.
•In vivo imaging reveals sequential Ca2+ activity phases in circadian pacemakers•Neuropeptides (PDF and sNPF) help set non-morning activity phases•Light independently sets the daily evening pacemaker activity phase•Ca2+ activity phases are set by hours-long suppression of basal Ca2+ levels
Liang et al. record 24-hr Ca2+ activity patterns in all the major circadian pacemaker neurons of the Drosophila brain in vivo. Their results reveal a series of suppressive signals that creates a dynamic and patterned sequence of temporal outputs.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>28552314</pmid><doi>10.1016/j.neuron.2017.05.007</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0896-6273 |
ispartof | Neuron (Cambridge, Mass.), 2017-06, Vol.94 (6), p.1173-1189.e4 |
issn | 0896-6273 1097-4199 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5502710 |
source | MEDLINE; Cell Press Free Archives; Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals |
subjects | Activation Animal behavior Animals Animals, Genetically Modified calcium Calcium - metabolism circadian physiology Circadian rhythm Circadian Rhythm - genetics Circadian rhythms Clocks Drosophila Drosophila Proteins - genetics Drosophila Proteins - metabolism Feedback Feedback, Physiological Fruit flies Gene expression Hubs Insects Light Light levels Locomotion Models, Theoretical modulation Negative feedback Neuroimaging Neurons Neurons - metabolism Neurons - physiology neuropeptide Neuropeptides Neuropeptides - genetics Neuropeptides - metabolism Optical Imaging Pacemakers Photoreceptors Rodents Wave dispersion |
title | A Series of Suppressive Signals within the Drosophila Circadian Neural Circuit Generates Sequential Daily Outputs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T11%3A25%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Series%20of%20Suppressive%20Signals%20within%20the%20Drosophila%20Circadian%20Neural%20Circuit%20Generates%20Sequential%20Daily%20Outputs&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Liang,%20Xitong&rft.date=2017-06-21&rft.volume=94&rft.issue=6&rft.spage=1173&rft.epage=1189.e4&rft.pages=1173-1189.e4&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2017.05.007&rft_dat=%3Cproquest_pubme%3E1903438760%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1912669409&rft_id=info:pmid/28552314&rft_els_id=S0896627317304087&rfr_iscdi=true |