Control of muscle formation by the fusogenic micropeptide myomixer
Skeletal muscle formation occurs through fusion of myoblasts to form multinucleated myofibers. From a genome-wide clustered regularly interspaced short palindromic repeats (CRISPR) loss-of-function screen for genes required for myoblast fusion and myogenesis, we discovered an 84–amino acid muscle-sp...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2017-04, Vol.356 (6335), p.323-327 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 327 |
---|---|
container_issue | 6335 |
container_start_page | 323 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 356 |
creator | Bi, Pengpeng Ramirez-Martinez, Andres Li, Hui Cannavino, Jessica McAnally, John R. Shelton, John M. Sánchez-Ortiz, Efrain Bassel-Duby, Rhonda Olson, Eric N. |
description | Skeletal muscle formation occurs through fusion of myoblasts to form multinucleated myofibers. From a genome-wide clustered regularly interspaced short palindromic repeats (CRISPR) loss-of-function screen for genes required for myoblast fusion and myogenesis, we discovered an 84–amino acid muscle-specific peptide that we call Myomixer. Myomixer expression coincides with myoblast differentiation and is essential for fusion and skeletal muscle formation during embryogenesis. Myomixer localizes to the plasma membrane, where it promotes myoblast fusion and associates with Myomaker, a fusogenic membrane protein. Myomixer together with Myomaker can also induce fibroblast-fibroblast fusion and fibroblast-myoblast fusion. We conclude that the Myomixer-Myomaker pair controls the critical step in myofiber formation during muscle development. |
doi_str_mv | 10.1126/science.aam9361 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5502127</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26398857</jstor_id><sourcerecordid>26398857</sourcerecordid><originalsourceid>FETCH-LOGICAL-c588t-552c38c64ced2d69dfb2544f9cf5e856344852f1fdad6ded61898f9456f8264f3</originalsourceid><addsrcrecordid>eNqFkTtvFDEUha0IlCyBOhXRSDQ0k_i9doMUVrykSDRQW177OvFqPN7YM1H23-NolxBoqCz5fD4-9x6Ezgi-IITKy-oijA4urE2aSXKEFgRr0WuK2Qu0wJjJXuGlOEGvat1g3DTNjtEJVUxJTPkCfVzlcSp56HLo0lzdAF3IJdkp5rFb77rptl3MNd_AGF2Xoit5C9speujSLqf4AOU1ehnsUOHN4TxFPz9_-rH62l9___JtdXXdO6HU1AtBHVNOcgeeeql9WFPBedAuCFBCMs6VoIEEb7304CVRWgXNhQyKSh7YKfqw993O6wTeQQtuB7MtMdmyM9lG87cyxltzk--NEJgSumwG7w8GJd_NUCeTYnUwDHaEPFdDNOaUakHo_1GlhBZ8KR9d3_2DbvJcxraJRun2s9ZUNupyT7UF1logPOUm2DxWaQ5VmkOV7cX583Gf-N_dNeDtHtjUKZc_umS6pVuyX0opprA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1890219926</pqid></control><display><type>article</type><title>Control of muscle formation by the fusogenic micropeptide myomixer</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>Science Online_科学在线</source><creator>Bi, Pengpeng ; Ramirez-Martinez, Andres ; Li, Hui ; Cannavino, Jessica ; McAnally, John R. ; Shelton, John M. ; Sánchez-Ortiz, Efrain ; Bassel-Duby, Rhonda ; Olson, Eric N.</creator><creatorcontrib>Bi, Pengpeng ; Ramirez-Martinez, Andres ; Li, Hui ; Cannavino, Jessica ; McAnally, John R. ; Shelton, John M. ; Sánchez-Ortiz, Efrain ; Bassel-Duby, Rhonda ; Olson, Eric N.</creatorcontrib><description>Skeletal muscle formation occurs through fusion of myoblasts to form multinucleated myofibers. From a genome-wide clustered regularly interspaced short palindromic repeats (CRISPR) loss-of-function screen for genes required for myoblast fusion and myogenesis, we discovered an 84–amino acid muscle-specific peptide that we call Myomixer. Myomixer expression coincides with myoblast differentiation and is essential for fusion and skeletal muscle formation during embryogenesis. Myomixer localizes to the plasma membrane, where it promotes myoblast fusion and associates with Myomaker, a fusogenic membrane protein. Myomixer together with Myomaker can also induce fibroblast-fibroblast fusion and fibroblast-myoblast fusion. We conclude that the Myomixer-Myomaker pair controls the critical step in myofiber formation during muscle development.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aam9361</identifier><identifier>PMID: 28386024</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Acids ; Amino acids ; Animal models ; Animals ; Biotechnology ; Cell culture ; Cell Differentiation ; Cell Fusion ; Cell Line ; Cell Membrane - metabolism ; Clustered Regularly Interspaced Short Palindromic Repeats ; CRISPR ; Differentiation ; Embryogenesis ; Embryonic growth stage ; Fibroblasts ; Fibroblasts - metabolism ; Fibroblasts - physiology ; Formations ; Fuses ; Genes ; Genomes ; Individualized Instruction ; Male ; Membrane proteins ; Membrane Proteins - metabolism ; Membranes ; Mice, Knockout ; Muscle Development - genetics ; Muscle Development - physiology ; Muscle Fibers, Skeletal - metabolism ; Muscle Fibers, Skeletal - physiology ; Muscle Proteins - metabolism ; Muscle, Skeletal - growth & development ; Muscles ; Musculoskeletal system ; Myoblasts ; Myoblasts - metabolism ; Myoblasts - physiology ; Myogenesis ; Peptides ; Peptides - genetics ; Peptides - metabolism ; Proteins ; Rodents ; Skeletal muscle</subject><ispartof>Science (American Association for the Advancement of Science), 2017-04, Vol.356 (6335), p.323-327</ispartof><rights>Copyright © 2017 by the American Association for the Advancement of Science</rights><rights>Copyright © 2017, American Association for the Advancement of Science.</rights><rights>Copyright © 2017, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c588t-552c38c64ced2d69dfb2544f9cf5e856344852f1fdad6ded61898f9456f8264f3</citedby><cites>FETCH-LOGICAL-c588t-552c38c64ced2d69dfb2544f9cf5e856344852f1fdad6ded61898f9456f8264f3</cites><orcidid>0000-0001-9358-1630 ; 0000-0003-1151-8262 ; 0000-0002-2855-6540 ; 0000-0002-2949-1638 ; 0000-0002-9871-6773</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26398857$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26398857$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,2871,2872,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28386024$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bi, Pengpeng</creatorcontrib><creatorcontrib>Ramirez-Martinez, Andres</creatorcontrib><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Cannavino, Jessica</creatorcontrib><creatorcontrib>McAnally, John R.</creatorcontrib><creatorcontrib>Shelton, John M.</creatorcontrib><creatorcontrib>Sánchez-Ortiz, Efrain</creatorcontrib><creatorcontrib>Bassel-Duby, Rhonda</creatorcontrib><creatorcontrib>Olson, Eric N.</creatorcontrib><title>Control of muscle formation by the fusogenic micropeptide myomixer</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Skeletal muscle formation occurs through fusion of myoblasts to form multinucleated myofibers. From a genome-wide clustered regularly interspaced short palindromic repeats (CRISPR) loss-of-function screen for genes required for myoblast fusion and myogenesis, we discovered an 84–amino acid muscle-specific peptide that we call Myomixer. Myomixer expression coincides with myoblast differentiation and is essential for fusion and skeletal muscle formation during embryogenesis. Myomixer localizes to the plasma membrane, where it promotes myoblast fusion and associates with Myomaker, a fusogenic membrane protein. Myomixer together with Myomaker can also induce fibroblast-fibroblast fusion and fibroblast-myoblast fusion. We conclude that the Myomixer-Myomaker pair controls the critical step in myofiber formation during muscle development.</description><subject>Acids</subject><subject>Amino acids</subject><subject>Animal models</subject><subject>Animals</subject><subject>Biotechnology</subject><subject>Cell culture</subject><subject>Cell Differentiation</subject><subject>Cell Fusion</subject><subject>Cell Line</subject><subject>Cell Membrane - metabolism</subject><subject>Clustered Regularly Interspaced Short Palindromic Repeats</subject><subject>CRISPR</subject><subject>Differentiation</subject><subject>Embryogenesis</subject><subject>Embryonic growth stage</subject><subject>Fibroblasts</subject><subject>Fibroblasts - metabolism</subject><subject>Fibroblasts - physiology</subject><subject>Formations</subject><subject>Fuses</subject><subject>Genes</subject><subject>Genomes</subject><subject>Individualized Instruction</subject><subject>Male</subject><subject>Membrane proteins</subject><subject>Membrane Proteins - metabolism</subject><subject>Membranes</subject><subject>Mice, Knockout</subject><subject>Muscle Development - genetics</subject><subject>Muscle Development - physiology</subject><subject>Muscle Fibers, Skeletal - metabolism</subject><subject>Muscle Fibers, Skeletal - physiology</subject><subject>Muscle Proteins - metabolism</subject><subject>Muscle, Skeletal - growth & development</subject><subject>Muscles</subject><subject>Musculoskeletal system</subject><subject>Myoblasts</subject><subject>Myoblasts - metabolism</subject><subject>Myoblasts - physiology</subject><subject>Myogenesis</subject><subject>Peptides</subject><subject>Peptides - genetics</subject><subject>Peptides - metabolism</subject><subject>Proteins</subject><subject>Rodents</subject><subject>Skeletal muscle</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkTtvFDEUha0IlCyBOhXRSDQ0k_i9doMUVrykSDRQW177OvFqPN7YM1H23-NolxBoqCz5fD4-9x6Ezgi-IITKy-oijA4urE2aSXKEFgRr0WuK2Qu0wJjJXuGlOEGvat1g3DTNjtEJVUxJTPkCfVzlcSp56HLo0lzdAF3IJdkp5rFb77rptl3MNd_AGF2Xoit5C9speujSLqf4AOU1ehnsUOHN4TxFPz9_-rH62l9___JtdXXdO6HU1AtBHVNOcgeeeql9WFPBedAuCFBCMs6VoIEEb7304CVRWgXNhQyKSh7YKfqw993O6wTeQQtuB7MtMdmyM9lG87cyxltzk--NEJgSumwG7w8GJd_NUCeTYnUwDHaEPFdDNOaUakHo_1GlhBZ8KR9d3_2DbvJcxraJRun2s9ZUNupyT7UF1logPOUm2DxWaQ5VmkOV7cX583Gf-N_dNeDtHtjUKZc_umS6pVuyX0opprA</recordid><startdate>20170421</startdate><enddate>20170421</enddate><creator>Bi, Pengpeng</creator><creator>Ramirez-Martinez, Andres</creator><creator>Li, Hui</creator><creator>Cannavino, Jessica</creator><creator>McAnally, John R.</creator><creator>Shelton, John M.</creator><creator>Sánchez-Ortiz, Efrain</creator><creator>Bassel-Duby, Rhonda</creator><creator>Olson, Eric N.</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9358-1630</orcidid><orcidid>https://orcid.org/0000-0003-1151-8262</orcidid><orcidid>https://orcid.org/0000-0002-2855-6540</orcidid><orcidid>https://orcid.org/0000-0002-2949-1638</orcidid><orcidid>https://orcid.org/0000-0002-9871-6773</orcidid></search><sort><creationdate>20170421</creationdate><title>Control of muscle formation by the fusogenic micropeptide myomixer</title><author>Bi, Pengpeng ; Ramirez-Martinez, Andres ; Li, Hui ; Cannavino, Jessica ; McAnally, John R. ; Shelton, John M. ; Sánchez-Ortiz, Efrain ; Bassel-Duby, Rhonda ; Olson, Eric N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c588t-552c38c64ced2d69dfb2544f9cf5e856344852f1fdad6ded61898f9456f8264f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acids</topic><topic>Amino acids</topic><topic>Animal models</topic><topic>Animals</topic><topic>Biotechnology</topic><topic>Cell culture</topic><topic>Cell Differentiation</topic><topic>Cell Fusion</topic><topic>Cell Line</topic><topic>Cell Membrane - metabolism</topic><topic>Clustered Regularly Interspaced Short Palindromic Repeats</topic><topic>CRISPR</topic><topic>Differentiation</topic><topic>Embryogenesis</topic><topic>Embryonic growth stage</topic><topic>Fibroblasts</topic><topic>Fibroblasts - metabolism</topic><topic>Fibroblasts - physiology</topic><topic>Formations</topic><topic>Fuses</topic><topic>Genes</topic><topic>Genomes</topic><topic>Individualized Instruction</topic><topic>Male</topic><topic>Membrane proteins</topic><topic>Membrane Proteins - metabolism</topic><topic>Membranes</topic><topic>Mice, Knockout</topic><topic>Muscle Development - genetics</topic><topic>Muscle Development - physiology</topic><topic>Muscle Fibers, Skeletal - metabolism</topic><topic>Muscle Fibers, Skeletal - physiology</topic><topic>Muscle Proteins - metabolism</topic><topic>Muscle, Skeletal - growth & development</topic><topic>Muscles</topic><topic>Musculoskeletal system</topic><topic>Myoblasts</topic><topic>Myoblasts - metabolism</topic><topic>Myoblasts - physiology</topic><topic>Myogenesis</topic><topic>Peptides</topic><topic>Peptides - genetics</topic><topic>Peptides - metabolism</topic><topic>Proteins</topic><topic>Rodents</topic><topic>Skeletal muscle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bi, Pengpeng</creatorcontrib><creatorcontrib>Ramirez-Martinez, Andres</creatorcontrib><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Cannavino, Jessica</creatorcontrib><creatorcontrib>McAnally, John R.</creatorcontrib><creatorcontrib>Shelton, John M.</creatorcontrib><creatorcontrib>Sánchez-Ortiz, Efrain</creatorcontrib><creatorcontrib>Bassel-Duby, Rhonda</creatorcontrib><creatorcontrib>Olson, Eric N.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bi, Pengpeng</au><au>Ramirez-Martinez, Andres</au><au>Li, Hui</au><au>Cannavino, Jessica</au><au>McAnally, John R.</au><au>Shelton, John M.</au><au>Sánchez-Ortiz, Efrain</au><au>Bassel-Duby, Rhonda</au><au>Olson, Eric N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Control of muscle formation by the fusogenic micropeptide myomixer</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2017-04-21</date><risdate>2017</risdate><volume>356</volume><issue>6335</issue><spage>323</spage><epage>327</epage><pages>323-327</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Skeletal muscle formation occurs through fusion of myoblasts to form multinucleated myofibers. From a genome-wide clustered regularly interspaced short palindromic repeats (CRISPR) loss-of-function screen for genes required for myoblast fusion and myogenesis, we discovered an 84–amino acid muscle-specific peptide that we call Myomixer. Myomixer expression coincides with myoblast differentiation and is essential for fusion and skeletal muscle formation during embryogenesis. Myomixer localizes to the plasma membrane, where it promotes myoblast fusion and associates with Myomaker, a fusogenic membrane protein. Myomixer together with Myomaker can also induce fibroblast-fibroblast fusion and fibroblast-myoblast fusion. We conclude that the Myomixer-Myomaker pair controls the critical step in myofiber formation during muscle development.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>28386024</pmid><doi>10.1126/science.aam9361</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-9358-1630</orcidid><orcidid>https://orcid.org/0000-0003-1151-8262</orcidid><orcidid>https://orcid.org/0000-0002-2855-6540</orcidid><orcidid>https://orcid.org/0000-0002-2949-1638</orcidid><orcidid>https://orcid.org/0000-0002-9871-6773</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2017-04, Vol.356 (6335), p.323-327 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5502127 |
source | Jstor Complete Legacy; MEDLINE; Science Online_科学在线 |
subjects | Acids Amino acids Animal models Animals Biotechnology Cell culture Cell Differentiation Cell Fusion Cell Line Cell Membrane - metabolism Clustered Regularly Interspaced Short Palindromic Repeats CRISPR Differentiation Embryogenesis Embryonic growth stage Fibroblasts Fibroblasts - metabolism Fibroblasts - physiology Formations Fuses Genes Genomes Individualized Instruction Male Membrane proteins Membrane Proteins - metabolism Membranes Mice, Knockout Muscle Development - genetics Muscle Development - physiology Muscle Fibers, Skeletal - metabolism Muscle Fibers, Skeletal - physiology Muscle Proteins - metabolism Muscle, Skeletal - growth & development Muscles Musculoskeletal system Myoblasts Myoblasts - metabolism Myoblasts - physiology Myogenesis Peptides Peptides - genetics Peptides - metabolism Proteins Rodents Skeletal muscle |
title | Control of muscle formation by the fusogenic micropeptide myomixer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T18%3A38%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Control%20of%20muscle%20formation%20by%20the%20fusogenic%20micropeptide%20myomixer&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Bi,%20Pengpeng&rft.date=2017-04-21&rft.volume=356&rft.issue=6335&rft.spage=323&rft.epage=327&rft.pages=323-327&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aam9361&rft_dat=%3Cjstor_pubme%3E26398857%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1890219926&rft_id=info:pmid/28386024&rft_jstor_id=26398857&rfr_iscdi=true |