Control of muscle formation by the fusogenic micropeptide myomixer

Skeletal muscle formation occurs through fusion of myoblasts to form multinucleated myofibers. From a genome-wide clustered regularly interspaced short palindromic repeats (CRISPR) loss-of-function screen for genes required for myoblast fusion and myogenesis, we discovered an 84–amino acid muscle-sp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2017-04, Vol.356 (6335), p.323-327
Hauptverfasser: Bi, Pengpeng, Ramirez-Martinez, Andres, Li, Hui, Cannavino, Jessica, McAnally, John R., Shelton, John M., Sánchez-Ortiz, Efrain, Bassel-Duby, Rhonda, Olson, Eric N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 327
container_issue 6335
container_start_page 323
container_title Science (American Association for the Advancement of Science)
container_volume 356
creator Bi, Pengpeng
Ramirez-Martinez, Andres
Li, Hui
Cannavino, Jessica
McAnally, John R.
Shelton, John M.
Sánchez-Ortiz, Efrain
Bassel-Duby, Rhonda
Olson, Eric N.
description Skeletal muscle formation occurs through fusion of myoblasts to form multinucleated myofibers. From a genome-wide clustered regularly interspaced short palindromic repeats (CRISPR) loss-of-function screen for genes required for myoblast fusion and myogenesis, we discovered an 84–amino acid muscle-specific peptide that we call Myomixer. Myomixer expression coincides with myoblast differentiation and is essential for fusion and skeletal muscle formation during embryogenesis. Myomixer localizes to the plasma membrane, where it promotes myoblast fusion and associates with Myomaker, a fusogenic membrane protein. Myomixer together with Myomaker can also induce fibroblast-fibroblast fusion and fibroblast-myoblast fusion. We conclude that the Myomixer-Myomaker pair controls the critical step in myofiber formation during muscle development.
doi_str_mv 10.1126/science.aam9361
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5502127</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26398857</jstor_id><sourcerecordid>26398857</sourcerecordid><originalsourceid>FETCH-LOGICAL-c588t-552c38c64ced2d69dfb2544f9cf5e856344852f1fdad6ded61898f9456f8264f3</originalsourceid><addsrcrecordid>eNqFkTtvFDEUha0IlCyBOhXRSDQ0k_i9doMUVrykSDRQW177OvFqPN7YM1H23-NolxBoqCz5fD4-9x6Ezgi-IITKy-oijA4urE2aSXKEFgRr0WuK2Qu0wJjJXuGlOEGvat1g3DTNjtEJVUxJTPkCfVzlcSp56HLo0lzdAF3IJdkp5rFb77rptl3MNd_AGF2Xoit5C9speujSLqf4AOU1ehnsUOHN4TxFPz9_-rH62l9___JtdXXdO6HU1AtBHVNOcgeeeql9WFPBedAuCFBCMs6VoIEEb7304CVRWgXNhQyKSh7YKfqw993O6wTeQQtuB7MtMdmyM9lG87cyxltzk--NEJgSumwG7w8GJd_NUCeTYnUwDHaEPFdDNOaUakHo_1GlhBZ8KR9d3_2DbvJcxraJRun2s9ZUNupyT7UF1logPOUm2DxWaQ5VmkOV7cX583Gf-N_dNeDtHtjUKZc_umS6pVuyX0opprA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1890219926</pqid></control><display><type>article</type><title>Control of muscle formation by the fusogenic micropeptide myomixer</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>Science Online_科学在线</source><creator>Bi, Pengpeng ; Ramirez-Martinez, Andres ; Li, Hui ; Cannavino, Jessica ; McAnally, John R. ; Shelton, John M. ; Sánchez-Ortiz, Efrain ; Bassel-Duby, Rhonda ; Olson, Eric N.</creator><creatorcontrib>Bi, Pengpeng ; Ramirez-Martinez, Andres ; Li, Hui ; Cannavino, Jessica ; McAnally, John R. ; Shelton, John M. ; Sánchez-Ortiz, Efrain ; Bassel-Duby, Rhonda ; Olson, Eric N.</creatorcontrib><description>Skeletal muscle formation occurs through fusion of myoblasts to form multinucleated myofibers. From a genome-wide clustered regularly interspaced short palindromic repeats (CRISPR) loss-of-function screen for genes required for myoblast fusion and myogenesis, we discovered an 84–amino acid muscle-specific peptide that we call Myomixer. Myomixer expression coincides with myoblast differentiation and is essential for fusion and skeletal muscle formation during embryogenesis. Myomixer localizes to the plasma membrane, where it promotes myoblast fusion and associates with Myomaker, a fusogenic membrane protein. Myomixer together with Myomaker can also induce fibroblast-fibroblast fusion and fibroblast-myoblast fusion. We conclude that the Myomixer-Myomaker pair controls the critical step in myofiber formation during muscle development.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aam9361</identifier><identifier>PMID: 28386024</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Acids ; Amino acids ; Animal models ; Animals ; Biotechnology ; Cell culture ; Cell Differentiation ; Cell Fusion ; Cell Line ; Cell Membrane - metabolism ; Clustered Regularly Interspaced Short Palindromic Repeats ; CRISPR ; Differentiation ; Embryogenesis ; Embryonic growth stage ; Fibroblasts ; Fibroblasts - metabolism ; Fibroblasts - physiology ; Formations ; Fuses ; Genes ; Genomes ; Individualized Instruction ; Male ; Membrane proteins ; Membrane Proteins - metabolism ; Membranes ; Mice, Knockout ; Muscle Development - genetics ; Muscle Development - physiology ; Muscle Fibers, Skeletal - metabolism ; Muscle Fibers, Skeletal - physiology ; Muscle Proteins - metabolism ; Muscle, Skeletal - growth &amp; development ; Muscles ; Musculoskeletal system ; Myoblasts ; Myoblasts - metabolism ; Myoblasts - physiology ; Myogenesis ; Peptides ; Peptides - genetics ; Peptides - metabolism ; Proteins ; Rodents ; Skeletal muscle</subject><ispartof>Science (American Association for the Advancement of Science), 2017-04, Vol.356 (6335), p.323-327</ispartof><rights>Copyright © 2017 by the American Association for the Advancement of Science</rights><rights>Copyright © 2017, American Association for the Advancement of Science.</rights><rights>Copyright © 2017, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c588t-552c38c64ced2d69dfb2544f9cf5e856344852f1fdad6ded61898f9456f8264f3</citedby><cites>FETCH-LOGICAL-c588t-552c38c64ced2d69dfb2544f9cf5e856344852f1fdad6ded61898f9456f8264f3</cites><orcidid>0000-0001-9358-1630 ; 0000-0003-1151-8262 ; 0000-0002-2855-6540 ; 0000-0002-2949-1638 ; 0000-0002-9871-6773</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26398857$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26398857$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,2871,2872,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28386024$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bi, Pengpeng</creatorcontrib><creatorcontrib>Ramirez-Martinez, Andres</creatorcontrib><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Cannavino, Jessica</creatorcontrib><creatorcontrib>McAnally, John R.</creatorcontrib><creatorcontrib>Shelton, John M.</creatorcontrib><creatorcontrib>Sánchez-Ortiz, Efrain</creatorcontrib><creatorcontrib>Bassel-Duby, Rhonda</creatorcontrib><creatorcontrib>Olson, Eric N.</creatorcontrib><title>Control of muscle formation by the fusogenic micropeptide myomixer</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Skeletal muscle formation occurs through fusion of myoblasts to form multinucleated myofibers. From a genome-wide clustered regularly interspaced short palindromic repeats (CRISPR) loss-of-function screen for genes required for myoblast fusion and myogenesis, we discovered an 84–amino acid muscle-specific peptide that we call Myomixer. Myomixer expression coincides with myoblast differentiation and is essential for fusion and skeletal muscle formation during embryogenesis. Myomixer localizes to the plasma membrane, where it promotes myoblast fusion and associates with Myomaker, a fusogenic membrane protein. Myomixer together with Myomaker can also induce fibroblast-fibroblast fusion and fibroblast-myoblast fusion. We conclude that the Myomixer-Myomaker pair controls the critical step in myofiber formation during muscle development.</description><subject>Acids</subject><subject>Amino acids</subject><subject>Animal models</subject><subject>Animals</subject><subject>Biotechnology</subject><subject>Cell culture</subject><subject>Cell Differentiation</subject><subject>Cell Fusion</subject><subject>Cell Line</subject><subject>Cell Membrane - metabolism</subject><subject>Clustered Regularly Interspaced Short Palindromic Repeats</subject><subject>CRISPR</subject><subject>Differentiation</subject><subject>Embryogenesis</subject><subject>Embryonic growth stage</subject><subject>Fibroblasts</subject><subject>Fibroblasts - metabolism</subject><subject>Fibroblasts - physiology</subject><subject>Formations</subject><subject>Fuses</subject><subject>Genes</subject><subject>Genomes</subject><subject>Individualized Instruction</subject><subject>Male</subject><subject>Membrane proteins</subject><subject>Membrane Proteins - metabolism</subject><subject>Membranes</subject><subject>Mice, Knockout</subject><subject>Muscle Development - genetics</subject><subject>Muscle Development - physiology</subject><subject>Muscle Fibers, Skeletal - metabolism</subject><subject>Muscle Fibers, Skeletal - physiology</subject><subject>Muscle Proteins - metabolism</subject><subject>Muscle, Skeletal - growth &amp; development</subject><subject>Muscles</subject><subject>Musculoskeletal system</subject><subject>Myoblasts</subject><subject>Myoblasts - metabolism</subject><subject>Myoblasts - physiology</subject><subject>Myogenesis</subject><subject>Peptides</subject><subject>Peptides - genetics</subject><subject>Peptides - metabolism</subject><subject>Proteins</subject><subject>Rodents</subject><subject>Skeletal muscle</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkTtvFDEUha0IlCyBOhXRSDQ0k_i9doMUVrykSDRQW177OvFqPN7YM1H23-NolxBoqCz5fD4-9x6Ezgi-IITKy-oijA4urE2aSXKEFgRr0WuK2Qu0wJjJXuGlOEGvat1g3DTNjtEJVUxJTPkCfVzlcSp56HLo0lzdAF3IJdkp5rFb77rptl3MNd_AGF2Xoit5C9speujSLqf4AOU1ehnsUOHN4TxFPz9_-rH62l9___JtdXXdO6HU1AtBHVNOcgeeeql9WFPBedAuCFBCMs6VoIEEb7304CVRWgXNhQyKSh7YKfqw993O6wTeQQtuB7MtMdmyM9lG87cyxltzk--NEJgSumwG7w8GJd_NUCeTYnUwDHaEPFdDNOaUakHo_1GlhBZ8KR9d3_2DbvJcxraJRun2s9ZUNupyT7UF1logPOUm2DxWaQ5VmkOV7cX583Gf-N_dNeDtHtjUKZc_umS6pVuyX0opprA</recordid><startdate>20170421</startdate><enddate>20170421</enddate><creator>Bi, Pengpeng</creator><creator>Ramirez-Martinez, Andres</creator><creator>Li, Hui</creator><creator>Cannavino, Jessica</creator><creator>McAnally, John R.</creator><creator>Shelton, John M.</creator><creator>Sánchez-Ortiz, Efrain</creator><creator>Bassel-Duby, Rhonda</creator><creator>Olson, Eric N.</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9358-1630</orcidid><orcidid>https://orcid.org/0000-0003-1151-8262</orcidid><orcidid>https://orcid.org/0000-0002-2855-6540</orcidid><orcidid>https://orcid.org/0000-0002-2949-1638</orcidid><orcidid>https://orcid.org/0000-0002-9871-6773</orcidid></search><sort><creationdate>20170421</creationdate><title>Control of muscle formation by the fusogenic micropeptide myomixer</title><author>Bi, Pengpeng ; Ramirez-Martinez, Andres ; Li, Hui ; Cannavino, Jessica ; McAnally, John R. ; Shelton, John M. ; Sánchez-Ortiz, Efrain ; Bassel-Duby, Rhonda ; Olson, Eric N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c588t-552c38c64ced2d69dfb2544f9cf5e856344852f1fdad6ded61898f9456f8264f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acids</topic><topic>Amino acids</topic><topic>Animal models</topic><topic>Animals</topic><topic>Biotechnology</topic><topic>Cell culture</topic><topic>Cell Differentiation</topic><topic>Cell Fusion</topic><topic>Cell Line</topic><topic>Cell Membrane - metabolism</topic><topic>Clustered Regularly Interspaced Short Palindromic Repeats</topic><topic>CRISPR</topic><topic>Differentiation</topic><topic>Embryogenesis</topic><topic>Embryonic growth stage</topic><topic>Fibroblasts</topic><topic>Fibroblasts - metabolism</topic><topic>Fibroblasts - physiology</topic><topic>Formations</topic><topic>Fuses</topic><topic>Genes</topic><topic>Genomes</topic><topic>Individualized Instruction</topic><topic>Male</topic><topic>Membrane proteins</topic><topic>Membrane Proteins - metabolism</topic><topic>Membranes</topic><topic>Mice, Knockout</topic><topic>Muscle Development - genetics</topic><topic>Muscle Development - physiology</topic><topic>Muscle Fibers, Skeletal - metabolism</topic><topic>Muscle Fibers, Skeletal - physiology</topic><topic>Muscle Proteins - metabolism</topic><topic>Muscle, Skeletal - growth &amp; development</topic><topic>Muscles</topic><topic>Musculoskeletal system</topic><topic>Myoblasts</topic><topic>Myoblasts - metabolism</topic><topic>Myoblasts - physiology</topic><topic>Myogenesis</topic><topic>Peptides</topic><topic>Peptides - genetics</topic><topic>Peptides - metabolism</topic><topic>Proteins</topic><topic>Rodents</topic><topic>Skeletal muscle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bi, Pengpeng</creatorcontrib><creatorcontrib>Ramirez-Martinez, Andres</creatorcontrib><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Cannavino, Jessica</creatorcontrib><creatorcontrib>McAnally, John R.</creatorcontrib><creatorcontrib>Shelton, John M.</creatorcontrib><creatorcontrib>Sánchez-Ortiz, Efrain</creatorcontrib><creatorcontrib>Bassel-Duby, Rhonda</creatorcontrib><creatorcontrib>Olson, Eric N.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bi, Pengpeng</au><au>Ramirez-Martinez, Andres</au><au>Li, Hui</au><au>Cannavino, Jessica</au><au>McAnally, John R.</au><au>Shelton, John M.</au><au>Sánchez-Ortiz, Efrain</au><au>Bassel-Duby, Rhonda</au><au>Olson, Eric N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Control of muscle formation by the fusogenic micropeptide myomixer</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2017-04-21</date><risdate>2017</risdate><volume>356</volume><issue>6335</issue><spage>323</spage><epage>327</epage><pages>323-327</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Skeletal muscle formation occurs through fusion of myoblasts to form multinucleated myofibers. From a genome-wide clustered regularly interspaced short palindromic repeats (CRISPR) loss-of-function screen for genes required for myoblast fusion and myogenesis, we discovered an 84–amino acid muscle-specific peptide that we call Myomixer. Myomixer expression coincides with myoblast differentiation and is essential for fusion and skeletal muscle formation during embryogenesis. Myomixer localizes to the plasma membrane, where it promotes myoblast fusion and associates with Myomaker, a fusogenic membrane protein. Myomixer together with Myomaker can also induce fibroblast-fibroblast fusion and fibroblast-myoblast fusion. We conclude that the Myomixer-Myomaker pair controls the critical step in myofiber formation during muscle development.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>28386024</pmid><doi>10.1126/science.aam9361</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-9358-1630</orcidid><orcidid>https://orcid.org/0000-0003-1151-8262</orcidid><orcidid>https://orcid.org/0000-0002-2855-6540</orcidid><orcidid>https://orcid.org/0000-0002-2949-1638</orcidid><orcidid>https://orcid.org/0000-0002-9871-6773</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2017-04, Vol.356 (6335), p.323-327
issn 0036-8075
1095-9203
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5502127
source Jstor Complete Legacy; MEDLINE; Science Online_科学在线
subjects Acids
Amino acids
Animal models
Animals
Biotechnology
Cell culture
Cell Differentiation
Cell Fusion
Cell Line
Cell Membrane - metabolism
Clustered Regularly Interspaced Short Palindromic Repeats
CRISPR
Differentiation
Embryogenesis
Embryonic growth stage
Fibroblasts
Fibroblasts - metabolism
Fibroblasts - physiology
Formations
Fuses
Genes
Genomes
Individualized Instruction
Male
Membrane proteins
Membrane Proteins - metabolism
Membranes
Mice, Knockout
Muscle Development - genetics
Muscle Development - physiology
Muscle Fibers, Skeletal - metabolism
Muscle Fibers, Skeletal - physiology
Muscle Proteins - metabolism
Muscle, Skeletal - growth & development
Muscles
Musculoskeletal system
Myoblasts
Myoblasts - metabolism
Myoblasts - physiology
Myogenesis
Peptides
Peptides - genetics
Peptides - metabolism
Proteins
Rodents
Skeletal muscle
title Control of muscle formation by the fusogenic micropeptide myomixer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T18%3A38%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Control%20of%20muscle%20formation%20by%20the%20fusogenic%20micropeptide%20myomixer&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Bi,%20Pengpeng&rft.date=2017-04-21&rft.volume=356&rft.issue=6335&rft.spage=323&rft.epage=327&rft.pages=323-327&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aam9361&rft_dat=%3Cjstor_pubme%3E26398857%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1890219926&rft_id=info:pmid/28386024&rft_jstor_id=26398857&rfr_iscdi=true