Bioclimatic transect networks: Powerful observatories of ecological change
Transects that traverse substantial climate gradients are important tools for climate change research and allow questions on the extent to which phenotypic variation associates with climate, the link between climate and species distributions, and variation in sensitivity to climate change among biom...
Gespeichert in:
Veröffentlicht in: | Ecology and evolution 2017-07, Vol.7 (13), p.4607-4619 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4619 |
---|---|
container_issue | 13 |
container_start_page | 4607 |
container_title | Ecology and evolution |
container_volume | 7 |
creator | Caddy‐Retalic, Stefan Andersen, Alan N. Aspinwall, Michael J. Breed, Martin F. Byrne, Margaret Christmas, Matthew J. Dong, Ning Evans, Bradley J. Fordham, Damien A. Guerin, Greg R. Hoffmann, Ary A. Hughes, Alice C. Leeuwen, Stephen J. McInerney, Francesca A. Prober, Suzanne M. Rossetto, Maurizio Rymer, Paul D. Steane, Dorothy A. Wardle, Glenda M. Lowe, Andrew J. |
description | Transects that traverse substantial climate gradients are important tools for climate change research and allow questions on the extent to which phenotypic variation associates with climate, the link between climate and species distributions, and variation in sensitivity to climate change among biomes to be addressed. However, the potential limitations of individual transect studies have recently been highlighted. Here, we argue that replicating and networking transects, along with the introduction of experimental treatments, addresses these concerns. Transect networks provide cost‐effective and robust insights into ecological and evolutionary adaptation and improve forecasting of ecosystem change. We draw on the experience and research facilitated by the Australian Transect Network to demonstrate our case, with examples, to clarify how population‐ and community‐level studies can be integrated with observations from multiple transects, manipulative experiments, genomics, and ecological modeling to gain novel insights into how species and systems respond to climate change. This integration can provide a spatiotemporal understanding of past and future climate‐induced changes, which will inform effective management actions for promoting biodiversity resilience.
Transects that traverse substantial climate gradients are important tools for climate change research, but information from individual transects can be limited. We discuss the potential limitations and emerging opportunities of transect‐based research and how population‐ and community‐level studies can be integrated with observations from multiple transects, manipulative experiments, genomics, and ecological modeling to gain novel insights into how species and systems respond to climate change. |
doi_str_mv | 10.1002/ece3.2995 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5496522</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1915554403</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4435-75fcc58f0b0787bb632bcb5383c22d624e506c7d1648797afc6578667e5d15da3</originalsourceid><addsrcrecordid>eNp1kE1PAjEURRujEYMs_ANmElcugLbTjxkXJkrwKyS60HXT6byBwWGK7QDh31sECS7spk16ct59F6ELgnsEY9oHA3GPpik_QmcUM96VkifHB-8W6ng_xeEITBmWp6hFE5FimZIz9HJfWlOVM92UJmqcrj2YJqqhWVn36W-iN7sCVyyqyGYe3FI31pXgI1tEYGxlx6XRVWQmuh7DOTopdOWhs7vb6ONh-D546o5eH58Hd6OuYSwOkXhhDE8KnGGZyCwTMc1MxuMkNpTmgjLgWBiZE8ESmUpdGMFlIoQEnhOe67iNbrfe-SKbQW6gDrkrNXdhC7dWVpfq709dTtTYLhVnqeCUBsHVTuDs1wJ8o6Z24eqQWZGUcM4Zw3GgrreUcdZ7B8V-AsFq07zaNK82zQf28jDSnvztOQD9LbAqK1j_b1LDwTD-UX4Dh52N4w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1915554403</pqid></control><display><type>article</type><title>Bioclimatic transect networks: Powerful observatories of ecological change</title><source>Wiley-Blackwell Journals</source><source>Wiley-Blackwell Open Access Collection</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><creator>Caddy‐Retalic, Stefan ; Andersen, Alan N. ; Aspinwall, Michael J. ; Breed, Martin F. ; Byrne, Margaret ; Christmas, Matthew J. ; Dong, Ning ; Evans, Bradley J. ; Fordham, Damien A. ; Guerin, Greg R. ; Hoffmann, Ary A. ; Hughes, Alice C. ; Leeuwen, Stephen J. ; McInerney, Francesca A. ; Prober, Suzanne M. ; Rossetto, Maurizio ; Rymer, Paul D. ; Steane, Dorothy A. ; Wardle, Glenda M. ; Lowe, Andrew J.</creator><creatorcontrib>Caddy‐Retalic, Stefan ; Andersen, Alan N. ; Aspinwall, Michael J. ; Breed, Martin F. ; Byrne, Margaret ; Christmas, Matthew J. ; Dong, Ning ; Evans, Bradley J. ; Fordham, Damien A. ; Guerin, Greg R. ; Hoffmann, Ary A. ; Hughes, Alice C. ; Leeuwen, Stephen J. ; McInerney, Francesca A. ; Prober, Suzanne M. ; Rossetto, Maurizio ; Rymer, Paul D. ; Steane, Dorothy A. ; Wardle, Glenda M. ; Lowe, Andrew J.</creatorcontrib><description>Transects that traverse substantial climate gradients are important tools for climate change research and allow questions on the extent to which phenotypic variation associates with climate, the link between climate and species distributions, and variation in sensitivity to climate change among biomes to be addressed. However, the potential limitations of individual transect studies have recently been highlighted. Here, we argue that replicating and networking transects, along with the introduction of experimental treatments, addresses these concerns. Transect networks provide cost‐effective and robust insights into ecological and evolutionary adaptation and improve forecasting of ecosystem change. We draw on the experience and research facilitated by the Australian Transect Network to demonstrate our case, with examples, to clarify how population‐ and community‐level studies can be integrated with observations from multiple transects, manipulative experiments, genomics, and ecological modeling to gain novel insights into how species and systems respond to climate change. This integration can provide a spatiotemporal understanding of past and future climate‐induced changes, which will inform effective management actions for promoting biodiversity resilience.
Transects that traverse substantial climate gradients are important tools for climate change research, but information from individual transects can be limited. We discuss the potential limitations and emerging opportunities of transect‐based research and how population‐ and community‐level studies can be integrated with observations from multiple transects, manipulative experiments, genomics, and ecological modeling to gain novel insights into how species and systems respond to climate change.</description><identifier>ISSN: 2045-7758</identifier><identifier>EISSN: 2045-7758</identifier><identifier>DOI: 10.1002/ece3.2995</identifier><identifier>PMID: 28690791</identifier><language>eng</language><publisher>England: John Wiley & Sons, Inc</publisher><subject>Biodiversity ; Biological evolution ; change detection ; Climate ; Climate change ; Climate change research ; community turnover ; Ecological effects ; ecological forecasting ; Ecological models ; Ecosystems ; environmental gradients ; Forecasting ; Integration ; Networking ; Observatories ; Original Research ; Phenotypic variations ; Population studies ; Replication ; Resilience ; spatial analogues ; transect replication</subject><ispartof>Ecology and evolution, 2017-07, Vol.7 (13), p.4607-4619</ispartof><rights>2017 The Authors. published by John Wiley & Sons Ltd.</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4435-75fcc58f0b0787bb632bcb5383c22d624e506c7d1648797afc6578667e5d15da3</citedby><cites>FETCH-LOGICAL-c4435-75fcc58f0b0787bb632bcb5383c22d624e506c7d1648797afc6578667e5d15da3</cites><orcidid>0000-0003-4870-4202</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5496522/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5496522/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1411,11541,27901,27902,45550,45551,46027,46451,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28690791$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Caddy‐Retalic, Stefan</creatorcontrib><creatorcontrib>Andersen, Alan N.</creatorcontrib><creatorcontrib>Aspinwall, Michael J.</creatorcontrib><creatorcontrib>Breed, Martin F.</creatorcontrib><creatorcontrib>Byrne, Margaret</creatorcontrib><creatorcontrib>Christmas, Matthew J.</creatorcontrib><creatorcontrib>Dong, Ning</creatorcontrib><creatorcontrib>Evans, Bradley J.</creatorcontrib><creatorcontrib>Fordham, Damien A.</creatorcontrib><creatorcontrib>Guerin, Greg R.</creatorcontrib><creatorcontrib>Hoffmann, Ary A.</creatorcontrib><creatorcontrib>Hughes, Alice C.</creatorcontrib><creatorcontrib>Leeuwen, Stephen J.</creatorcontrib><creatorcontrib>McInerney, Francesca A.</creatorcontrib><creatorcontrib>Prober, Suzanne M.</creatorcontrib><creatorcontrib>Rossetto, Maurizio</creatorcontrib><creatorcontrib>Rymer, Paul D.</creatorcontrib><creatorcontrib>Steane, Dorothy A.</creatorcontrib><creatorcontrib>Wardle, Glenda M.</creatorcontrib><creatorcontrib>Lowe, Andrew J.</creatorcontrib><title>Bioclimatic transect networks: Powerful observatories of ecological change</title><title>Ecology and evolution</title><addtitle>Ecol Evol</addtitle><description>Transects that traverse substantial climate gradients are important tools for climate change research and allow questions on the extent to which phenotypic variation associates with climate, the link between climate and species distributions, and variation in sensitivity to climate change among biomes to be addressed. However, the potential limitations of individual transect studies have recently been highlighted. Here, we argue that replicating and networking transects, along with the introduction of experimental treatments, addresses these concerns. Transect networks provide cost‐effective and robust insights into ecological and evolutionary adaptation and improve forecasting of ecosystem change. We draw on the experience and research facilitated by the Australian Transect Network to demonstrate our case, with examples, to clarify how population‐ and community‐level studies can be integrated with observations from multiple transects, manipulative experiments, genomics, and ecological modeling to gain novel insights into how species and systems respond to climate change. This integration can provide a spatiotemporal understanding of past and future climate‐induced changes, which will inform effective management actions for promoting biodiversity resilience.
Transects that traverse substantial climate gradients are important tools for climate change research, but information from individual transects can be limited. We discuss the potential limitations and emerging opportunities of transect‐based research and how population‐ and community‐level studies can be integrated with observations from multiple transects, manipulative experiments, genomics, and ecological modeling to gain novel insights into how species and systems respond to climate change.</description><subject>Biodiversity</subject><subject>Biological evolution</subject><subject>change detection</subject><subject>Climate</subject><subject>Climate change</subject><subject>Climate change research</subject><subject>community turnover</subject><subject>Ecological effects</subject><subject>ecological forecasting</subject><subject>Ecological models</subject><subject>Ecosystems</subject><subject>environmental gradients</subject><subject>Forecasting</subject><subject>Integration</subject><subject>Networking</subject><subject>Observatories</subject><subject>Original Research</subject><subject>Phenotypic variations</subject><subject>Population studies</subject><subject>Replication</subject><subject>Resilience</subject><subject>spatial analogues</subject><subject>transect replication</subject><issn>2045-7758</issn><issn>2045-7758</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kE1PAjEURRujEYMs_ANmElcugLbTjxkXJkrwKyS60HXT6byBwWGK7QDh31sECS7spk16ct59F6ELgnsEY9oHA3GPpik_QmcUM96VkifHB-8W6ng_xeEITBmWp6hFE5FimZIz9HJfWlOVM92UJmqcrj2YJqqhWVn36W-iN7sCVyyqyGYe3FI31pXgI1tEYGxlx6XRVWQmuh7DOTopdOWhs7vb6ONh-D546o5eH58Hd6OuYSwOkXhhDE8KnGGZyCwTMc1MxuMkNpTmgjLgWBiZE8ESmUpdGMFlIoQEnhOe67iNbrfe-SKbQW6gDrkrNXdhC7dWVpfq709dTtTYLhVnqeCUBsHVTuDs1wJ8o6Z24eqQWZGUcM4Zw3GgrreUcdZ7B8V-AsFq07zaNK82zQf28jDSnvztOQD9LbAqK1j_b1LDwTD-UX4Dh52N4w</recordid><startdate>201707</startdate><enddate>201707</enddate><creator>Caddy‐Retalic, Stefan</creator><creator>Andersen, Alan N.</creator><creator>Aspinwall, Michael J.</creator><creator>Breed, Martin F.</creator><creator>Byrne, Margaret</creator><creator>Christmas, Matthew J.</creator><creator>Dong, Ning</creator><creator>Evans, Bradley J.</creator><creator>Fordham, Damien A.</creator><creator>Guerin, Greg R.</creator><creator>Hoffmann, Ary A.</creator><creator>Hughes, Alice C.</creator><creator>Leeuwen, Stephen J.</creator><creator>McInerney, Francesca A.</creator><creator>Prober, Suzanne M.</creator><creator>Rossetto, Maurizio</creator><creator>Rymer, Paul D.</creator><creator>Steane, Dorothy A.</creator><creator>Wardle, Glenda M.</creator><creator>Lowe, Andrew J.</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7X2</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4870-4202</orcidid></search><sort><creationdate>201707</creationdate><title>Bioclimatic transect networks: Powerful observatories of ecological change</title><author>Caddy‐Retalic, Stefan ; Andersen, Alan N. ; Aspinwall, Michael J. ; Breed, Martin F. ; Byrne, Margaret ; Christmas, Matthew J. ; Dong, Ning ; Evans, Bradley J. ; Fordham, Damien A. ; Guerin, Greg R. ; Hoffmann, Ary A. ; Hughes, Alice C. ; Leeuwen, Stephen J. ; McInerney, Francesca A. ; Prober, Suzanne M. ; Rossetto, Maurizio ; Rymer, Paul D. ; Steane, Dorothy A. ; Wardle, Glenda M. ; Lowe, Andrew J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4435-75fcc58f0b0787bb632bcb5383c22d624e506c7d1648797afc6578667e5d15da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Biodiversity</topic><topic>Biological evolution</topic><topic>change detection</topic><topic>Climate</topic><topic>Climate change</topic><topic>Climate change research</topic><topic>community turnover</topic><topic>Ecological effects</topic><topic>ecological forecasting</topic><topic>Ecological models</topic><topic>Ecosystems</topic><topic>environmental gradients</topic><topic>Forecasting</topic><topic>Integration</topic><topic>Networking</topic><topic>Observatories</topic><topic>Original Research</topic><topic>Phenotypic variations</topic><topic>Population studies</topic><topic>Replication</topic><topic>Resilience</topic><topic>spatial analogues</topic><topic>transect replication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caddy‐Retalic, Stefan</creatorcontrib><creatorcontrib>Andersen, Alan N.</creatorcontrib><creatorcontrib>Aspinwall, Michael J.</creatorcontrib><creatorcontrib>Breed, Martin F.</creatorcontrib><creatorcontrib>Byrne, Margaret</creatorcontrib><creatorcontrib>Christmas, Matthew J.</creatorcontrib><creatorcontrib>Dong, Ning</creatorcontrib><creatorcontrib>Evans, Bradley J.</creatorcontrib><creatorcontrib>Fordham, Damien A.</creatorcontrib><creatorcontrib>Guerin, Greg R.</creatorcontrib><creatorcontrib>Hoffmann, Ary A.</creatorcontrib><creatorcontrib>Hughes, Alice C.</creatorcontrib><creatorcontrib>Leeuwen, Stephen J.</creatorcontrib><creatorcontrib>McInerney, Francesca A.</creatorcontrib><creatorcontrib>Prober, Suzanne M.</creatorcontrib><creatorcontrib>Rossetto, Maurizio</creatorcontrib><creatorcontrib>Rymer, Paul D.</creatorcontrib><creatorcontrib>Steane, Dorothy A.</creatorcontrib><creatorcontrib>Wardle, Glenda M.</creatorcontrib><creatorcontrib>Lowe, Andrew J.</creatorcontrib><collection>Wiley-Blackwell Open Access Collection</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Ecology and evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caddy‐Retalic, Stefan</au><au>Andersen, Alan N.</au><au>Aspinwall, Michael J.</au><au>Breed, Martin F.</au><au>Byrne, Margaret</au><au>Christmas, Matthew J.</au><au>Dong, Ning</au><au>Evans, Bradley J.</au><au>Fordham, Damien A.</au><au>Guerin, Greg R.</au><au>Hoffmann, Ary A.</au><au>Hughes, Alice C.</au><au>Leeuwen, Stephen J.</au><au>McInerney, Francesca A.</au><au>Prober, Suzanne M.</au><au>Rossetto, Maurizio</au><au>Rymer, Paul D.</au><au>Steane, Dorothy A.</au><au>Wardle, Glenda M.</au><au>Lowe, Andrew J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bioclimatic transect networks: Powerful observatories of ecological change</atitle><jtitle>Ecology and evolution</jtitle><addtitle>Ecol Evol</addtitle><date>2017-07</date><risdate>2017</risdate><volume>7</volume><issue>13</issue><spage>4607</spage><epage>4619</epage><pages>4607-4619</pages><issn>2045-7758</issn><eissn>2045-7758</eissn><abstract>Transects that traverse substantial climate gradients are important tools for climate change research and allow questions on the extent to which phenotypic variation associates with climate, the link between climate and species distributions, and variation in sensitivity to climate change among biomes to be addressed. However, the potential limitations of individual transect studies have recently been highlighted. Here, we argue that replicating and networking transects, along with the introduction of experimental treatments, addresses these concerns. Transect networks provide cost‐effective and robust insights into ecological and evolutionary adaptation and improve forecasting of ecosystem change. We draw on the experience and research facilitated by the Australian Transect Network to demonstrate our case, with examples, to clarify how population‐ and community‐level studies can be integrated with observations from multiple transects, manipulative experiments, genomics, and ecological modeling to gain novel insights into how species and systems respond to climate change. This integration can provide a spatiotemporal understanding of past and future climate‐induced changes, which will inform effective management actions for promoting biodiversity resilience.
Transects that traverse substantial climate gradients are important tools for climate change research, but information from individual transects can be limited. We discuss the potential limitations and emerging opportunities of transect‐based research and how population‐ and community‐level studies can be integrated with observations from multiple transects, manipulative experiments, genomics, and ecological modeling to gain novel insights into how species and systems respond to climate change.</abstract><cop>England</cop><pub>John Wiley & Sons, Inc</pub><pmid>28690791</pmid><doi>10.1002/ece3.2995</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4870-4202</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-7758 |
ispartof | Ecology and evolution, 2017-07, Vol.7 (13), p.4607-4619 |
issn | 2045-7758 2045-7758 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5496522 |
source | Wiley-Blackwell Journals; Wiley-Blackwell Open Access Collection; DOAJ Directory of Open Access Journals; PubMed Central; EZB Electronic Journals Library |
subjects | Biodiversity Biological evolution change detection Climate Climate change Climate change research community turnover Ecological effects ecological forecasting Ecological models Ecosystems environmental gradients Forecasting Integration Networking Observatories Original Research Phenotypic variations Population studies Replication Resilience spatial analogues transect replication |
title | Bioclimatic transect networks: Powerful observatories of ecological change |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A44%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bioclimatic%20transect%20networks:%20Powerful%20observatories%20of%20ecological%20change&rft.jtitle=Ecology%20and%20evolution&rft.au=Caddy%E2%80%90Retalic,%20Stefan&rft.date=2017-07&rft.volume=7&rft.issue=13&rft.spage=4607&rft.epage=4619&rft.pages=4607-4619&rft.issn=2045-7758&rft.eissn=2045-7758&rft_id=info:doi/10.1002/ece3.2995&rft_dat=%3Cproquest_pubme%3E1915554403%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1915554403&rft_id=info:pmid/28690791&rfr_iscdi=true |