Statistical analysis of genetic interactions in Tn-Seq data
Tn-Seq is an experimental method for probing the functions of genes through construction of complex random transposon insertion libraries and quantification of each mutant's abundance using next-generation sequencing. An important emerging application of Tn-Seq is for identifying genetic intera...
Gespeichert in:
Veröffentlicht in: | Nucleic acids research 2017-06, Vol.45 (11), p.e93-e93 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e93 |
---|---|
container_issue | 11 |
container_start_page | e93 |
container_title | Nucleic acids research |
container_volume | 45 |
creator | DeJesus, Michael A Nambi, Subhalaxmi Smith, Clare M Baker, Richard E Sassetti, Christopher M Ioerger, Thomas R |
description | Tn-Seq is an experimental method for probing the functions of genes through construction of complex random transposon insertion libraries and quantification of each mutant's abundance using next-generation sequencing. An important emerging application of Tn-Seq is for identifying genetic interactions, which involves comparing Tn mutant libraries generated in different genetic backgrounds (e.g. wild-type strain versus knockout strain). Several analytical methods have been proposed for analyzing Tn-Seq data to identify genetic interactions, including estimating relative fitness ratios and fitting a generalized linear model. However, these have limitations which necessitate an improved approach. We present a hierarchical Bayesian method for identifying genetic interactions through quantifying the statistical significance of changes in enrichment. The analysis involves a four-way comparison of insertion counts across datasets to identify transposon mutants that differentially affect bacterial fitness depending on genetic background. Our approach was applied to Tn-Seq libraries made in isogenic strains of Mycobacterium tuberculosis lacking three different genes of unknown function previously shown to be necessary for optimal fitness during infection. By analyzing the libraries subjected to selection in mice, we were able to distinguish several distinct classes of genetic interactions for each target gene that shed light on their functions and roles during infection. |
doi_str_mv | 10.1093/nar/gkx128 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5499643</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1881262301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-80eb68eeaad91ae68bb9b474ab4e1db5396d960b23268df68a11571820e225843</originalsourceid><addsrcrecordid>eNpVkE1Lw0AQhhdRbK1e_AGSowix-5XtBkGQ4hcUPLSel9lkUlfTTZvdiv33RlqLnoaZeXhneAg5Z_Sa0VwMPbTD-ccX4_qA9JlQPJW54oekTwXNUkal7pGTEN4pZZJl8pj0uBZCair65GYaIboQXQF1Ah7qTXAhaapkjh67aeJ8xBaK6BofuiaZ-XSKq6SECKfkqII64NmuDsjrw_1s_JROXh6fx3eTtBAjHVNN0SqNCFDmDFBpa3MrRxKsRFbaTOSqzBW1XHCly0ppYCwbMc0pcp5pKQbkdpu7XNsFlgX62EJtlq1bQLsxDTjzf-Pdm5k3nyaTea6k6AIudwFts1pjiGbhQoF1DR6bdTBMa8YVF5R16NUWLdomhBar_RlGzY9t09k2W9sdfPH3sT36q1d8A7mkfGY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1881262301</pqid></control><display><type>article</type><title>Statistical analysis of genetic interactions in Tn-Seq data</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>DeJesus, Michael A ; Nambi, Subhalaxmi ; Smith, Clare M ; Baker, Richard E ; Sassetti, Christopher M ; Ioerger, Thomas R</creator><creatorcontrib>DeJesus, Michael A ; Nambi, Subhalaxmi ; Smith, Clare M ; Baker, Richard E ; Sassetti, Christopher M ; Ioerger, Thomas R</creatorcontrib><description>Tn-Seq is an experimental method for probing the functions of genes through construction of complex random transposon insertion libraries and quantification of each mutant's abundance using next-generation sequencing. An important emerging application of Tn-Seq is for identifying genetic interactions, which involves comparing Tn mutant libraries generated in different genetic backgrounds (e.g. wild-type strain versus knockout strain). Several analytical methods have been proposed for analyzing Tn-Seq data to identify genetic interactions, including estimating relative fitness ratios and fitting a generalized linear model. However, these have limitations which necessitate an improved approach. We present a hierarchical Bayesian method for identifying genetic interactions through quantifying the statistical significance of changes in enrichment. The analysis involves a four-way comparison of insertion counts across datasets to identify transposon mutants that differentially affect bacterial fitness depending on genetic background. Our approach was applied to Tn-Seq libraries made in isogenic strains of Mycobacterium tuberculosis lacking three different genes of unknown function previously shown to be necessary for optimal fitness during infection. By analyzing the libraries subjected to selection in mice, we were able to distinguish several distinct classes of genetic interactions for each target gene that shed light on their functions and roles during infection.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkx128</identifier><identifier>PMID: 28334803</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Algorithms ; Bacterial Proteins - genetics ; Bayes Theorem ; Data Interpretation, Statistical ; DNA Transposable Elements ; Epistasis, Genetic ; Gene Frequency ; Gene Knockout Techniques ; Gene Library ; Genes, Bacterial ; Methods Online ; Models, Genetic ; Monte Carlo Method ; Mutagenesis, Insertional ; Mycobacterium tuberculosis - genetics ; Sequence Analysis, DNA - methods</subject><ispartof>Nucleic acids research, 2017-06, Vol.45 (11), p.e93-e93</ispartof><rights>The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.</rights><rights>The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-80eb68eeaad91ae68bb9b474ab4e1db5396d960b23268df68a11571820e225843</citedby><cites>FETCH-LOGICAL-c378t-80eb68eeaad91ae68bb9b474ab4e1db5396d960b23268df68a11571820e225843</cites><orcidid>0000-0003-3867-0299</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5499643/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5499643/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28334803$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>DeJesus, Michael A</creatorcontrib><creatorcontrib>Nambi, Subhalaxmi</creatorcontrib><creatorcontrib>Smith, Clare M</creatorcontrib><creatorcontrib>Baker, Richard E</creatorcontrib><creatorcontrib>Sassetti, Christopher M</creatorcontrib><creatorcontrib>Ioerger, Thomas R</creatorcontrib><title>Statistical analysis of genetic interactions in Tn-Seq data</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Tn-Seq is an experimental method for probing the functions of genes through construction of complex random transposon insertion libraries and quantification of each mutant's abundance using next-generation sequencing. An important emerging application of Tn-Seq is for identifying genetic interactions, which involves comparing Tn mutant libraries generated in different genetic backgrounds (e.g. wild-type strain versus knockout strain). Several analytical methods have been proposed for analyzing Tn-Seq data to identify genetic interactions, including estimating relative fitness ratios and fitting a generalized linear model. However, these have limitations which necessitate an improved approach. We present a hierarchical Bayesian method for identifying genetic interactions through quantifying the statistical significance of changes in enrichment. The analysis involves a four-way comparison of insertion counts across datasets to identify transposon mutants that differentially affect bacterial fitness depending on genetic background. Our approach was applied to Tn-Seq libraries made in isogenic strains of Mycobacterium tuberculosis lacking three different genes of unknown function previously shown to be necessary for optimal fitness during infection. By analyzing the libraries subjected to selection in mice, we were able to distinguish several distinct classes of genetic interactions for each target gene that shed light on their functions and roles during infection.</description><subject>Algorithms</subject><subject>Bacterial Proteins - genetics</subject><subject>Bayes Theorem</subject><subject>Data Interpretation, Statistical</subject><subject>DNA Transposable Elements</subject><subject>Epistasis, Genetic</subject><subject>Gene Frequency</subject><subject>Gene Knockout Techniques</subject><subject>Gene Library</subject><subject>Genes, Bacterial</subject><subject>Methods Online</subject><subject>Models, Genetic</subject><subject>Monte Carlo Method</subject><subject>Mutagenesis, Insertional</subject><subject>Mycobacterium tuberculosis - genetics</subject><subject>Sequence Analysis, DNA - methods</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkE1Lw0AQhhdRbK1e_AGSowix-5XtBkGQ4hcUPLSel9lkUlfTTZvdiv33RlqLnoaZeXhneAg5Z_Sa0VwMPbTD-ccX4_qA9JlQPJW54oekTwXNUkal7pGTEN4pZZJl8pj0uBZCair65GYaIboQXQF1Ah7qTXAhaapkjh67aeJ8xBaK6BofuiaZ-XSKq6SECKfkqII64NmuDsjrw_1s_JROXh6fx3eTtBAjHVNN0SqNCFDmDFBpa3MrRxKsRFbaTOSqzBW1XHCly0ppYCwbMc0pcp5pKQbkdpu7XNsFlgX62EJtlq1bQLsxDTjzf-Pdm5k3nyaTea6k6AIudwFts1pjiGbhQoF1DR6bdTBMa8YVF5R16NUWLdomhBar_RlGzY9t09k2W9sdfPH3sT36q1d8A7mkfGY</recordid><startdate>20170620</startdate><enddate>20170620</enddate><creator>DeJesus, Michael A</creator><creator>Nambi, Subhalaxmi</creator><creator>Smith, Clare M</creator><creator>Baker, Richard E</creator><creator>Sassetti, Christopher M</creator><creator>Ioerger, Thomas R</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3867-0299</orcidid></search><sort><creationdate>20170620</creationdate><title>Statistical analysis of genetic interactions in Tn-Seq data</title><author>DeJesus, Michael A ; Nambi, Subhalaxmi ; Smith, Clare M ; Baker, Richard E ; Sassetti, Christopher M ; Ioerger, Thomas R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-80eb68eeaad91ae68bb9b474ab4e1db5396d960b23268df68a11571820e225843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Bacterial Proteins - genetics</topic><topic>Bayes Theorem</topic><topic>Data Interpretation, Statistical</topic><topic>DNA Transposable Elements</topic><topic>Epistasis, Genetic</topic><topic>Gene Frequency</topic><topic>Gene Knockout Techniques</topic><topic>Gene Library</topic><topic>Genes, Bacterial</topic><topic>Methods Online</topic><topic>Models, Genetic</topic><topic>Monte Carlo Method</topic><topic>Mutagenesis, Insertional</topic><topic>Mycobacterium tuberculosis - genetics</topic><topic>Sequence Analysis, DNA - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DeJesus, Michael A</creatorcontrib><creatorcontrib>Nambi, Subhalaxmi</creatorcontrib><creatorcontrib>Smith, Clare M</creatorcontrib><creatorcontrib>Baker, Richard E</creatorcontrib><creatorcontrib>Sassetti, Christopher M</creatorcontrib><creatorcontrib>Ioerger, Thomas R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DeJesus, Michael A</au><au>Nambi, Subhalaxmi</au><au>Smith, Clare M</au><au>Baker, Richard E</au><au>Sassetti, Christopher M</au><au>Ioerger, Thomas R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical analysis of genetic interactions in Tn-Seq data</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2017-06-20</date><risdate>2017</risdate><volume>45</volume><issue>11</issue><spage>e93</spage><epage>e93</epage><pages>e93-e93</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>Tn-Seq is an experimental method for probing the functions of genes through construction of complex random transposon insertion libraries and quantification of each mutant's abundance using next-generation sequencing. An important emerging application of Tn-Seq is for identifying genetic interactions, which involves comparing Tn mutant libraries generated in different genetic backgrounds (e.g. wild-type strain versus knockout strain). Several analytical methods have been proposed for analyzing Tn-Seq data to identify genetic interactions, including estimating relative fitness ratios and fitting a generalized linear model. However, these have limitations which necessitate an improved approach. We present a hierarchical Bayesian method for identifying genetic interactions through quantifying the statistical significance of changes in enrichment. The analysis involves a four-way comparison of insertion counts across datasets to identify transposon mutants that differentially affect bacterial fitness depending on genetic background. Our approach was applied to Tn-Seq libraries made in isogenic strains of Mycobacterium tuberculosis lacking three different genes of unknown function previously shown to be necessary for optimal fitness during infection. By analyzing the libraries subjected to selection in mice, we were able to distinguish several distinct classes of genetic interactions for each target gene that shed light on their functions and roles during infection.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>28334803</pmid><doi>10.1093/nar/gkx128</doi><orcidid>https://orcid.org/0000-0003-3867-0299</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-1048 |
ispartof | Nucleic acids research, 2017-06, Vol.45 (11), p.e93-e93 |
issn | 0305-1048 1362-4962 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5499643 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Oxford Journals Open Access Collection; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Algorithms Bacterial Proteins - genetics Bayes Theorem Data Interpretation, Statistical DNA Transposable Elements Epistasis, Genetic Gene Frequency Gene Knockout Techniques Gene Library Genes, Bacterial Methods Online Models, Genetic Monte Carlo Method Mutagenesis, Insertional Mycobacterium tuberculosis - genetics Sequence Analysis, DNA - methods |
title | Statistical analysis of genetic interactions in Tn-Seq data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T11%3A55%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20analysis%20of%20genetic%20interactions%20in%20Tn-Seq%20data&rft.jtitle=Nucleic%20acids%20research&rft.au=DeJesus,%20Michael%20A&rft.date=2017-06-20&rft.volume=45&rft.issue=11&rft.spage=e93&rft.epage=e93&rft.pages=e93-e93&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkx128&rft_dat=%3Cproquest_pubme%3E1881262301%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1881262301&rft_id=info:pmid/28334803&rfr_iscdi=true |