Broccoli-Derived Nanoparticle Inhibits Mouse Colitis by Activating Dendritic Cell AMP-Activated Protein Kinase
The intestinal immune system is continuously exposed to massive amounts of nanoparticles derived from food. Whether nanoparticles from plants we eat daily have a role in maintaining intestinal immune homeostasis is poorly defined. Here, we present evidence supporting our hypothesis that edible nanop...
Gespeichert in:
Veröffentlicht in: | Molecular therapy 2017-07, Vol.25 (7), p.1641-1654 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1654 |
---|---|
container_issue | 7 |
container_start_page | 1641 |
container_title | Molecular therapy |
container_volume | 25 |
creator | Deng, Zhongbin Rong, Yuan Teng, Yun Mu, Jingyao Zhuang, Xiaoying Tseng, Michael Samykutty, Abhilash Zhang, Lifeng Yan, Jun Miller, Donald Suttles, Jill Zhang, Huang-Ge |
description | The intestinal immune system is continuously exposed to massive amounts of nanoparticles derived from food. Whether nanoparticles from plants we eat daily have a role in maintaining intestinal immune homeostasis is poorly defined. Here, we present evidence supporting our hypothesis that edible nanoparticles regulate intestinal immune homeostasis by targeting dendritic cells (DCs). Using three mouse colitis models, our data show that orally given nanoparticles isolated from broccoli extracts protect mice against colitis. Broccoli-derived nanoparticle (BDN)-mediated activation of adenosine monophosphate-activated protein kinase (AMPK) in DCs plays a role in not only prevention of DC activation but also induction of tolerant DCs. Adoptively transferring DCs pre-pulsed with total BDN lipids, but not sulforaphane (SFN)-depleted BDN lipids, prevented DSS-induced colitis in C57BL/6 (B6) mice, supporting the role of BDN SFN in the induction of DC tolerance. Adoptively transferring AMPK+/+, but not AMPK−/−, DCs pre-pulsed with SFN prevented DSS-induced colitis in B6 mice, further supporting the DC AMPK role in SFN-mediated prevention of DSS-induced colitis. This finding could open new preventive or therapeutic avenues to address intestinal-related inflammatory diseases via activating AMPK.
The intestinal immune system is continuously exposed to massive amounts of nanoparticles derived from food. As proof of concept, in this issue of Molecular Therapy, Deng et al. show that nanoparticles isolated from broccoli extracts protected mice from developing colitis by induction of tolerant dendritic cells through the adenosine monophosphate-activated protein kinase-mediated pathway. |
doi_str_mv | 10.1016/j.ymthe.2017.01.025 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5498816</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1525001617300643</els_id><sourcerecordid>2198007620</sourcerecordid><originalsourceid>FETCH-LOGICAL-c553t-28e96eb92ec5f8e45f3a0b39f2d21292acbba1080efe3602d14476588b46c0343</originalsourceid><addsrcrecordid>eNp9kU1v2zAMhoVixfqx_YICg4Cd7UqyJcuHDcjS9QP9WA_bWZBlulHgSJmkBMi_n9qkQXfpiQT58CXBF6EzSkpKqDifl5tFmkHJCG1KQkvC-AE6ppzxghBWf9jnVByhkxjnOaO8FR_REZOsqZtWHiP3I3hj_GiLCwh2DT1-0M4vdUjWjIBv3Mx2NkV871cR8DSDyUbcbfDEJLvWybonfAGuD7lu8BTGEU_uH4tdN8s9Bp_AOnxrnY7wCR0OeozweRdP0Z_Ln7-n18Xdr6ub6eSuMJxXqWASWgFdy8DwQULNh0qTrmoH1jPKWqZN12lKJIEBKkFYT-u6EVzKrhaGVHV1ir5vdZerbgG9AZeCHtUy2IUOG-W1Vf93nJ2pJ79WvG6lpCILfN0JBP93BTGpuV8Fl29WjLaSkEYwkqlqS5ngYwww7DdQop5NUnP1YpJ6NkkRqrJJeerL2-P2M6-uZODbFoD8orWFoKKx4Az0NoBJqvf23QX_AJ7Gpa0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2198007620</pqid></control><display><type>article</type><title>Broccoli-Derived Nanoparticle Inhibits Mouse Colitis by Activating Dendritic Cell AMP-Activated Protein Kinase</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Deng, Zhongbin ; Rong, Yuan ; Teng, Yun ; Mu, Jingyao ; Zhuang, Xiaoying ; Tseng, Michael ; Samykutty, Abhilash ; Zhang, Lifeng ; Yan, Jun ; Miller, Donald ; Suttles, Jill ; Zhang, Huang-Ge</creator><creatorcontrib>Deng, Zhongbin ; Rong, Yuan ; Teng, Yun ; Mu, Jingyao ; Zhuang, Xiaoying ; Tseng, Michael ; Samykutty, Abhilash ; Zhang, Lifeng ; Yan, Jun ; Miller, Donald ; Suttles, Jill ; Zhang, Huang-Ge</creatorcontrib><description>The intestinal immune system is continuously exposed to massive amounts of nanoparticles derived from food. Whether nanoparticles from plants we eat daily have a role in maintaining intestinal immune homeostasis is poorly defined. Here, we present evidence supporting our hypothesis that edible nanoparticles regulate intestinal immune homeostasis by targeting dendritic cells (DCs). Using three mouse colitis models, our data show that orally given nanoparticles isolated from broccoli extracts protect mice against colitis. Broccoli-derived nanoparticle (BDN)-mediated activation of adenosine monophosphate-activated protein kinase (AMPK) in DCs plays a role in not only prevention of DC activation but also induction of tolerant DCs. Adoptively transferring DCs pre-pulsed with total BDN lipids, but not sulforaphane (SFN)-depleted BDN lipids, prevented DSS-induced colitis in C57BL/6 (B6) mice, supporting the role of BDN SFN in the induction of DC tolerance. Adoptively transferring AMPK+/+, but not AMPK−/−, DCs pre-pulsed with SFN prevented DSS-induced colitis in B6 mice, further supporting the DC AMPK role in SFN-mediated prevention of DSS-induced colitis. This finding could open new preventive or therapeutic avenues to address intestinal-related inflammatory diseases via activating AMPK.
The intestinal immune system is continuously exposed to massive amounts of nanoparticles derived from food. As proof of concept, in this issue of Molecular Therapy, Deng et al. show that nanoparticles isolated from broccoli extracts protected mice from developing colitis by induction of tolerant dendritic cells through the adenosine monophosphate-activated protein kinase-mediated pathway.</description><identifier>ISSN: 1525-0016</identifier><identifier>EISSN: 1525-0024</identifier><identifier>DOI: 10.1016/j.ymthe.2017.01.025</identifier><identifier>PMID: 28274798</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adenosine kinase ; Administration, Oral ; Adoptive Transfer ; AMP ; AMP-activated protein kinase ; AMP-Activated Protein Kinases - genetics ; AMP-Activated Protein Kinases - metabolism ; AMPK ; Animal models ; Animals ; Anti-Inflammatory Agents - chemistry ; Anti-Inflammatory Agents - metabolism ; Anti-Inflammatory Agents - pharmacology ; Brassica - chemistry ; broccoli nanoparticles ; Cell activation ; Colitis ; Colitis, Ulcerative - chemically induced ; Colitis, Ulcerative - immunology ; Colitis, Ulcerative - pathology ; Colitis, Ulcerative - prevention & control ; Colon ; Cytokines ; Dendritic cells ; Dendritic Cells - drug effects ; Dendritic Cells - immunology ; Dendritic Cells - pathology ; Dendritic Cells - transplantation ; Disease Models, Animal ; Disease prevention ; edible plant and mammalia ; Enzyme Activation - drug effects ; Food ; Food plants ; Gene Expression ; gut immune homeostasis ; Homeostasis ; Humans ; Hypotheses ; Immune system ; Immune Tolerance ; Immunological tolerance ; Inflammatory bowel disease ; Inflammatory diseases ; Intestine ; Isothiocyanates - chemistry ; Kinases ; Lipids ; Lipids - isolation & purification ; Lipids - pharmacology ; Lymphocytes ; Methods ; Mice ; Mice, Inbred C57BL ; Nanoparticles ; Nanoparticles - administration & dosage ; Nanoparticles - chemistry ; Original ; Plant Extracts - chemistry ; Proteins ; Rodents ; Sodium Dodecyl Sulfate ; Sulforaphane ; tolerogenic DCs ; transkingdom interaction ; Tumor necrosis factor-TNF ; Vegetables</subject><ispartof>Molecular therapy, 2017-07, Vol.25 (7), p.1641-1654</ispartof><rights>2017 The American Society of Gene and Cell Therapy</rights><rights>Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.</rights><rights>2017. The American Society of Gene and Cell Therapy</rights><rights>2017 The American Society of Gene and Cell Therapy. 2017 The American Society of Gene and Cell Therapy</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c553t-28e96eb92ec5f8e45f3a0b39f2d21292acbba1080efe3602d14476588b46c0343</citedby><cites>FETCH-LOGICAL-c553t-28e96eb92ec5f8e45f3a0b39f2d21292acbba1080efe3602d14476588b46c0343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5498816/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5498816/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28274798$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Deng, Zhongbin</creatorcontrib><creatorcontrib>Rong, Yuan</creatorcontrib><creatorcontrib>Teng, Yun</creatorcontrib><creatorcontrib>Mu, Jingyao</creatorcontrib><creatorcontrib>Zhuang, Xiaoying</creatorcontrib><creatorcontrib>Tseng, Michael</creatorcontrib><creatorcontrib>Samykutty, Abhilash</creatorcontrib><creatorcontrib>Zhang, Lifeng</creatorcontrib><creatorcontrib>Yan, Jun</creatorcontrib><creatorcontrib>Miller, Donald</creatorcontrib><creatorcontrib>Suttles, Jill</creatorcontrib><creatorcontrib>Zhang, Huang-Ge</creatorcontrib><title>Broccoli-Derived Nanoparticle Inhibits Mouse Colitis by Activating Dendritic Cell AMP-Activated Protein Kinase</title><title>Molecular therapy</title><addtitle>Mol Ther</addtitle><description>The intestinal immune system is continuously exposed to massive amounts of nanoparticles derived from food. Whether nanoparticles from plants we eat daily have a role in maintaining intestinal immune homeostasis is poorly defined. Here, we present evidence supporting our hypothesis that edible nanoparticles regulate intestinal immune homeostasis by targeting dendritic cells (DCs). Using three mouse colitis models, our data show that orally given nanoparticles isolated from broccoli extracts protect mice against colitis. Broccoli-derived nanoparticle (BDN)-mediated activation of adenosine monophosphate-activated protein kinase (AMPK) in DCs plays a role in not only prevention of DC activation but also induction of tolerant DCs. Adoptively transferring DCs pre-pulsed with total BDN lipids, but not sulforaphane (SFN)-depleted BDN lipids, prevented DSS-induced colitis in C57BL/6 (B6) mice, supporting the role of BDN SFN in the induction of DC tolerance. Adoptively transferring AMPK+/+, but not AMPK−/−, DCs pre-pulsed with SFN prevented DSS-induced colitis in B6 mice, further supporting the DC AMPK role in SFN-mediated prevention of DSS-induced colitis. This finding could open new preventive or therapeutic avenues to address intestinal-related inflammatory diseases via activating AMPK.
The intestinal immune system is continuously exposed to massive amounts of nanoparticles derived from food. As proof of concept, in this issue of Molecular Therapy, Deng et al. show that nanoparticles isolated from broccoli extracts protected mice from developing colitis by induction of tolerant dendritic cells through the adenosine monophosphate-activated protein kinase-mediated pathway.</description><subject>Adenosine kinase</subject><subject>Administration, Oral</subject><subject>Adoptive Transfer</subject><subject>AMP</subject><subject>AMP-activated protein kinase</subject><subject>AMP-Activated Protein Kinases - genetics</subject><subject>AMP-Activated Protein Kinases - metabolism</subject><subject>AMPK</subject><subject>Animal models</subject><subject>Animals</subject><subject>Anti-Inflammatory Agents - chemistry</subject><subject>Anti-Inflammatory Agents - metabolism</subject><subject>Anti-Inflammatory Agents - pharmacology</subject><subject>Brassica - chemistry</subject><subject>broccoli nanoparticles</subject><subject>Cell activation</subject><subject>Colitis</subject><subject>Colitis, Ulcerative - chemically induced</subject><subject>Colitis, Ulcerative - immunology</subject><subject>Colitis, Ulcerative - pathology</subject><subject>Colitis, Ulcerative - prevention & control</subject><subject>Colon</subject><subject>Cytokines</subject><subject>Dendritic cells</subject><subject>Dendritic Cells - drug effects</subject><subject>Dendritic Cells - immunology</subject><subject>Dendritic Cells - pathology</subject><subject>Dendritic Cells - transplantation</subject><subject>Disease Models, Animal</subject><subject>Disease prevention</subject><subject>edible plant and mammalia</subject><subject>Enzyme Activation - drug effects</subject><subject>Food</subject><subject>Food plants</subject><subject>Gene Expression</subject><subject>gut immune homeostasis</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Hypotheses</subject><subject>Immune system</subject><subject>Immune Tolerance</subject><subject>Immunological tolerance</subject><subject>Inflammatory bowel disease</subject><subject>Inflammatory diseases</subject><subject>Intestine</subject><subject>Isothiocyanates - chemistry</subject><subject>Kinases</subject><subject>Lipids</subject><subject>Lipids - isolation & purification</subject><subject>Lipids - pharmacology</subject><subject>Lymphocytes</subject><subject>Methods</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Nanoparticles</subject><subject>Nanoparticles - administration & dosage</subject><subject>Nanoparticles - chemistry</subject><subject>Original</subject><subject>Plant Extracts - chemistry</subject><subject>Proteins</subject><subject>Rodents</subject><subject>Sodium Dodecyl Sulfate</subject><subject>Sulforaphane</subject><subject>tolerogenic DCs</subject><subject>transkingdom interaction</subject><subject>Tumor necrosis factor-TNF</subject><subject>Vegetables</subject><issn>1525-0016</issn><issn>1525-0024</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kU1v2zAMhoVixfqx_YICg4Cd7UqyJcuHDcjS9QP9WA_bWZBlulHgSJmkBMi_n9qkQXfpiQT58CXBF6EzSkpKqDifl5tFmkHJCG1KQkvC-AE6ppzxghBWf9jnVByhkxjnOaO8FR_REZOsqZtWHiP3I3hj_GiLCwh2DT1-0M4vdUjWjIBv3Mx2NkV871cR8DSDyUbcbfDEJLvWybonfAGuD7lu8BTGEU_uH4tdN8s9Bp_AOnxrnY7wCR0OeozweRdP0Z_Ln7-n18Xdr6ub6eSuMJxXqWASWgFdy8DwQULNh0qTrmoH1jPKWqZN12lKJIEBKkFYT-u6EVzKrhaGVHV1ir5vdZerbgG9AZeCHtUy2IUOG-W1Vf93nJ2pJ79WvG6lpCILfN0JBP93BTGpuV8Fl29WjLaSkEYwkqlqS5ngYwww7DdQop5NUnP1YpJ6NkkRqrJJeerL2-P2M6-uZODbFoD8orWFoKKx4Az0NoBJqvf23QX_AJ7Gpa0</recordid><startdate>20170705</startdate><enddate>20170705</enddate><creator>Deng, Zhongbin</creator><creator>Rong, Yuan</creator><creator>Teng, Yun</creator><creator>Mu, Jingyao</creator><creator>Zhuang, Xiaoying</creator><creator>Tseng, Michael</creator><creator>Samykutty, Abhilash</creator><creator>Zhang, Lifeng</creator><creator>Yan, Jun</creator><creator>Miller, Donald</creator><creator>Suttles, Jill</creator><creator>Zhang, Huang-Ge</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><general>American Society of Gene & Cell Therapy</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope></search><sort><creationdate>20170705</creationdate><title>Broccoli-Derived Nanoparticle Inhibits Mouse Colitis by Activating Dendritic Cell AMP-Activated Protein Kinase</title><author>Deng, Zhongbin ; Rong, Yuan ; Teng, Yun ; Mu, Jingyao ; Zhuang, Xiaoying ; Tseng, Michael ; Samykutty, Abhilash ; Zhang, Lifeng ; Yan, Jun ; Miller, Donald ; Suttles, Jill ; Zhang, Huang-Ge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c553t-28e96eb92ec5f8e45f3a0b39f2d21292acbba1080efe3602d14476588b46c0343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adenosine kinase</topic><topic>Administration, Oral</topic><topic>Adoptive Transfer</topic><topic>AMP</topic><topic>AMP-activated protein kinase</topic><topic>AMP-Activated Protein Kinases - genetics</topic><topic>AMP-Activated Protein Kinases - metabolism</topic><topic>AMPK</topic><topic>Animal models</topic><topic>Animals</topic><topic>Anti-Inflammatory Agents - chemistry</topic><topic>Anti-Inflammatory Agents - metabolism</topic><topic>Anti-Inflammatory Agents - pharmacology</topic><topic>Brassica - chemistry</topic><topic>broccoli nanoparticles</topic><topic>Cell activation</topic><topic>Colitis</topic><topic>Colitis, Ulcerative - chemically induced</topic><topic>Colitis, Ulcerative - immunology</topic><topic>Colitis, Ulcerative - pathology</topic><topic>Colitis, Ulcerative - prevention & control</topic><topic>Colon</topic><topic>Cytokines</topic><topic>Dendritic cells</topic><topic>Dendritic Cells - drug effects</topic><topic>Dendritic Cells - immunology</topic><topic>Dendritic Cells - pathology</topic><topic>Dendritic Cells - transplantation</topic><topic>Disease Models, Animal</topic><topic>Disease prevention</topic><topic>edible plant and mammalia</topic><topic>Enzyme Activation - drug effects</topic><topic>Food</topic><topic>Food plants</topic><topic>Gene Expression</topic><topic>gut immune homeostasis</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Hypotheses</topic><topic>Immune system</topic><topic>Immune Tolerance</topic><topic>Immunological tolerance</topic><topic>Inflammatory bowel disease</topic><topic>Inflammatory diseases</topic><topic>Intestine</topic><topic>Isothiocyanates - chemistry</topic><topic>Kinases</topic><topic>Lipids</topic><topic>Lipids - isolation & purification</topic><topic>Lipids - pharmacology</topic><topic>Lymphocytes</topic><topic>Methods</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Nanoparticles</topic><topic>Nanoparticles - administration & dosage</topic><topic>Nanoparticles - chemistry</topic><topic>Original</topic><topic>Plant Extracts - chemistry</topic><topic>Proteins</topic><topic>Rodents</topic><topic>Sodium Dodecyl Sulfate</topic><topic>Sulforaphane</topic><topic>tolerogenic DCs</topic><topic>transkingdom interaction</topic><topic>Tumor necrosis factor-TNF</topic><topic>Vegetables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Zhongbin</creatorcontrib><creatorcontrib>Rong, Yuan</creatorcontrib><creatorcontrib>Teng, Yun</creatorcontrib><creatorcontrib>Mu, Jingyao</creatorcontrib><creatorcontrib>Zhuang, Xiaoying</creatorcontrib><creatorcontrib>Tseng, Michael</creatorcontrib><creatorcontrib>Samykutty, Abhilash</creatorcontrib><creatorcontrib>Zhang, Lifeng</creatorcontrib><creatorcontrib>Yan, Jun</creatorcontrib><creatorcontrib>Miller, Donald</creatorcontrib><creatorcontrib>Suttles, Jill</creatorcontrib><creatorcontrib>Zhang, Huang-Ge</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular therapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Zhongbin</au><au>Rong, Yuan</au><au>Teng, Yun</au><au>Mu, Jingyao</au><au>Zhuang, Xiaoying</au><au>Tseng, Michael</au><au>Samykutty, Abhilash</au><au>Zhang, Lifeng</au><au>Yan, Jun</au><au>Miller, Donald</au><au>Suttles, Jill</au><au>Zhang, Huang-Ge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Broccoli-Derived Nanoparticle Inhibits Mouse Colitis by Activating Dendritic Cell AMP-Activated Protein Kinase</atitle><jtitle>Molecular therapy</jtitle><addtitle>Mol Ther</addtitle><date>2017-07-05</date><risdate>2017</risdate><volume>25</volume><issue>7</issue><spage>1641</spage><epage>1654</epage><pages>1641-1654</pages><issn>1525-0016</issn><eissn>1525-0024</eissn><abstract>The intestinal immune system is continuously exposed to massive amounts of nanoparticles derived from food. Whether nanoparticles from plants we eat daily have a role in maintaining intestinal immune homeostasis is poorly defined. Here, we present evidence supporting our hypothesis that edible nanoparticles regulate intestinal immune homeostasis by targeting dendritic cells (DCs). Using three mouse colitis models, our data show that orally given nanoparticles isolated from broccoli extracts protect mice against colitis. Broccoli-derived nanoparticle (BDN)-mediated activation of adenosine monophosphate-activated protein kinase (AMPK) in DCs plays a role in not only prevention of DC activation but also induction of tolerant DCs. Adoptively transferring DCs pre-pulsed with total BDN lipids, but not sulforaphane (SFN)-depleted BDN lipids, prevented DSS-induced colitis in C57BL/6 (B6) mice, supporting the role of BDN SFN in the induction of DC tolerance. Adoptively transferring AMPK+/+, but not AMPK−/−, DCs pre-pulsed with SFN prevented DSS-induced colitis in B6 mice, further supporting the DC AMPK role in SFN-mediated prevention of DSS-induced colitis. This finding could open new preventive or therapeutic avenues to address intestinal-related inflammatory diseases via activating AMPK.
The intestinal immune system is continuously exposed to massive amounts of nanoparticles derived from food. As proof of concept, in this issue of Molecular Therapy, Deng et al. show that nanoparticles isolated from broccoli extracts protected mice from developing colitis by induction of tolerant dendritic cells through the adenosine monophosphate-activated protein kinase-mediated pathway.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>28274798</pmid><doi>10.1016/j.ymthe.2017.01.025</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1525-0016 |
ispartof | Molecular therapy, 2017-07, Vol.25 (7), p.1641-1654 |
issn | 1525-0016 1525-0024 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5498816 |
source | MEDLINE; PubMed Central; Alma/SFX Local Collection; EZB Electronic Journals Library |
subjects | Adenosine kinase Administration, Oral Adoptive Transfer AMP AMP-activated protein kinase AMP-Activated Protein Kinases - genetics AMP-Activated Protein Kinases - metabolism AMPK Animal models Animals Anti-Inflammatory Agents - chemistry Anti-Inflammatory Agents - metabolism Anti-Inflammatory Agents - pharmacology Brassica - chemistry broccoli nanoparticles Cell activation Colitis Colitis, Ulcerative - chemically induced Colitis, Ulcerative - immunology Colitis, Ulcerative - pathology Colitis, Ulcerative - prevention & control Colon Cytokines Dendritic cells Dendritic Cells - drug effects Dendritic Cells - immunology Dendritic Cells - pathology Dendritic Cells - transplantation Disease Models, Animal Disease prevention edible plant and mammalia Enzyme Activation - drug effects Food Food plants Gene Expression gut immune homeostasis Homeostasis Humans Hypotheses Immune system Immune Tolerance Immunological tolerance Inflammatory bowel disease Inflammatory diseases Intestine Isothiocyanates - chemistry Kinases Lipids Lipids - isolation & purification Lipids - pharmacology Lymphocytes Methods Mice Mice, Inbred C57BL Nanoparticles Nanoparticles - administration & dosage Nanoparticles - chemistry Original Plant Extracts - chemistry Proteins Rodents Sodium Dodecyl Sulfate Sulforaphane tolerogenic DCs transkingdom interaction Tumor necrosis factor-TNF Vegetables |
title | Broccoli-Derived Nanoparticle Inhibits Mouse Colitis by Activating Dendritic Cell AMP-Activated Protein Kinase |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A45%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Broccoli-Derived%20Nanoparticle%20Inhibits%20Mouse%20Colitis%20by%20Activating%20Dendritic%20Cell%20AMP-Activated%20Protein%20Kinase&rft.jtitle=Molecular%20therapy&rft.au=Deng,%20Zhongbin&rft.date=2017-07-05&rft.volume=25&rft.issue=7&rft.spage=1641&rft.epage=1654&rft.pages=1641-1654&rft.issn=1525-0016&rft.eissn=1525-0024&rft_id=info:doi/10.1016/j.ymthe.2017.01.025&rft_dat=%3Cproquest_pubme%3E2198007620%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2198007620&rft_id=info:pmid/28274798&rft_els_id=S1525001617300643&rfr_iscdi=true |