Farnesoid X receptor induces Takeda G-protein receptor 5 cross-talk to regulate bile acid synthesis and hepatic metabolism

The bile acid-activated receptors, nuclear farnesoid X receptor (FXR) and the membrane Takeda G-protein receptor 5 (TGR5), are known to improve glucose and insulin sensitivity in obese and diabetic mice. However, the metabolic roles of these two receptors and the underlying mechanisms are incomplete...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2017-06, Vol.292 (26), p.11055-11069
Hauptverfasser: Pathak, Preeti, Liu, Hailiang, Boehme, Shannon, Xie, Cen, Krausz, Kristopher W., Gonzalez, Frank, Chiang, John Y.L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11069
container_issue 26
container_start_page 11055
container_title The Journal of biological chemistry
container_volume 292
creator Pathak, Preeti
Liu, Hailiang
Boehme, Shannon
Xie, Cen
Krausz, Kristopher W.
Gonzalez, Frank
Chiang, John Y.L.
description The bile acid-activated receptors, nuclear farnesoid X receptor (FXR) and the membrane Takeda G-protein receptor 5 (TGR5), are known to improve glucose and insulin sensitivity in obese and diabetic mice. However, the metabolic roles of these two receptors and the underlying mechanisms are incompletely understood. Here, we studied the effects of the dual FXR and TGR5 agonist INT-767 on hepatic bile acid synthesis and intestinal secretion of glucagon-like peptide-1 (GLP-1) in wild-type, Fxr−/−, and Tgr5−/− mice. INT-767 efficaciously stimulated intracellular Ca2+ levels, cAMP activity, and GLP-1 secretion and improved glucose and lipid metabolism more than did the FXR-selective obeticholic acid and TGR5-selective INT-777 agonists. Interestingly, INT-767 reduced expression of the genes in the classic bile acid synthesis pathway but induced those in the alternative pathway, which is consistent with decreased taurocholic acid and increased tauromuricholic acids in bile. Furthermore, FXR activation induced expression of FXR target genes, including fibroblast growth factor 15, and unexpectedly Tgr5 and prohormone convertase 1/3 gene expression in the ileum. We identified an FXR-responsive element on the Tgr5 gene promoter. Fxr−/− and Tgr5−/− mice exhibited reduced GLP-1 secretion, which was stimulated by INT-767 in the Tgr5−/− mice but not in the Fxr−/− mice. Our findings uncovered a novel mechanism in which INT-767 activation of FXR induces Tgr5 gene expression and increases Ca2+ levels and cAMP activity to stimulate GLP-1 secretion and improve hepatic glucose and lipid metabolism in high-fat diet-induced obese mice. Activation of both FXR and TGR5 may therefore represent an effective therapy for managing hepatic steatosis, obesity, and diabetes.
doi_str_mv 10.1074/jbc.M117.784322
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5491788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820365170</els_id><sourcerecordid>1896422404</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-6dadec722d63f5887ec1879aae23404a5d1f22d1fd0144fd3a8cfb9e762528bb3</originalsourceid><addsrcrecordid>eNp1kT1P3TAUhi3UqtzSzmyVxy652I5z4yyVKsRHJaouVGKzTuwTriGxU9tBor--hktpGfDi4Tx-ffQ-hBxytuaslUc3vVl_57xdt0rWQuyRFWeqruqGX70hK8YErzrRqH3yPqUbVo7s-DuyL5RsVa2aFfl9CtFjCs7SKxrR4JxDpM7bxWCil3CLFuhZNceQ0fl_RENNDClVGcZbmkMZXC8jZKS9G5GCKXnp3uctJpcoeEu3OEN2hk6YoQ-jS9MH8naAMeHHp_uA_Dw9uTw-ry5-nH07_npRGSnrXG0sWDStEHZTD41SLRqu2g4ARS2ZhMbyoQz5YBmXcrA1KDP0HbYb0QjV9_UB-bLLnZd-QmvQ5wijnqObIN7rAE6_nHi31dfhTjelrFapEvD5KSCGXwumrCeXDI4jeAxL0lx1GylEWaagRzv0sZ2Iw_M3nOkHY7oY0w_G9M5YefHp_-2e-b-KCtDtACwd3TmMOhmH3qB1xUbWNrhXw_8AY86org</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1896422404</pqid></control><display><type>article</type><title>Farnesoid X receptor induces Takeda G-protein receptor 5 cross-talk to regulate bile acid synthesis and hepatic metabolism</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Pathak, Preeti ; Liu, Hailiang ; Boehme, Shannon ; Xie, Cen ; Krausz, Kristopher W. ; Gonzalez, Frank ; Chiang, John Y.L.</creator><creatorcontrib>Pathak, Preeti ; Liu, Hailiang ; Boehme, Shannon ; Xie, Cen ; Krausz, Kristopher W. ; Gonzalez, Frank ; Chiang, John Y.L.</creatorcontrib><description>The bile acid-activated receptors, nuclear farnesoid X receptor (FXR) and the membrane Takeda G-protein receptor 5 (TGR5), are known to improve glucose and insulin sensitivity in obese and diabetic mice. However, the metabolic roles of these two receptors and the underlying mechanisms are incompletely understood. Here, we studied the effects of the dual FXR and TGR5 agonist INT-767 on hepatic bile acid synthesis and intestinal secretion of glucagon-like peptide-1 (GLP-1) in wild-type, Fxr−/−, and Tgr5−/− mice. INT-767 efficaciously stimulated intracellular Ca2+ levels, cAMP activity, and GLP-1 secretion and improved glucose and lipid metabolism more than did the FXR-selective obeticholic acid and TGR5-selective INT-777 agonists. Interestingly, INT-767 reduced expression of the genes in the classic bile acid synthesis pathway but induced those in the alternative pathway, which is consistent with decreased taurocholic acid and increased tauromuricholic acids in bile. Furthermore, FXR activation induced expression of FXR target genes, including fibroblast growth factor 15, and unexpectedly Tgr5 and prohormone convertase 1/3 gene expression in the ileum. We identified an FXR-responsive element on the Tgr5 gene promoter. Fxr−/− and Tgr5−/− mice exhibited reduced GLP-1 secretion, which was stimulated by INT-767 in the Tgr5−/− mice but not in the Fxr−/− mice. Our findings uncovered a novel mechanism in which INT-767 activation of FXR induces Tgr5 gene expression and increases Ca2+ levels and cAMP activity to stimulate GLP-1 secretion and improve hepatic glucose and lipid metabolism in high-fat diet-induced obese mice. Activation of both FXR and TGR5 may therefore represent an effective therapy for managing hepatic steatosis, obesity, and diabetes.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M117.784322</identifier><identifier>PMID: 28478385</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; bile acid ; bile acid metabolism ; Bile Acids and Salts - biosynthesis ; Bile Acids and Salts - genetics ; Dietary Fats ; FXR ; Gene Expression Regulation ; GLP-1 ; Glucagon-Like Peptide 1 - genetics ; Glucagon-Like Peptide 1 - metabolism ; Glucose - metabolism ; Lipid Metabolism ; Lipids ; Liver - metabolism ; Mice ; Mice, Knockout ; non-alcoholic fatty liver disease ; obesity ; Obesity - genetics ; Obesity - metabolism ; Obesity - pathology ; Receptors, Cytoplasmic and Nuclear - genetics ; Receptors, Cytoplasmic and Nuclear - metabolism ; Receptors, G-Protein-Coupled - genetics ; Receptors, G-Protein-Coupled - metabolism ; TGR5 ; type 2 diabetes</subject><ispartof>The Journal of biological chemistry, 2017-06, Vol.292 (26), p.11055-11069</ispartof><rights>2017 © 2017 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2017 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><rights>2017 by The American Society for Biochemistry and Molecular Biology, Inc. 2017 The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-6dadec722d63f5887ec1879aae23404a5d1f22d1fd0144fd3a8cfb9e762528bb3</citedby><cites>FETCH-LOGICAL-c443t-6dadec722d63f5887ec1879aae23404a5d1f22d1fd0144fd3a8cfb9e762528bb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5491788/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5491788/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28478385$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pathak, Preeti</creatorcontrib><creatorcontrib>Liu, Hailiang</creatorcontrib><creatorcontrib>Boehme, Shannon</creatorcontrib><creatorcontrib>Xie, Cen</creatorcontrib><creatorcontrib>Krausz, Kristopher W.</creatorcontrib><creatorcontrib>Gonzalez, Frank</creatorcontrib><creatorcontrib>Chiang, John Y.L.</creatorcontrib><title>Farnesoid X receptor induces Takeda G-protein receptor 5 cross-talk to regulate bile acid synthesis and hepatic metabolism</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The bile acid-activated receptors, nuclear farnesoid X receptor (FXR) and the membrane Takeda G-protein receptor 5 (TGR5), are known to improve glucose and insulin sensitivity in obese and diabetic mice. However, the metabolic roles of these two receptors and the underlying mechanisms are incompletely understood. Here, we studied the effects of the dual FXR and TGR5 agonist INT-767 on hepatic bile acid synthesis and intestinal secretion of glucagon-like peptide-1 (GLP-1) in wild-type, Fxr−/−, and Tgr5−/− mice. INT-767 efficaciously stimulated intracellular Ca2+ levels, cAMP activity, and GLP-1 secretion and improved glucose and lipid metabolism more than did the FXR-selective obeticholic acid and TGR5-selective INT-777 agonists. Interestingly, INT-767 reduced expression of the genes in the classic bile acid synthesis pathway but induced those in the alternative pathway, which is consistent with decreased taurocholic acid and increased tauromuricholic acids in bile. Furthermore, FXR activation induced expression of FXR target genes, including fibroblast growth factor 15, and unexpectedly Tgr5 and prohormone convertase 1/3 gene expression in the ileum. We identified an FXR-responsive element on the Tgr5 gene promoter. Fxr−/− and Tgr5−/− mice exhibited reduced GLP-1 secretion, which was stimulated by INT-767 in the Tgr5−/− mice but not in the Fxr−/− mice. Our findings uncovered a novel mechanism in which INT-767 activation of FXR induces Tgr5 gene expression and increases Ca2+ levels and cAMP activity to stimulate GLP-1 secretion and improve hepatic glucose and lipid metabolism in high-fat diet-induced obese mice. Activation of both FXR and TGR5 may therefore represent an effective therapy for managing hepatic steatosis, obesity, and diabetes.</description><subject>Animals</subject><subject>bile acid</subject><subject>bile acid metabolism</subject><subject>Bile Acids and Salts - biosynthesis</subject><subject>Bile Acids and Salts - genetics</subject><subject>Dietary Fats</subject><subject>FXR</subject><subject>Gene Expression Regulation</subject><subject>GLP-1</subject><subject>Glucagon-Like Peptide 1 - genetics</subject><subject>Glucagon-Like Peptide 1 - metabolism</subject><subject>Glucose - metabolism</subject><subject>Lipid Metabolism</subject><subject>Lipids</subject><subject>Liver - metabolism</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>non-alcoholic fatty liver disease</subject><subject>obesity</subject><subject>Obesity - genetics</subject><subject>Obesity - metabolism</subject><subject>Obesity - pathology</subject><subject>Receptors, Cytoplasmic and Nuclear - genetics</subject><subject>Receptors, Cytoplasmic and Nuclear - metabolism</subject><subject>Receptors, G-Protein-Coupled - genetics</subject><subject>Receptors, G-Protein-Coupled - metabolism</subject><subject>TGR5</subject><subject>type 2 diabetes</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kT1P3TAUhi3UqtzSzmyVxy652I5z4yyVKsRHJaouVGKzTuwTriGxU9tBor--hktpGfDi4Tx-ffQ-hBxytuaslUc3vVl_57xdt0rWQuyRFWeqruqGX70hK8YErzrRqH3yPqUbVo7s-DuyL5RsVa2aFfl9CtFjCs7SKxrR4JxDpM7bxWCil3CLFuhZNceQ0fl_RENNDClVGcZbmkMZXC8jZKS9G5GCKXnp3uctJpcoeEu3OEN2hk6YoQ-jS9MH8naAMeHHp_uA_Dw9uTw-ry5-nH07_npRGSnrXG0sWDStEHZTD41SLRqu2g4ARS2ZhMbyoQz5YBmXcrA1KDP0HbYb0QjV9_UB-bLLnZd-QmvQ5wijnqObIN7rAE6_nHi31dfhTjelrFapEvD5KSCGXwumrCeXDI4jeAxL0lx1GylEWaagRzv0sZ2Iw_M3nOkHY7oY0w_G9M5YefHp_-2e-b-KCtDtACwd3TmMOhmH3qB1xUbWNrhXw_8AY86org</recordid><startdate>20170630</startdate><enddate>20170630</enddate><creator>Pathak, Preeti</creator><creator>Liu, Hailiang</creator><creator>Boehme, Shannon</creator><creator>Xie, Cen</creator><creator>Krausz, Kristopher W.</creator><creator>Gonzalez, Frank</creator><creator>Chiang, John Y.L.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170630</creationdate><title>Farnesoid X receptor induces Takeda G-protein receptor 5 cross-talk to regulate bile acid synthesis and hepatic metabolism</title><author>Pathak, Preeti ; Liu, Hailiang ; Boehme, Shannon ; Xie, Cen ; Krausz, Kristopher W. ; Gonzalez, Frank ; Chiang, John Y.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-6dadec722d63f5887ec1879aae23404a5d1f22d1fd0144fd3a8cfb9e762528bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>bile acid</topic><topic>bile acid metabolism</topic><topic>Bile Acids and Salts - biosynthesis</topic><topic>Bile Acids and Salts - genetics</topic><topic>Dietary Fats</topic><topic>FXR</topic><topic>Gene Expression Regulation</topic><topic>GLP-1</topic><topic>Glucagon-Like Peptide 1 - genetics</topic><topic>Glucagon-Like Peptide 1 - metabolism</topic><topic>Glucose - metabolism</topic><topic>Lipid Metabolism</topic><topic>Lipids</topic><topic>Liver - metabolism</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>non-alcoholic fatty liver disease</topic><topic>obesity</topic><topic>Obesity - genetics</topic><topic>Obesity - metabolism</topic><topic>Obesity - pathology</topic><topic>Receptors, Cytoplasmic and Nuclear - genetics</topic><topic>Receptors, Cytoplasmic and Nuclear - metabolism</topic><topic>Receptors, G-Protein-Coupled - genetics</topic><topic>Receptors, G-Protein-Coupled - metabolism</topic><topic>TGR5</topic><topic>type 2 diabetes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pathak, Preeti</creatorcontrib><creatorcontrib>Liu, Hailiang</creatorcontrib><creatorcontrib>Boehme, Shannon</creatorcontrib><creatorcontrib>Xie, Cen</creatorcontrib><creatorcontrib>Krausz, Kristopher W.</creatorcontrib><creatorcontrib>Gonzalez, Frank</creatorcontrib><creatorcontrib>Chiang, John Y.L.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pathak, Preeti</au><au>Liu, Hailiang</au><au>Boehme, Shannon</au><au>Xie, Cen</au><au>Krausz, Kristopher W.</au><au>Gonzalez, Frank</au><au>Chiang, John Y.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Farnesoid X receptor induces Takeda G-protein receptor 5 cross-talk to regulate bile acid synthesis and hepatic metabolism</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2017-06-30</date><risdate>2017</risdate><volume>292</volume><issue>26</issue><spage>11055</spage><epage>11069</epage><pages>11055-11069</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The bile acid-activated receptors, nuclear farnesoid X receptor (FXR) and the membrane Takeda G-protein receptor 5 (TGR5), are known to improve glucose and insulin sensitivity in obese and diabetic mice. However, the metabolic roles of these two receptors and the underlying mechanisms are incompletely understood. Here, we studied the effects of the dual FXR and TGR5 agonist INT-767 on hepatic bile acid synthesis and intestinal secretion of glucagon-like peptide-1 (GLP-1) in wild-type, Fxr−/−, and Tgr5−/− mice. INT-767 efficaciously stimulated intracellular Ca2+ levels, cAMP activity, and GLP-1 secretion and improved glucose and lipid metabolism more than did the FXR-selective obeticholic acid and TGR5-selective INT-777 agonists. Interestingly, INT-767 reduced expression of the genes in the classic bile acid synthesis pathway but induced those in the alternative pathway, which is consistent with decreased taurocholic acid and increased tauromuricholic acids in bile. Furthermore, FXR activation induced expression of FXR target genes, including fibroblast growth factor 15, and unexpectedly Tgr5 and prohormone convertase 1/3 gene expression in the ileum. We identified an FXR-responsive element on the Tgr5 gene promoter. Fxr−/− and Tgr5−/− mice exhibited reduced GLP-1 secretion, which was stimulated by INT-767 in the Tgr5−/− mice but not in the Fxr−/− mice. Our findings uncovered a novel mechanism in which INT-767 activation of FXR induces Tgr5 gene expression and increases Ca2+ levels and cAMP activity to stimulate GLP-1 secretion and improve hepatic glucose and lipid metabolism in high-fat diet-induced obese mice. Activation of both FXR and TGR5 may therefore represent an effective therapy for managing hepatic steatosis, obesity, and diabetes.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>28478385</pmid><doi>10.1074/jbc.M117.784322</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2017-06, Vol.292 (26), p.11055-11069
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5491788
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Animals
bile acid
bile acid metabolism
Bile Acids and Salts - biosynthesis
Bile Acids and Salts - genetics
Dietary Fats
FXR
Gene Expression Regulation
GLP-1
Glucagon-Like Peptide 1 - genetics
Glucagon-Like Peptide 1 - metabolism
Glucose - metabolism
Lipid Metabolism
Lipids
Liver - metabolism
Mice
Mice, Knockout
non-alcoholic fatty liver disease
obesity
Obesity - genetics
Obesity - metabolism
Obesity - pathology
Receptors, Cytoplasmic and Nuclear - genetics
Receptors, Cytoplasmic and Nuclear - metabolism
Receptors, G-Protein-Coupled - genetics
Receptors, G-Protein-Coupled - metabolism
TGR5
type 2 diabetes
title Farnesoid X receptor induces Takeda G-protein receptor 5 cross-talk to regulate bile acid synthesis and hepatic metabolism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T05%3A54%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Farnesoid%20X%20receptor%20induces%20Takeda%20G-protein%20receptor%205%20cross-talk%20to%20regulate%20bile%20acid%20synthesis%20and%20hepatic%20metabolism&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Pathak,%20Preeti&rft.date=2017-06-30&rft.volume=292&rft.issue=26&rft.spage=11055&rft.epage=11069&rft.pages=11055-11069&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M117.784322&rft_dat=%3Cproquest_pubme%3E1896422404%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1896422404&rft_id=info:pmid/28478385&rft_els_id=S0021925820365170&rfr_iscdi=true