Correlation of IOP with Corneal Acoustic Impedance in Porcine Eye Model
Purpose. The aim of this study is to correlate the intraocular pressure (IOP) change with the acoustic impedance of the cornea, in order to propose a noncontact and noninvasive method for IOP monitoring. Methods and Materials. A highly focused transducer (frequency 47-MHz; bandwidth 62%) was made to...
Gespeichert in:
Veröffentlicht in: | BioMed research international 2017-01, Vol.2017, p.2959717-6 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6 |
---|---|
container_issue | |
container_start_page | 2959717 |
container_title | BioMed research international |
container_volume | 2017 |
creator | Zhang, Jun Zhang, Yi Li, Yang Chen, Ruimin Shung, K. Kirk Richter, Grace Zhou, Qifa |
description | Purpose. The aim of this study is to correlate the intraocular pressure (IOP) change with the acoustic impedance of the cornea, in order to propose a noncontact and noninvasive method for IOP monitoring. Methods and Materials. A highly focused transducer (frequency 47-MHz; bandwidth 62%) was made to measure the echo from the anterior and posterior surfaces of intact porcine eyes, respectively. A multilayered transmission and reflection model was used to calculate the acoustic impedance. The linear relationship between acoustic impedance and intraocular pressure was analyzed by statistical method. Result. During pressure elevation from 10 mm Hg to 50 mm Hg, the mean acoustic impedance of the posterior cornea increased from 1.5393 to 1.5698 MRayl, which showed a strong linear correlation (R=0.9849; P=0.0022). Meanwhile, the mean value of the anterior cornea increased from 1.5399 to 1.5519 MRayl, and a less significant correlation was observed (R=0.7378; P=0.0025). Conclusion. This study revealed a linear correlation between intraocular pressure and acoustic impedance of the cornea, thus demonstrating a potentially important method to noninvasively measure the intraocular pressure in vivo. |
doi_str_mv | 10.1155/2017/2959717 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5494779</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A557301670</galeid><sourcerecordid>A557301670</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-eb88e52cb45692b42dc2172cf52f082c71119a0491655a36489ffa236e9554823</originalsourceid><addsrcrecordid>eNp9kUtrGzEURkVpaEKaXddF0E2hdaOr52hTMCZNDQnJIl0LWXMnVhhLrmackH9fGbvuYxFtJKTDufr4CHkH7AuAUuecgTnnVlkD5hU54QLkRIOE14ezEMfkbBgeWF0NaGb1G3LMG8O0leKEXM5yKdj7MeZEc0fnN7f0KY5LWu8T-p5OQ94MYwx0vlpj61NAGhO9zSXEhPTiGel1brF_S4463w94tt9PyY9vF3ez75Orm8v5bHo1CdLocYKLpkHFw0IqbflC8jZwMDx0ines4cEAgPVMWtBKeaFlY7vOc6HRKiUbLk7J1513vVmssA2YxuJ7ty5x5cuzyz66f19SXLr7_OiUtNIYWwUf94KSf25wGN0qDgH73iesSR1Yzjhj2uiKfvgPfcibkmq8SrFGcFND_KHufY8upi7XuWErdVOljGCgDavU5x0VSh6Ggt3hy8Dctkq3rdLtq6z4-79jHuDfxVXg0w5YxtT6p_iy7hfYWqIh</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1908327569</pqid></control><display><type>article</type><title>Correlation of IOP with Corneal Acoustic Impedance in Porcine Eye Model</title><source>MEDLINE</source><source>PubMed Central Open Access</source><source>Wiley-Blackwell Open Access Titles</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Zhang, Jun ; Zhang, Yi ; Li, Yang ; Chen, Ruimin ; Shung, K. Kirk ; Richter, Grace ; Zhou, Qifa</creator><contributor>Saccà, Sergio Claudio</contributor><creatorcontrib>Zhang, Jun ; Zhang, Yi ; Li, Yang ; Chen, Ruimin ; Shung, K. Kirk ; Richter, Grace ; Zhou, Qifa ; Saccà, Sergio Claudio</creatorcontrib><description>Purpose. The aim of this study is to correlate the intraocular pressure (IOP) change with the acoustic impedance of the cornea, in order to propose a noncontact and noninvasive method for IOP monitoring. Methods and Materials. A highly focused transducer (frequency 47-MHz; bandwidth 62%) was made to measure the echo from the anterior and posterior surfaces of intact porcine eyes, respectively. A multilayered transmission and reflection model was used to calculate the acoustic impedance. The linear relationship between acoustic impedance and intraocular pressure was analyzed by statistical method. Result. During pressure elevation from 10 mm Hg to 50 mm Hg, the mean acoustic impedance of the posterior cornea increased from 1.5393 to 1.5698 MRayl, which showed a strong linear correlation (R=0.9849; P=0.0022). Meanwhile, the mean value of the anterior cornea increased from 1.5399 to 1.5519 MRayl, and a less significant correlation was observed (R=0.7378; P=0.0025). Conclusion. This study revealed a linear correlation between intraocular pressure and acoustic impedance of the cornea, thus demonstrating a potentially important method to noninvasively measure the intraocular pressure in vivo.</description><identifier>ISSN: 2314-6133</identifier><identifier>EISSN: 2314-6141</identifier><identifier>DOI: 10.1155/2017/2959717</identifier><identifier>PMID: 28706943</identifier><language>eng</language><publisher>United States: Hindawi</publisher><subject>Acoustic Impedance Tests - methods ; Acoustics ; Animals ; Biomechanics ; Cornea ; Cornea - diagnostic imaging ; Cornea - physiopathology ; Elasticity ; Electric Impedance ; Glaucoma ; Health aspects ; Humans ; Intraocular Pressure ; Methods ; Studies ; Swine ; Tonometry, Ocular - methods ; Ultrasonic imaging ; Ultrasonic transducers</subject><ispartof>BioMed research international, 2017-01, Vol.2017, p.2959717-6</ispartof><rights>Copyright © 2017 Jun Zhang et al.</rights><rights>COPYRIGHT 2017 John Wiley & Sons, Inc.</rights><rights>Copyright © 2017 Jun Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright © 2017 Jun Zhang et al. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-eb88e52cb45692b42dc2172cf52f082c71119a0491655a36489ffa236e9554823</citedby><cites>FETCH-LOGICAL-c476t-eb88e52cb45692b42dc2172cf52f082c71119a0491655a36489ffa236e9554823</cites><orcidid>0000-0002-5213-0857</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5494779/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5494779/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27922,27923,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28706943$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Saccà, Sergio Claudio</contributor><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Chen, Ruimin</creatorcontrib><creatorcontrib>Shung, K. Kirk</creatorcontrib><creatorcontrib>Richter, Grace</creatorcontrib><creatorcontrib>Zhou, Qifa</creatorcontrib><title>Correlation of IOP with Corneal Acoustic Impedance in Porcine Eye Model</title><title>BioMed research international</title><addtitle>Biomed Res Int</addtitle><description>Purpose. The aim of this study is to correlate the intraocular pressure (IOP) change with the acoustic impedance of the cornea, in order to propose a noncontact and noninvasive method for IOP monitoring. Methods and Materials. A highly focused transducer (frequency 47-MHz; bandwidth 62%) was made to measure the echo from the anterior and posterior surfaces of intact porcine eyes, respectively. A multilayered transmission and reflection model was used to calculate the acoustic impedance. The linear relationship between acoustic impedance and intraocular pressure was analyzed by statistical method. Result. During pressure elevation from 10 mm Hg to 50 mm Hg, the mean acoustic impedance of the posterior cornea increased from 1.5393 to 1.5698 MRayl, which showed a strong linear correlation (R=0.9849; P=0.0022). Meanwhile, the mean value of the anterior cornea increased from 1.5399 to 1.5519 MRayl, and a less significant correlation was observed (R=0.7378; P=0.0025). Conclusion. This study revealed a linear correlation between intraocular pressure and acoustic impedance of the cornea, thus demonstrating a potentially important method to noninvasively measure the intraocular pressure in vivo.</description><subject>Acoustic Impedance Tests - methods</subject><subject>Acoustics</subject><subject>Animals</subject><subject>Biomechanics</subject><subject>Cornea</subject><subject>Cornea - diagnostic imaging</subject><subject>Cornea - physiopathology</subject><subject>Elasticity</subject><subject>Electric Impedance</subject><subject>Glaucoma</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Intraocular Pressure</subject><subject>Methods</subject><subject>Studies</subject><subject>Swine</subject><subject>Tonometry, Ocular - methods</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonic transducers</subject><issn>2314-6133</issn><issn>2314-6141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUtrGzEURkVpaEKaXddF0E2hdaOr52hTMCZNDQnJIl0LWXMnVhhLrmackH9fGbvuYxFtJKTDufr4CHkH7AuAUuecgTnnVlkD5hU54QLkRIOE14ezEMfkbBgeWF0NaGb1G3LMG8O0leKEXM5yKdj7MeZEc0fnN7f0KY5LWu8T-p5OQ94MYwx0vlpj61NAGhO9zSXEhPTiGel1brF_S4463w94tt9PyY9vF3ez75Orm8v5bHo1CdLocYKLpkHFw0IqbflC8jZwMDx0ines4cEAgPVMWtBKeaFlY7vOc6HRKiUbLk7J1513vVmssA2YxuJ7ty5x5cuzyz66f19SXLr7_OiUtNIYWwUf94KSf25wGN0qDgH73iesSR1Yzjhj2uiKfvgPfcibkmq8SrFGcFND_KHufY8upi7XuWErdVOljGCgDavU5x0VSh6Ggt3hy8Dctkq3rdLtq6z4-79jHuDfxVXg0w5YxtT6p_iy7hfYWqIh</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Zhang, Jun</creator><creator>Zhang, Yi</creator><creator>Li, Yang</creator><creator>Chen, Ruimin</creator><creator>Shung, K. Kirk</creator><creator>Richter, Grace</creator><creator>Zhou, Qifa</creator><general>Hindawi</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5213-0857</orcidid></search><sort><creationdate>20170101</creationdate><title>Correlation of IOP with Corneal Acoustic Impedance in Porcine Eye Model</title><author>Zhang, Jun ; Zhang, Yi ; Li, Yang ; Chen, Ruimin ; Shung, K. Kirk ; Richter, Grace ; Zhou, Qifa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-eb88e52cb45692b42dc2172cf52f082c71119a0491655a36489ffa236e9554823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acoustic Impedance Tests - methods</topic><topic>Acoustics</topic><topic>Animals</topic><topic>Biomechanics</topic><topic>Cornea</topic><topic>Cornea - diagnostic imaging</topic><topic>Cornea - physiopathology</topic><topic>Elasticity</topic><topic>Electric Impedance</topic><topic>Glaucoma</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Intraocular Pressure</topic><topic>Methods</topic><topic>Studies</topic><topic>Swine</topic><topic>Tonometry, Ocular - methods</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonic transducers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Chen, Ruimin</creatorcontrib><creatorcontrib>Shung, K. Kirk</creatorcontrib><creatorcontrib>Richter, Grace</creatorcontrib><creatorcontrib>Zhou, Qifa</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BioMed research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jun</au><au>Zhang, Yi</au><au>Li, Yang</au><au>Chen, Ruimin</au><au>Shung, K. Kirk</au><au>Richter, Grace</au><au>Zhou, Qifa</au><au>Saccà, Sergio Claudio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Correlation of IOP with Corneal Acoustic Impedance in Porcine Eye Model</atitle><jtitle>BioMed research international</jtitle><addtitle>Biomed Res Int</addtitle><date>2017-01-01</date><risdate>2017</risdate><volume>2017</volume><spage>2959717</spage><epage>6</epage><pages>2959717-6</pages><issn>2314-6133</issn><eissn>2314-6141</eissn><abstract>Purpose. The aim of this study is to correlate the intraocular pressure (IOP) change with the acoustic impedance of the cornea, in order to propose a noncontact and noninvasive method for IOP monitoring. Methods and Materials. A highly focused transducer (frequency 47-MHz; bandwidth 62%) was made to measure the echo from the anterior and posterior surfaces of intact porcine eyes, respectively. A multilayered transmission and reflection model was used to calculate the acoustic impedance. The linear relationship between acoustic impedance and intraocular pressure was analyzed by statistical method. Result. During pressure elevation from 10 mm Hg to 50 mm Hg, the mean acoustic impedance of the posterior cornea increased from 1.5393 to 1.5698 MRayl, which showed a strong linear correlation (R=0.9849; P=0.0022). Meanwhile, the mean value of the anterior cornea increased from 1.5399 to 1.5519 MRayl, and a less significant correlation was observed (R=0.7378; P=0.0025). Conclusion. This study revealed a linear correlation between intraocular pressure and acoustic impedance of the cornea, thus demonstrating a potentially important method to noninvasively measure the intraocular pressure in vivo.</abstract><cop>United States</cop><pub>Hindawi</pub><pmid>28706943</pmid><doi>10.1155/2017/2959717</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-5213-0857</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2314-6133 |
ispartof | BioMed research international, 2017-01, Vol.2017, p.2959717-6 |
issn | 2314-6133 2314-6141 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5494779 |
source | MEDLINE; PubMed Central Open Access; Wiley-Blackwell Open Access Titles; PubMed Central; Alma/SFX Local Collection |
subjects | Acoustic Impedance Tests - methods Acoustics Animals Biomechanics Cornea Cornea - diagnostic imaging Cornea - physiopathology Elasticity Electric Impedance Glaucoma Health aspects Humans Intraocular Pressure Methods Studies Swine Tonometry, Ocular - methods Ultrasonic imaging Ultrasonic transducers |
title | Correlation of IOP with Corneal Acoustic Impedance in Porcine Eye Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T02%3A07%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Correlation%20of%20IOP%20with%20Corneal%20Acoustic%20Impedance%20in%20Porcine%20Eye%20Model&rft.jtitle=BioMed%20research%20international&rft.au=Zhang,%20Jun&rft.date=2017-01-01&rft.volume=2017&rft.spage=2959717&rft.epage=6&rft.pages=2959717-6&rft.issn=2314-6133&rft.eissn=2314-6141&rft_id=info:doi/10.1155/2017/2959717&rft_dat=%3Cgale_pubme%3EA557301670%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1908327569&rft_id=info:pmid/28706943&rft_galeid=A557301670&rfr_iscdi=true |