Clear: Composition of Likelihoods for Evolve and Resequence Experiments
The advent of next generation sequencing technologies has made whole-genome and whole-population sampling possible, even for eukaryotes with large genomes. With this development, experimental evolution studies can be designed to observe molecular evolution "in action" via evolve-and-resequ...
Gespeichert in:
Veröffentlicht in: | Genetics (Austin) 2017-06, Vol.206 (2), p.1011-1023 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1023 |
---|---|
container_issue | 2 |
container_start_page | 1011 |
container_title | Genetics (Austin) |
container_volume | 206 |
creator | Iranmehr, Arya Akbari, Ali Schlötterer, Christian Bafna, Vineet |
description | The advent of next generation sequencing technologies has made whole-genome and whole-population sampling possible, even for eukaryotes with large genomes. With this development, experimental evolution studies can be designed to observe molecular evolution "in action" via evolve-and-resequence (E&R) experiments. Among other applications, E&R studies can be used to locate the genes and variants responsible for genetic adaptation. Most existing literature on time-series data analysis often assumes large population size, accurate allele frequency estimates, or wide time spans. These assumptions do not hold in many E&R studies. In this article, we propose a method-composition of likelihoods for evolve-and-resequence experiments (Clear)-to identify signatures of selection in small population E&R experiments. Clear takes whole-genome sequences of pools of individuals as input, and properly addresses heterogeneous ascertainment bias resulting from uneven coverage. Clear also provides unbiased estimates of model parameters, including population size, selection strength, and dominance, while being computationally efficient. Extensive simulations show that Clear achieves higher power in detecting and localizing selection over a wide range of parameters, and is robust to variation of coverage. We applied the Clear statistic to multiple E&R experiments, including data from a study of adaptation of
to alternating temperatures and a study of outcrossing yeast populations, and identified multiple regions under selection with genome-wide significance. |
doi_str_mv | 10.1534/genetics.116.197566 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5499160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1886751699</sourcerecordid><originalsourceid>FETCH-LOGICAL-c499t-e1c498cee80124b879196198247a88144af9eea8052fe053ccac70ef3538fa723</originalsourceid><addsrcrecordid>eNpdkU9LAzEQxYMoWqufQJAFL15aM5tNNvEgSKl_oCCInkOazrbR7aYm26Lf3khbqZ5mYN68mcePkDOgfeCsuJpig62zsQ8g-qBKLsQe6YAqWC8XDPZ3-iNyHOMbpVQoLg_JUS6ZEpyKDrkf1GjCdTbw84WPrnW-yXyVjdw71m7m_SRmlQ_ZcOXrFWammWTPGPFjiY3FbPi5wODm2LTxhBxUpo54uqld8no3fBk89EZP94-D21HPFkq1PYRUpUWUFPJiLEsFSoCSeVEaKaEoTKUQjaQ8r5ByZq2xJcWKcSYrU-asS27WvovleI4Tm24HU-tFesOEL-2N038njZvpqV9pnu6DoMngcmMQfIoRWz130WJdmwb9MmqQUpQchFJJevFP-uaXoUnxNKiEgFMqeVKxtcoGH2PA6vcZoPoHlN6C0gmUXoNKW-e7OX53tmTYN5bFkVo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1915350085</pqid></control><display><type>article</type><title>Clear: Composition of Likelihoods for Evolve and Resequence Experiments</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Iranmehr, Arya ; Akbari, Ali ; Schlötterer, Christian ; Bafna, Vineet</creator><creatorcontrib>Iranmehr, Arya ; Akbari, Ali ; Schlötterer, Christian ; Bafna, Vineet</creatorcontrib><description>The advent of next generation sequencing technologies has made whole-genome and whole-population sampling possible, even for eukaryotes with large genomes. With this development, experimental evolution studies can be designed to observe molecular evolution "in action" via evolve-and-resequence (E&R) experiments. Among other applications, E&R studies can be used to locate the genes and variants responsible for genetic adaptation. Most existing literature on time-series data analysis often assumes large population size, accurate allele frequency estimates, or wide time spans. These assumptions do not hold in many E&R studies. In this article, we propose a method-composition of likelihoods for evolve-and-resequence experiments (Clear)-to identify signatures of selection in small population E&R experiments. Clear takes whole-genome sequences of pools of individuals as input, and properly addresses heterogeneous ascertainment bias resulting from uneven coverage. Clear also provides unbiased estimates of model parameters, including population size, selection strength, and dominance, while being computationally efficient. Extensive simulations show that Clear achieves higher power in detecting and localizing selection over a wide range of parameters, and is robust to variation of coverage. We applied the Clear statistic to multiple E&R experiments, including data from a study of adaptation of
to alternating temperatures and a study of outcrossing yeast populations, and identified multiple regions under selection with genome-wide significance.</description><identifier>ISSN: 1943-2631</identifier><identifier>ISSN: 0016-6731</identifier><identifier>EISSN: 1943-2631</identifier><identifier>DOI: 10.1534/genetics.116.197566</identifier><identifier>PMID: 28396506</identifier><language>eng</language><publisher>United States: Genetics Society of America</publisher><subject>Adaptation ; Adaptation, Physiological - genetics ; Animals ; Drosophila melanogaster - genetics ; Drug resistance ; Estimates ; Eukaryotes ; Evolution & development ; Evolution, Molecular ; Evolutionary design method ; Fruit flies ; Gene Frequency ; Gene sequencing ; Genetics ; Genome - genetics ; Genomes ; High-Throughput Nucleotide Sequencing ; Hypoxia ; Insects ; Investigations ; Molecular evolution ; Mutation ; Parameter estimation ; Parameter robustness ; Population Density ; Population genetics ; Population number ; Population sampling ; Population studies ; Populations ; Sampling ; Selection, Genetic ; Studies ; Yeast</subject><ispartof>Genetics (Austin), 2017-06, Vol.206 (2), p.1011-1023</ispartof><rights>Copyright © 2017 by the Genetics Society of America.</rights><rights>Copyright Genetics Society of America Jun 2017</rights><rights>Copyright © 2017 by the Genetics Society of America 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c499t-e1c498cee80124b879196198247a88144af9eea8052fe053ccac70ef3538fa723</citedby><cites>FETCH-LOGICAL-c499t-e1c498cee80124b879196198247a88144af9eea8052fe053ccac70ef3538fa723</cites><orcidid>0000-0003-4710-6526 ; 0000-0002-5000-5876 ; 0000-0002-8404-9797</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28396506$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Iranmehr, Arya</creatorcontrib><creatorcontrib>Akbari, Ali</creatorcontrib><creatorcontrib>Schlötterer, Christian</creatorcontrib><creatorcontrib>Bafna, Vineet</creatorcontrib><title>Clear: Composition of Likelihoods for Evolve and Resequence Experiments</title><title>Genetics (Austin)</title><addtitle>Genetics</addtitle><description>The advent of next generation sequencing technologies has made whole-genome and whole-population sampling possible, even for eukaryotes with large genomes. With this development, experimental evolution studies can be designed to observe molecular evolution "in action" via evolve-and-resequence (E&R) experiments. Among other applications, E&R studies can be used to locate the genes and variants responsible for genetic adaptation. Most existing literature on time-series data analysis often assumes large population size, accurate allele frequency estimates, or wide time spans. These assumptions do not hold in many E&R studies. In this article, we propose a method-composition of likelihoods for evolve-and-resequence experiments (Clear)-to identify signatures of selection in small population E&R experiments. Clear takes whole-genome sequences of pools of individuals as input, and properly addresses heterogeneous ascertainment bias resulting from uneven coverage. Clear also provides unbiased estimates of model parameters, including population size, selection strength, and dominance, while being computationally efficient. Extensive simulations show that Clear achieves higher power in detecting and localizing selection over a wide range of parameters, and is robust to variation of coverage. We applied the Clear statistic to multiple E&R experiments, including data from a study of adaptation of
to alternating temperatures and a study of outcrossing yeast populations, and identified multiple regions under selection with genome-wide significance.</description><subject>Adaptation</subject><subject>Adaptation, Physiological - genetics</subject><subject>Animals</subject><subject>Drosophila melanogaster - genetics</subject><subject>Drug resistance</subject><subject>Estimates</subject><subject>Eukaryotes</subject><subject>Evolution & development</subject><subject>Evolution, Molecular</subject><subject>Evolutionary design method</subject><subject>Fruit flies</subject><subject>Gene Frequency</subject><subject>Gene sequencing</subject><subject>Genetics</subject><subject>Genome - genetics</subject><subject>Genomes</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>Hypoxia</subject><subject>Insects</subject><subject>Investigations</subject><subject>Molecular evolution</subject><subject>Mutation</subject><subject>Parameter estimation</subject><subject>Parameter robustness</subject><subject>Population Density</subject><subject>Population genetics</subject><subject>Population number</subject><subject>Population sampling</subject><subject>Population studies</subject><subject>Populations</subject><subject>Sampling</subject><subject>Selection, Genetic</subject><subject>Studies</subject><subject>Yeast</subject><issn>1943-2631</issn><issn>0016-6731</issn><issn>1943-2631</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkU9LAzEQxYMoWqufQJAFL15aM5tNNvEgSKl_oCCInkOazrbR7aYm26Lf3khbqZ5mYN68mcePkDOgfeCsuJpig62zsQ8g-qBKLsQe6YAqWC8XDPZ3-iNyHOMbpVQoLg_JUS6ZEpyKDrkf1GjCdTbw84WPrnW-yXyVjdw71m7m_SRmlQ_ZcOXrFWammWTPGPFjiY3FbPi5wODm2LTxhBxUpo54uqld8no3fBk89EZP94-D21HPFkq1PYRUpUWUFPJiLEsFSoCSeVEaKaEoTKUQjaQ8r5ByZq2xJcWKcSYrU-asS27WvovleI4Tm24HU-tFesOEL-2N038njZvpqV9pnu6DoMngcmMQfIoRWz130WJdmwb9MmqQUpQchFJJevFP-uaXoUnxNKiEgFMqeVKxtcoGH2PA6vcZoPoHlN6C0gmUXoNKW-e7OX53tmTYN5bFkVo</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Iranmehr, Arya</creator><creator>Akbari, Ali</creator><creator>Schlötterer, Christian</creator><creator>Bafna, Vineet</creator><general>Genetics Society of America</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7QP</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0R</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4710-6526</orcidid><orcidid>https://orcid.org/0000-0002-5000-5876</orcidid><orcidid>https://orcid.org/0000-0002-8404-9797</orcidid></search><sort><creationdate>20170601</creationdate><title>Clear: Composition of Likelihoods for Evolve and Resequence Experiments</title><author>Iranmehr, Arya ; Akbari, Ali ; Schlötterer, Christian ; Bafna, Vineet</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c499t-e1c498cee80124b879196198247a88144af9eea8052fe053ccac70ef3538fa723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adaptation</topic><topic>Adaptation, Physiological - genetics</topic><topic>Animals</topic><topic>Drosophila melanogaster - genetics</topic><topic>Drug resistance</topic><topic>Estimates</topic><topic>Eukaryotes</topic><topic>Evolution & development</topic><topic>Evolution, Molecular</topic><topic>Evolutionary design method</topic><topic>Fruit flies</topic><topic>Gene Frequency</topic><topic>Gene sequencing</topic><topic>Genetics</topic><topic>Genome - genetics</topic><topic>Genomes</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>Hypoxia</topic><topic>Insects</topic><topic>Investigations</topic><topic>Molecular evolution</topic><topic>Mutation</topic><topic>Parameter estimation</topic><topic>Parameter robustness</topic><topic>Population Density</topic><topic>Population genetics</topic><topic>Population number</topic><topic>Population sampling</topic><topic>Population studies</topic><topic>Populations</topic><topic>Sampling</topic><topic>Selection, Genetic</topic><topic>Studies</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iranmehr, Arya</creatorcontrib><creatorcontrib>Akbari, Ali</creatorcontrib><creatorcontrib>Schlötterer, Christian</creatorcontrib><creatorcontrib>Bafna, Vineet</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Consumer Health Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genetics (Austin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iranmehr, Arya</au><au>Akbari, Ali</au><au>Schlötterer, Christian</au><au>Bafna, Vineet</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Clear: Composition of Likelihoods for Evolve and Resequence Experiments</atitle><jtitle>Genetics (Austin)</jtitle><addtitle>Genetics</addtitle><date>2017-06-01</date><risdate>2017</risdate><volume>206</volume><issue>2</issue><spage>1011</spage><epage>1023</epage><pages>1011-1023</pages><issn>1943-2631</issn><issn>0016-6731</issn><eissn>1943-2631</eissn><abstract>The advent of next generation sequencing technologies has made whole-genome and whole-population sampling possible, even for eukaryotes with large genomes. With this development, experimental evolution studies can be designed to observe molecular evolution "in action" via evolve-and-resequence (E&R) experiments. Among other applications, E&R studies can be used to locate the genes and variants responsible for genetic adaptation. Most existing literature on time-series data analysis often assumes large population size, accurate allele frequency estimates, or wide time spans. These assumptions do not hold in many E&R studies. In this article, we propose a method-composition of likelihoods for evolve-and-resequence experiments (Clear)-to identify signatures of selection in small population E&R experiments. Clear takes whole-genome sequences of pools of individuals as input, and properly addresses heterogeneous ascertainment bias resulting from uneven coverage. Clear also provides unbiased estimates of model parameters, including population size, selection strength, and dominance, while being computationally efficient. Extensive simulations show that Clear achieves higher power in detecting and localizing selection over a wide range of parameters, and is robust to variation of coverage. We applied the Clear statistic to multiple E&R experiments, including data from a study of adaptation of
to alternating temperatures and a study of outcrossing yeast populations, and identified multiple regions under selection with genome-wide significance.</abstract><cop>United States</cop><pub>Genetics Society of America</pub><pmid>28396506</pmid><doi>10.1534/genetics.116.197566</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4710-6526</orcidid><orcidid>https://orcid.org/0000-0002-5000-5876</orcidid><orcidid>https://orcid.org/0000-0002-8404-9797</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1943-2631 |
ispartof | Genetics (Austin), 2017-06, Vol.206 (2), p.1011-1023 |
issn | 1943-2631 0016-6731 1943-2631 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5499160 |
source | Oxford University Press Journals All Titles (1996-Current); MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Adaptation Adaptation, Physiological - genetics Animals Drosophila melanogaster - genetics Drug resistance Estimates Eukaryotes Evolution & development Evolution, Molecular Evolutionary design method Fruit flies Gene Frequency Gene sequencing Genetics Genome - genetics Genomes High-Throughput Nucleotide Sequencing Hypoxia Insects Investigations Molecular evolution Mutation Parameter estimation Parameter robustness Population Density Population genetics Population number Population sampling Population studies Populations Sampling Selection, Genetic Studies Yeast |
title | Clear: Composition of Likelihoods for Evolve and Resequence Experiments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T06%3A09%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Clear:%20Composition%20of%20Likelihoods%20for%20Evolve%20and%20Resequence%20Experiments&rft.jtitle=Genetics%20(Austin)&rft.au=Iranmehr,%20Arya&rft.date=2017-06-01&rft.volume=206&rft.issue=2&rft.spage=1011&rft.epage=1023&rft.pages=1011-1023&rft.issn=1943-2631&rft.eissn=1943-2631&rft_id=info:doi/10.1534/genetics.116.197566&rft_dat=%3Cproquest_pubme%3E1886751699%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1915350085&rft_id=info:pmid/28396506&rfr_iscdi=true |