Broken flow symmetry explains the dynamics of small particles in deterministic lateral displacement arrays

Deterministic lateral displacement (DLD) is a technique for size fractionation of particles in continuous flow that has shown great potential for biological applications. Several theoretical models have been proposed, but experimental evidence has demonstrated that a rich class of intermediate migra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2017-06, Vol.114 (26), p.E5034-E5041
Hauptverfasser: Kim, Sung-Cheol, Wunsch, Benjamin H., Hu, Huan, Smith, Joshua T., Austin, Robert H., Stolovitzky, Gustavo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page E5041
container_issue 26
container_start_page E5034
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 114
creator Kim, Sung-Cheol
Wunsch, Benjamin H.
Hu, Huan
Smith, Joshua T.
Austin, Robert H.
Stolovitzky, Gustavo
description Deterministic lateral displacement (DLD) is a technique for size fractionation of particles in continuous flow that has shown great potential for biological applications. Several theoretical models have been proposed, but experimental evidence has demonstrated that a rich class of intermediate migration behavior exists, which is not predicted. We present a unified theoretical framework to infer the path of particles in the whole array on the basis of trajectories in a unit cell. This framework explains many of the unexpected particle trajectories reported and can be used to design arrays for even nanoscale particle fractionation. We performed experiments that verify these predictions and used our model to develop a condenser array that achieves full particle separation with a single fluidic input.
doi_str_mv 10.1073/pnas.1706645114
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5495280</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26485005</jstor_id><sourcerecordid>26485005</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-cb1951275c62254118188a6d95ecaaf70123b52cbeb04fcdd07c3d37cef18cd13</originalsourceid><addsrcrecordid>eNpdkc1vFSEUxYnR2Gd17UpD4sbNtBcGBmZjoo1fSRM3uiYMMJYnHyPMU-e_l-bVVl2Ry_3dk3PvQegpgTMCoj9fkq5nRMAwME4Iu4d2BEbSDWyE-2gHQEUnGWUn6FGtewAYuYSH6ITKAQQIvkP7NyV_cwnPIf_EdYvRrWXD7tcStE8Vr1cO2y3p6E3FecY16hDwosvqTXAV-4StW12JPvna_nDQrdIBW1-bhHHRpRXrUvRWH6MHsw7VPbl5T9GXd28_X3zoLj-9_3jx-rIzHMa1MxMZOaGCm4FSzgiRREo92JE7o_UsgNB-4tRMbgI2G2tBmN72wriZSGNJf4peHXWXwxSdNc1Bc6SW4qMum8raq387yV-pr_mH4mzkVEITeHkjUPL3g6urir4aF4JOLh-qIiOMtO_bpRv64j90nw8ltfUaxQbWzANr1PmRMiXXWtx8a4aAus5RXeeo7nJsE8__3uGW_xNcA54dgX1dc7nrD0xyAN7_BvE-pgE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1946418104</pqid></control><display><type>article</type><title>Broken flow symmetry explains the dynamics of small particles in deterministic lateral displacement arrays</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Kim, Sung-Cheol ; Wunsch, Benjamin H. ; Hu, Huan ; Smith, Joshua T. ; Austin, Robert H. ; Stolovitzky, Gustavo</creator><creatorcontrib>Kim, Sung-Cheol ; Wunsch, Benjamin H. ; Hu, Huan ; Smith, Joshua T. ; Austin, Robert H. ; Stolovitzky, Gustavo</creatorcontrib><description>Deterministic lateral displacement (DLD) is a technique for size fractionation of particles in continuous flow that has shown great potential for biological applications. Several theoretical models have been proposed, but experimental evidence has demonstrated that a rich class of intermediate migration behavior exists, which is not predicted. We present a unified theoretical framework to infer the path of particles in the whole array on the basis of trajectories in a unit cell. This framework explains many of the unexpected particle trajectories reported and can be used to design arrays for even nanoscale particle fractionation. We performed experiments that verify these predictions and used our model to develop a condenser array that achieves full particle separation with a single fluidic input.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1706645114</identifier><identifier>PMID: 28607075</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Arrays ; Biological Sciences ; Continuous flow ; Experiments ; Fractionation ; Mathematical models ; Nanoparticles ; Particle trajectories ; Physical Sciences ; PNAS Plus ; Predictions ; Symmetry</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2017-06, Vol.114 (26), p.E5034-E5041</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Jun 27, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-cb1951275c62254118188a6d95ecaaf70123b52cbeb04fcdd07c3d37cef18cd13</citedby><cites>FETCH-LOGICAL-c509t-cb1951275c62254118188a6d95ecaaf70123b52cbeb04fcdd07c3d37cef18cd13</cites><orcidid>0000-0002-4269-6793</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26485005$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26485005$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28607075$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Sung-Cheol</creatorcontrib><creatorcontrib>Wunsch, Benjamin H.</creatorcontrib><creatorcontrib>Hu, Huan</creatorcontrib><creatorcontrib>Smith, Joshua T.</creatorcontrib><creatorcontrib>Austin, Robert H.</creatorcontrib><creatorcontrib>Stolovitzky, Gustavo</creatorcontrib><title>Broken flow symmetry explains the dynamics of small particles in deterministic lateral displacement arrays</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Deterministic lateral displacement (DLD) is a technique for size fractionation of particles in continuous flow that has shown great potential for biological applications. Several theoretical models have been proposed, but experimental evidence has demonstrated that a rich class of intermediate migration behavior exists, which is not predicted. We present a unified theoretical framework to infer the path of particles in the whole array on the basis of trajectories in a unit cell. This framework explains many of the unexpected particle trajectories reported and can be used to design arrays for even nanoscale particle fractionation. We performed experiments that verify these predictions and used our model to develop a condenser array that achieves full particle separation with a single fluidic input.</description><subject>Arrays</subject><subject>Biological Sciences</subject><subject>Continuous flow</subject><subject>Experiments</subject><subject>Fractionation</subject><subject>Mathematical models</subject><subject>Nanoparticles</subject><subject>Particle trajectories</subject><subject>Physical Sciences</subject><subject>PNAS Plus</subject><subject>Predictions</subject><subject>Symmetry</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdkc1vFSEUxYnR2Gd17UpD4sbNtBcGBmZjoo1fSRM3uiYMMJYnHyPMU-e_l-bVVl2Ry_3dk3PvQegpgTMCoj9fkq5nRMAwME4Iu4d2BEbSDWyE-2gHQEUnGWUn6FGtewAYuYSH6ITKAQQIvkP7NyV_cwnPIf_EdYvRrWXD7tcStE8Vr1cO2y3p6E3FecY16hDwosvqTXAV-4StW12JPvna_nDQrdIBW1-bhHHRpRXrUvRWH6MHsw7VPbl5T9GXd28_X3zoLj-9_3jx-rIzHMa1MxMZOaGCm4FSzgiRREo92JE7o_UsgNB-4tRMbgI2G2tBmN72wriZSGNJf4peHXWXwxSdNc1Bc6SW4qMum8raq387yV-pr_mH4mzkVEITeHkjUPL3g6urir4aF4JOLh-qIiOMtO_bpRv64j90nw8ltfUaxQbWzANr1PmRMiXXWtx8a4aAus5RXeeo7nJsE8__3uGW_xNcA54dgX1dc7nrD0xyAN7_BvE-pgE</recordid><startdate>20170627</startdate><enddate>20170627</enddate><creator>Kim, Sung-Cheol</creator><creator>Wunsch, Benjamin H.</creator><creator>Hu, Huan</creator><creator>Smith, Joshua T.</creator><creator>Austin, Robert H.</creator><creator>Stolovitzky, Gustavo</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4269-6793</orcidid></search><sort><creationdate>20170627</creationdate><title>Broken flow symmetry explains the dynamics of small particles in deterministic lateral displacement arrays</title><author>Kim, Sung-Cheol ; Wunsch, Benjamin H. ; Hu, Huan ; Smith, Joshua T. ; Austin, Robert H. ; Stolovitzky, Gustavo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-cb1951275c62254118188a6d95ecaaf70123b52cbeb04fcdd07c3d37cef18cd13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Arrays</topic><topic>Biological Sciences</topic><topic>Continuous flow</topic><topic>Experiments</topic><topic>Fractionation</topic><topic>Mathematical models</topic><topic>Nanoparticles</topic><topic>Particle trajectories</topic><topic>Physical Sciences</topic><topic>PNAS Plus</topic><topic>Predictions</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Sung-Cheol</creatorcontrib><creatorcontrib>Wunsch, Benjamin H.</creatorcontrib><creatorcontrib>Hu, Huan</creatorcontrib><creatorcontrib>Smith, Joshua T.</creatorcontrib><creatorcontrib>Austin, Robert H.</creatorcontrib><creatorcontrib>Stolovitzky, Gustavo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Sung-Cheol</au><au>Wunsch, Benjamin H.</au><au>Hu, Huan</au><au>Smith, Joshua T.</au><au>Austin, Robert H.</au><au>Stolovitzky, Gustavo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Broken flow symmetry explains the dynamics of small particles in deterministic lateral displacement arrays</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2017-06-27</date><risdate>2017</risdate><volume>114</volume><issue>26</issue><spage>E5034</spage><epage>E5041</epage><pages>E5034-E5041</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Deterministic lateral displacement (DLD) is a technique for size fractionation of particles in continuous flow that has shown great potential for biological applications. Several theoretical models have been proposed, but experimental evidence has demonstrated that a rich class of intermediate migration behavior exists, which is not predicted. We present a unified theoretical framework to infer the path of particles in the whole array on the basis of trajectories in a unit cell. This framework explains many of the unexpected particle trajectories reported and can be used to design arrays for even nanoscale particle fractionation. We performed experiments that verify these predictions and used our model to develop a condenser array that achieves full particle separation with a single fluidic input.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>28607075</pmid><doi>10.1073/pnas.1706645114</doi><orcidid>https://orcid.org/0000-0002-4269-6793</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2017-06, Vol.114 (26), p.E5034-E5041
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5495280
source Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Arrays
Biological Sciences
Continuous flow
Experiments
Fractionation
Mathematical models
Nanoparticles
Particle trajectories
Physical Sciences
PNAS Plus
Predictions
Symmetry
title Broken flow symmetry explains the dynamics of small particles in deterministic lateral displacement arrays
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T15%3A14%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Broken%20flow%20symmetry%20explains%20the%20dynamics%20of%20small%20particles%20in%20deterministic%20lateral%20displacement%20arrays&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Kim,%20Sung-Cheol&rft.date=2017-06-27&rft.volume=114&rft.issue=26&rft.spage=E5034&rft.epage=E5041&rft.pages=E5034-E5041&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1706645114&rft_dat=%3Cjstor_pubme%3E26485005%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1946418104&rft_id=info:pmid/28607075&rft_jstor_id=26485005&rfr_iscdi=true