Combination of gemcitabine and docetaxel regresses both gastric leiomyosarcoma proliferation and invasion in an imageable patient-derived orthotopic xenograft (iPDOX) model
Gastric leiomyosarcoma is a recalcitrant cancer and the chemotherapy strategy is controversial. The present study used a patient-derived orthotopic xenograft (PDOX) nude mouse model of gastric leiomyosarcoma to identify an effective therapeutic regimen to develop individualized precision medicine fo...
Gespeichert in:
Veröffentlicht in: | Cell cycle (Georgetown, Tex.) Tex.), 2017-06, Vol.16 (11), p.1063-1069 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1069 |
---|---|
container_issue | 11 |
container_start_page | 1063 |
container_title | Cell cycle (Georgetown, Tex.) |
container_volume | 16 |
creator | Kawaguchi, Kei Igarashi, Kentaro Murakami, Takashi Kiyuna, Tasuku Nelson, Scott D Dry, Sarah M Li, Yunfeng Russell, Tara A Singh, Arun S Chmielowski, Bartosz Unno, Michiaki Eilber, Fritz C Hoffman, Robert M |
description | Gastric leiomyosarcoma is a recalcitrant cancer and the chemotherapy strategy is controversial. The present study used a patient-derived orthotopic xenograft (PDOX) nude mouse model of gastric leiomyosarcoma to identify an effective therapeutic regimen to develop individualized precision medicine for this disease. The gastric leiomyosarcoma obtained from a patient was first grown in transgenic nude mice ubiquitously expressing red fluorescent protein (RFP) to stably label the tumor stroma. The RFP-expressing tumor was then passaged orthotopically in the gastric wall of non-transgenic nude mice to establish an imageable PDOX (iPDOX) model. The bright fluorescent tumor was readily imaged over time to determine drug efficacy. Four weeks after implantation, 70 PDOX nude mice were divided into 7 groups: control without treatment (n = 10); doxorubicin (DOX) (2.4 mg/kg, intraperitoneally (i.p.), once a week for 2 weeks, n = 10); gemcitabine (GEM)/ docetaxel (DOC) (GEM: 100 mg/kg, DOC: 20 mg/kg, i.p., once a week for 2 weeks, n = 10); cyclophosphamide (CPA) (140 mg/kg, i.p., once a week for 2 weeks, n = 10); temozolomide (TEM) (25 mg/kg, orally, daily for 14 consecutive days, n = 10); yondelis (YON) (0.15 mg/kg, i.v., once a week for 2 weeks, n = 10); pazopanib (PAZ) (100 mg/kg, orally, daily for 14 consecutive days, n = 10). On day 14 from initiation of treatment, all treatments except PAZ significantly inhibited tumor growth compared with untreated control (DOX: p < 0.01, GEM/DOC: p < 0.01, CPA: p < 0.01, TEM: p < 0.01, YON: p < 0.01) on day 14 after initiation. In addition, only GEM/DOC was more significantly effective than DOX (p < 0.05). GEM/DOC could regress the leimyosarcoma in the PDOX model and has important clinical potential for precision individual treatment of leiomyosarcoma patients. |
doi_str_mv | 10.1080/15384101.2017.1314406 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5499841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28426279</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-b51b32dd6412a564edd6809d3e58343f6a055b2845c9c100806b72bceebb55623</originalsourceid><addsrcrecordid>eNpVkcluFDEQQC0EIhufEOQjHHrw2ssFCQ1kkSKFA5G4WV6qexx1t1u2GSX_xEfi1iQRObnKrnou1UPonJINJS35QiVvBSV0wwhtNpRTIUj9Bh1TKWklCJFv15i31Vp0hE5SuieEtU1H36Mj1gpWs6Y7Rn-3YTJ-1tmHGYceDzBZn3W5Aqxnh12wkPUDjDjCECElSNiEvMODTjl6i0fwYXoMSUcbJo2XGEbfQzwAV4Kf9zqtiV9z7Cc9gDYj4KXUwJwrB9HvweEQ8y7ksBToA8xhiLrP-JP_-f3292c8BQfjGXrX6zHBh6fzFN1d_Pi1vapubi-vt99uKiuaJldGUsOZc7WgTMtaQAlb0jkOsuWC97UmUpqyA2k7S0nZZm0aZiyAMVLWjJ-irwfu8sdM4GyZMupRLbEMHx9V0F69fpn9Tg1hr6ToumKlAOQBYGNIKUL_0kuJWvWpZ31q1aee9JW-j_9__NL17Iv_A-e5m4g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Combination of gemcitabine and docetaxel regresses both gastric leiomyosarcoma proliferation and invasion in an imageable patient-derived orthotopic xenograft (iPDOX) model</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Kawaguchi, Kei ; Igarashi, Kentaro ; Murakami, Takashi ; Kiyuna, Tasuku ; Nelson, Scott D ; Dry, Sarah M ; Li, Yunfeng ; Russell, Tara A ; Singh, Arun S ; Chmielowski, Bartosz ; Unno, Michiaki ; Eilber, Fritz C ; Hoffman, Robert M</creator><creatorcontrib>Kawaguchi, Kei ; Igarashi, Kentaro ; Murakami, Takashi ; Kiyuna, Tasuku ; Nelson, Scott D ; Dry, Sarah M ; Li, Yunfeng ; Russell, Tara A ; Singh, Arun S ; Chmielowski, Bartosz ; Unno, Michiaki ; Eilber, Fritz C ; Hoffman, Robert M</creatorcontrib><description><![CDATA[Gastric leiomyosarcoma is a recalcitrant cancer and the chemotherapy strategy is controversial. The present study used a patient-derived orthotopic xenograft (PDOX) nude mouse model of gastric leiomyosarcoma to identify an effective therapeutic regimen to develop individualized precision medicine for this disease. The gastric leiomyosarcoma obtained from a patient was first grown in transgenic nude mice ubiquitously expressing red fluorescent protein (RFP) to stably label the tumor stroma. The RFP-expressing tumor was then passaged orthotopically in the gastric wall of non-transgenic nude mice to establish an imageable PDOX (iPDOX) model. The bright fluorescent tumor was readily imaged over time to determine drug efficacy. Four weeks after implantation, 70 PDOX nude mice were divided into 7 groups: control without treatment (n = 10); doxorubicin (DOX) (2.4 mg/kg, intraperitoneally (i.p.), once a week for 2 weeks, n = 10); gemcitabine (GEM)/ docetaxel (DOC) (GEM: 100 mg/kg, DOC: 20 mg/kg, i.p., once a week for 2 weeks, n = 10); cyclophosphamide (CPA) (140 mg/kg, i.p., once a week for 2 weeks, n = 10); temozolomide (TEM) (25 mg/kg, orally, daily for 14 consecutive days, n = 10); yondelis (YON) (0.15 mg/kg, i.v., once a week for 2 weeks, n = 10); pazopanib (PAZ) (100 mg/kg, orally, daily for 14 consecutive days, n = 10). On day 14 from initiation of treatment, all treatments except PAZ significantly inhibited tumor growth compared with untreated control (DOX: p < 0.01, GEM/DOC: p < 0.01, CPA: p < 0.01, TEM: p < 0.01, YON: p < 0.01) on day 14 after initiation. In addition, only GEM/DOC was more significantly effective than DOX (p < 0.05). GEM/DOC could regress the leimyosarcoma in the PDOX model and has important clinical potential for precision individual treatment of leiomyosarcoma patients.]]></description><identifier>ISSN: 1538-4101</identifier><identifier>EISSN: 1551-4005</identifier><identifier>DOI: 10.1080/15384101.2017.1314406</identifier><identifier>PMID: 28426279</identifier><language>eng</language><publisher>United States: Taylor & Francis</publisher><subject>Animals ; Antineoplastic Combined Chemotherapy Protocols - therapeutic use ; Body Weight ; Cell Proliferation ; Deoxycytidine - analogs & derivatives ; Deoxycytidine - pharmacology ; Deoxycytidine - therapeutic use ; Docetaxel ; Gemcitabine ; Humans ; Imaging, Three-Dimensional ; Leiomyosarcoma - drug therapy ; Leiomyosarcoma - pathology ; Luminescent Proteins - metabolism ; Mice, Nude ; Mice, Transgenic ; Neoplasm Invasiveness ; Red Fluorescent Protein ; Stomach Neoplasms - drug therapy ; Stomach Neoplasms - pathology ; Taxoids - pharmacology ; Taxoids - therapeutic use ; Tumor Burden ; Xenograft Model Antitumor Assays</subject><ispartof>Cell cycle (Georgetown, Tex.), 2017-06, Vol.16 (11), p.1063-1069</ispartof><rights>2017 Taylor & Francis 2017 Taylor & Francis</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-b51b32dd6412a564edd6809d3e58343f6a055b2845c9c100806b72bceebb55623</citedby><cites>FETCH-LOGICAL-c477t-b51b32dd6412a564edd6809d3e58343f6a055b2845c9c100806b72bceebb55623</cites><orcidid>0000-0002-3912-3601 ; 0000-0002-2374-3320 ; 0000-0003-3336-9333</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5499841/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5499841/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28426279$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kawaguchi, Kei</creatorcontrib><creatorcontrib>Igarashi, Kentaro</creatorcontrib><creatorcontrib>Murakami, Takashi</creatorcontrib><creatorcontrib>Kiyuna, Tasuku</creatorcontrib><creatorcontrib>Nelson, Scott D</creatorcontrib><creatorcontrib>Dry, Sarah M</creatorcontrib><creatorcontrib>Li, Yunfeng</creatorcontrib><creatorcontrib>Russell, Tara A</creatorcontrib><creatorcontrib>Singh, Arun S</creatorcontrib><creatorcontrib>Chmielowski, Bartosz</creatorcontrib><creatorcontrib>Unno, Michiaki</creatorcontrib><creatorcontrib>Eilber, Fritz C</creatorcontrib><creatorcontrib>Hoffman, Robert M</creatorcontrib><title>Combination of gemcitabine and docetaxel regresses both gastric leiomyosarcoma proliferation and invasion in an imageable patient-derived orthotopic xenograft (iPDOX) model</title><title>Cell cycle (Georgetown, Tex.)</title><addtitle>Cell Cycle</addtitle><description><![CDATA[Gastric leiomyosarcoma is a recalcitrant cancer and the chemotherapy strategy is controversial. The present study used a patient-derived orthotopic xenograft (PDOX) nude mouse model of gastric leiomyosarcoma to identify an effective therapeutic regimen to develop individualized precision medicine for this disease. The gastric leiomyosarcoma obtained from a patient was first grown in transgenic nude mice ubiquitously expressing red fluorescent protein (RFP) to stably label the tumor stroma. The RFP-expressing tumor was then passaged orthotopically in the gastric wall of non-transgenic nude mice to establish an imageable PDOX (iPDOX) model. The bright fluorescent tumor was readily imaged over time to determine drug efficacy. Four weeks after implantation, 70 PDOX nude mice were divided into 7 groups: control without treatment (n = 10); doxorubicin (DOX) (2.4 mg/kg, intraperitoneally (i.p.), once a week for 2 weeks, n = 10); gemcitabine (GEM)/ docetaxel (DOC) (GEM: 100 mg/kg, DOC: 20 mg/kg, i.p., once a week for 2 weeks, n = 10); cyclophosphamide (CPA) (140 mg/kg, i.p., once a week for 2 weeks, n = 10); temozolomide (TEM) (25 mg/kg, orally, daily for 14 consecutive days, n = 10); yondelis (YON) (0.15 mg/kg, i.v., once a week for 2 weeks, n = 10); pazopanib (PAZ) (100 mg/kg, orally, daily for 14 consecutive days, n = 10). On day 14 from initiation of treatment, all treatments except PAZ significantly inhibited tumor growth compared with untreated control (DOX: p < 0.01, GEM/DOC: p < 0.01, CPA: p < 0.01, TEM: p < 0.01, YON: p < 0.01) on day 14 after initiation. In addition, only GEM/DOC was more significantly effective than DOX (p < 0.05). GEM/DOC could regress the leimyosarcoma in the PDOX model and has important clinical potential for precision individual treatment of leiomyosarcoma patients.]]></description><subject>Animals</subject><subject>Antineoplastic Combined Chemotherapy Protocols - therapeutic use</subject><subject>Body Weight</subject><subject>Cell Proliferation</subject><subject>Deoxycytidine - analogs & derivatives</subject><subject>Deoxycytidine - pharmacology</subject><subject>Deoxycytidine - therapeutic use</subject><subject>Docetaxel</subject><subject>Gemcitabine</subject><subject>Humans</subject><subject>Imaging, Three-Dimensional</subject><subject>Leiomyosarcoma - drug therapy</subject><subject>Leiomyosarcoma - pathology</subject><subject>Luminescent Proteins - metabolism</subject><subject>Mice, Nude</subject><subject>Mice, Transgenic</subject><subject>Neoplasm Invasiveness</subject><subject>Red Fluorescent Protein</subject><subject>Stomach Neoplasms - drug therapy</subject><subject>Stomach Neoplasms - pathology</subject><subject>Taxoids - pharmacology</subject><subject>Taxoids - therapeutic use</subject><subject>Tumor Burden</subject><subject>Xenograft Model Antitumor Assays</subject><issn>1538-4101</issn><issn>1551-4005</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkcluFDEQQC0EIhufEOQjHHrw2ssFCQ1kkSKFA5G4WV6qexx1t1u2GSX_xEfi1iQRObnKrnou1UPonJINJS35QiVvBSV0wwhtNpRTIUj9Bh1TKWklCJFv15i31Vp0hE5SuieEtU1H36Mj1gpWs6Y7Rn-3YTJ-1tmHGYceDzBZn3W5Aqxnh12wkPUDjDjCECElSNiEvMODTjl6i0fwYXoMSUcbJo2XGEbfQzwAV4Kf9zqtiV9z7Cc9gDYj4KXUwJwrB9HvweEQ8y7ksBToA8xhiLrP-JP_-f3292c8BQfjGXrX6zHBh6fzFN1d_Pi1vapubi-vt99uKiuaJldGUsOZc7WgTMtaQAlb0jkOsuWC97UmUpqyA2k7S0nZZm0aZiyAMVLWjJ-irwfu8sdM4GyZMupRLbEMHx9V0F69fpn9Tg1hr6ToumKlAOQBYGNIKUL_0kuJWvWpZ31q1aee9JW-j_9__NL17Iv_A-e5m4g</recordid><startdate>20170603</startdate><enddate>20170603</enddate><creator>Kawaguchi, Kei</creator><creator>Igarashi, Kentaro</creator><creator>Murakami, Takashi</creator><creator>Kiyuna, Tasuku</creator><creator>Nelson, Scott D</creator><creator>Dry, Sarah M</creator><creator>Li, Yunfeng</creator><creator>Russell, Tara A</creator><creator>Singh, Arun S</creator><creator>Chmielowski, Bartosz</creator><creator>Unno, Michiaki</creator><creator>Eilber, Fritz C</creator><creator>Hoffman, Robert M</creator><general>Taylor & Francis</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3912-3601</orcidid><orcidid>https://orcid.org/0000-0002-2374-3320</orcidid><orcidid>https://orcid.org/0000-0003-3336-9333</orcidid></search><sort><creationdate>20170603</creationdate><title>Combination of gemcitabine and docetaxel regresses both gastric leiomyosarcoma proliferation and invasion in an imageable patient-derived orthotopic xenograft (iPDOX) model</title><author>Kawaguchi, Kei ; Igarashi, Kentaro ; Murakami, Takashi ; Kiyuna, Tasuku ; Nelson, Scott D ; Dry, Sarah M ; Li, Yunfeng ; Russell, Tara A ; Singh, Arun S ; Chmielowski, Bartosz ; Unno, Michiaki ; Eilber, Fritz C ; Hoffman, Robert M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-b51b32dd6412a564edd6809d3e58343f6a055b2845c9c100806b72bceebb55623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Antineoplastic Combined Chemotherapy Protocols - therapeutic use</topic><topic>Body Weight</topic><topic>Cell Proliferation</topic><topic>Deoxycytidine - analogs & derivatives</topic><topic>Deoxycytidine - pharmacology</topic><topic>Deoxycytidine - therapeutic use</topic><topic>Docetaxel</topic><topic>Gemcitabine</topic><topic>Humans</topic><topic>Imaging, Three-Dimensional</topic><topic>Leiomyosarcoma - drug therapy</topic><topic>Leiomyosarcoma - pathology</topic><topic>Luminescent Proteins - metabolism</topic><topic>Mice, Nude</topic><topic>Mice, Transgenic</topic><topic>Neoplasm Invasiveness</topic><topic>Red Fluorescent Protein</topic><topic>Stomach Neoplasms - drug therapy</topic><topic>Stomach Neoplasms - pathology</topic><topic>Taxoids - pharmacology</topic><topic>Taxoids - therapeutic use</topic><topic>Tumor Burden</topic><topic>Xenograft Model Antitumor Assays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kawaguchi, Kei</creatorcontrib><creatorcontrib>Igarashi, Kentaro</creatorcontrib><creatorcontrib>Murakami, Takashi</creatorcontrib><creatorcontrib>Kiyuna, Tasuku</creatorcontrib><creatorcontrib>Nelson, Scott D</creatorcontrib><creatorcontrib>Dry, Sarah M</creatorcontrib><creatorcontrib>Li, Yunfeng</creatorcontrib><creatorcontrib>Russell, Tara A</creatorcontrib><creatorcontrib>Singh, Arun S</creatorcontrib><creatorcontrib>Chmielowski, Bartosz</creatorcontrib><creatorcontrib>Unno, Michiaki</creatorcontrib><creatorcontrib>Eilber, Fritz C</creatorcontrib><creatorcontrib>Hoffman, Robert M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell cycle (Georgetown, Tex.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kawaguchi, Kei</au><au>Igarashi, Kentaro</au><au>Murakami, Takashi</au><au>Kiyuna, Tasuku</au><au>Nelson, Scott D</au><au>Dry, Sarah M</au><au>Li, Yunfeng</au><au>Russell, Tara A</au><au>Singh, Arun S</au><au>Chmielowski, Bartosz</au><au>Unno, Michiaki</au><au>Eilber, Fritz C</au><au>Hoffman, Robert M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combination of gemcitabine and docetaxel regresses both gastric leiomyosarcoma proliferation and invasion in an imageable patient-derived orthotopic xenograft (iPDOX) model</atitle><jtitle>Cell cycle (Georgetown, Tex.)</jtitle><addtitle>Cell Cycle</addtitle><date>2017-06-03</date><risdate>2017</risdate><volume>16</volume><issue>11</issue><spage>1063</spage><epage>1069</epage><pages>1063-1069</pages><issn>1538-4101</issn><eissn>1551-4005</eissn><abstract><![CDATA[Gastric leiomyosarcoma is a recalcitrant cancer and the chemotherapy strategy is controversial. The present study used a patient-derived orthotopic xenograft (PDOX) nude mouse model of gastric leiomyosarcoma to identify an effective therapeutic regimen to develop individualized precision medicine for this disease. The gastric leiomyosarcoma obtained from a patient was first grown in transgenic nude mice ubiquitously expressing red fluorescent protein (RFP) to stably label the tumor stroma. The RFP-expressing tumor was then passaged orthotopically in the gastric wall of non-transgenic nude mice to establish an imageable PDOX (iPDOX) model. The bright fluorescent tumor was readily imaged over time to determine drug efficacy. Four weeks after implantation, 70 PDOX nude mice were divided into 7 groups: control without treatment (n = 10); doxorubicin (DOX) (2.4 mg/kg, intraperitoneally (i.p.), once a week for 2 weeks, n = 10); gemcitabine (GEM)/ docetaxel (DOC) (GEM: 100 mg/kg, DOC: 20 mg/kg, i.p., once a week for 2 weeks, n = 10); cyclophosphamide (CPA) (140 mg/kg, i.p., once a week for 2 weeks, n = 10); temozolomide (TEM) (25 mg/kg, orally, daily for 14 consecutive days, n = 10); yondelis (YON) (0.15 mg/kg, i.v., once a week for 2 weeks, n = 10); pazopanib (PAZ) (100 mg/kg, orally, daily for 14 consecutive days, n = 10). On day 14 from initiation of treatment, all treatments except PAZ significantly inhibited tumor growth compared with untreated control (DOX: p < 0.01, GEM/DOC: p < 0.01, CPA: p < 0.01, TEM: p < 0.01, YON: p < 0.01) on day 14 after initiation. In addition, only GEM/DOC was more significantly effective than DOX (p < 0.05). GEM/DOC could regress the leimyosarcoma in the PDOX model and has important clinical potential for precision individual treatment of leiomyosarcoma patients.]]></abstract><cop>United States</cop><pub>Taylor & Francis</pub><pmid>28426279</pmid><doi>10.1080/15384101.2017.1314406</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3912-3601</orcidid><orcidid>https://orcid.org/0000-0002-2374-3320</orcidid><orcidid>https://orcid.org/0000-0003-3336-9333</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1538-4101 |
ispartof | Cell cycle (Georgetown, Tex.), 2017-06, Vol.16 (11), p.1063-1069 |
issn | 1538-4101 1551-4005 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5499841 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Animals Antineoplastic Combined Chemotherapy Protocols - therapeutic use Body Weight Cell Proliferation Deoxycytidine - analogs & derivatives Deoxycytidine - pharmacology Deoxycytidine - therapeutic use Docetaxel Gemcitabine Humans Imaging, Three-Dimensional Leiomyosarcoma - drug therapy Leiomyosarcoma - pathology Luminescent Proteins - metabolism Mice, Nude Mice, Transgenic Neoplasm Invasiveness Red Fluorescent Protein Stomach Neoplasms - drug therapy Stomach Neoplasms - pathology Taxoids - pharmacology Taxoids - therapeutic use Tumor Burden Xenograft Model Antitumor Assays |
title | Combination of gemcitabine and docetaxel regresses both gastric leiomyosarcoma proliferation and invasion in an imageable patient-derived orthotopic xenograft (iPDOX) model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T14%3A07%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combination%20of%20gemcitabine%20and%20docetaxel%20regresses%20both%20gastric%20leiomyosarcoma%20proliferation%20and%20invasion%20in%20an%20imageable%20patient-derived%20orthotopic%20xenograft%20(iPDOX)%20model&rft.jtitle=Cell%20cycle%20(Georgetown,%20Tex.)&rft.au=Kawaguchi,%20Kei&rft.date=2017-06-03&rft.volume=16&rft.issue=11&rft.spage=1063&rft.epage=1069&rft.pages=1063-1069&rft.issn=1538-4101&rft.eissn=1551-4005&rft_id=info:doi/10.1080/15384101.2017.1314406&rft_dat=%3Cpubmed_cross%3E28426279%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/28426279&rfr_iscdi=true |