Girdin is an intrinsic regulator of neuroblast chain migration in the rostral migratory stream of the postnatal brain

In postnatally developing and adult brains, interneurons of the olfactory bulb (OB) are continuously generated at the subventricular zone of the forebrain. The newborn neuroblasts migrate tangentially to the OB through a well defined pathway, the rostral migratory stream (RMS), where the neuroblasts...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 2011-06, Vol.31 (22), p.8109-8122
Hauptverfasser: Wang, Yun, Kaneko, Naoko, Asai, Naoya, Enomoto, Atsushi, Isotani-Sakakibara, Mayu, Kato, Takuya, Asai, Masato, Murakumo, Yoshiki, Ota, Haruko, Hikita, Takao, Namba, Takashi, Kuroda, Keisuke, Kaibuchi, Kozo, Ming, Guo-li, Song, Hongjun, Sawamoto, Kazunobu, Takahashi, Masahide
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8122
container_issue 22
container_start_page 8109
container_title The Journal of neuroscience
container_volume 31
creator Wang, Yun
Kaneko, Naoko
Asai, Naoya
Enomoto, Atsushi
Isotani-Sakakibara, Mayu
Kato, Takuya
Asai, Masato
Murakumo, Yoshiki
Ota, Haruko
Hikita, Takao
Namba, Takashi
Kuroda, Keisuke
Kaibuchi, Kozo
Ming, Guo-li
Song, Hongjun
Sawamoto, Kazunobu
Takahashi, Masahide
description In postnatally developing and adult brains, interneurons of the olfactory bulb (OB) are continuously generated at the subventricular zone of the forebrain. The newborn neuroblasts migrate tangentially to the OB through a well defined pathway, the rostral migratory stream (RMS), where the neuroblasts undergo collective migration termed "chain migration." The cell-intrinsic regulatory mechanism of neuroblast chain migration, however, has not been uncovered. Here we show that mice lacking the actin-binding Akt substrate Girdin (a protein that interacts with Disrupted-In-Schizophrenia 1 to regulate neurogenesis in the dentate gyrus) have profound defects in neuroblast chain migration along the RMS. Analysis of two gene knock-in mice harboring Girdin mutants identified unique amino acid residues in Girdin's C-terminal domain that are responsible for the regulation of neuroblast chain migration but revealed no apparent requirement of Girdin phosphorylation by Akt. Electron microscopic analyses demonstrated the involvement of Girdin in neuroblast cell-cell interactions. These findings suggest that Girdin is an important intrinsic factor that specifically governs neuroblast chain migration along the RMS.
doi_str_mv 10.1523/jneurosci.1130-11.2011
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5491307</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>878821419</sourcerecordid><originalsourceid>FETCH-LOGICAL-c532t-b3db8722d0e52e51d0feb7563b680213ae17b6447b7860e5471c21c1735836643</originalsourceid><addsrcrecordid>eNpVUctuGyEURVGj2E37CxG7rsblAgPjTaTKSt1UUSPlsUbAYBtrZnCBieS_L9M4Ubu5CJ3HPboHoSsgC6gp-7of3BhDsn4BwEgFsKAE4AzNC7qsKCfwAc0JlaQSXPIZ-pjSnhAiCcgLNKMgGF0yNkfj2sfWD9gnrMsccvRD8hZHtx07nUPEYYP_7jKdThnbnS7s3m-jzj5MCpx3DpcoOeruBIR4xOXvdD-pJ_xQ8EHnwjCxGHxC5xvdJff59F6i5-83T6sf1d39-nb17a6yNaO5Mqw1jaS0Ja6mroaWbJyRtWBGNIQC0w6kEZxLIxtROFyCpWBBsrphQnB2ia5ffQ-j6V1r3TClVIfoex2PKmiv_kcGv1Pb8KJqvixnlcXgy8kght-jS1n1PlnXdXpwYUyqkU1DgcOyMMUr05ZbpOg271uAqKky9fPXzfPD_ePqVk2VlaGmyorw6t-M77K3jtgfpKmWvQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>878821419</pqid></control><display><type>article</type><title>Girdin is an intrinsic regulator of neuroblast chain migration in the rostral migratory stream of the postnatal brain</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Wang, Yun ; Kaneko, Naoko ; Asai, Naoya ; Enomoto, Atsushi ; Isotani-Sakakibara, Mayu ; Kato, Takuya ; Asai, Masato ; Murakumo, Yoshiki ; Ota, Haruko ; Hikita, Takao ; Namba, Takashi ; Kuroda, Keisuke ; Kaibuchi, Kozo ; Ming, Guo-li ; Song, Hongjun ; Sawamoto, Kazunobu ; Takahashi, Masahide</creator><creatorcontrib>Wang, Yun ; Kaneko, Naoko ; Asai, Naoya ; Enomoto, Atsushi ; Isotani-Sakakibara, Mayu ; Kato, Takuya ; Asai, Masato ; Murakumo, Yoshiki ; Ota, Haruko ; Hikita, Takao ; Namba, Takashi ; Kuroda, Keisuke ; Kaibuchi, Kozo ; Ming, Guo-li ; Song, Hongjun ; Sawamoto, Kazunobu ; Takahashi, Masahide</creatorcontrib><description>In postnatally developing and adult brains, interneurons of the olfactory bulb (OB) are continuously generated at the subventricular zone of the forebrain. The newborn neuroblasts migrate tangentially to the OB through a well defined pathway, the rostral migratory stream (RMS), where the neuroblasts undergo collective migration termed "chain migration." The cell-intrinsic regulatory mechanism of neuroblast chain migration, however, has not been uncovered. Here we show that mice lacking the actin-binding Akt substrate Girdin (a protein that interacts with Disrupted-In-Schizophrenia 1 to regulate neurogenesis in the dentate gyrus) have profound defects in neuroblast chain migration along the RMS. Analysis of two gene knock-in mice harboring Girdin mutants identified unique amino acid residues in Girdin's C-terminal domain that are responsible for the regulation of neuroblast chain migration but revealed no apparent requirement of Girdin phosphorylation by Akt. Electron microscopic analyses demonstrated the involvement of Girdin in neuroblast cell-cell interactions. These findings suggest that Girdin is an important intrinsic factor that specifically governs neuroblast chain migration along the RMS.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/jneurosci.1130-11.2011</identifier><identifier>PMID: 21632933</identifier><language>eng</language><publisher>United States: Society for Neuroscience</publisher><subject>Animals ; Brain - anatomy &amp; histology ; Brain - growth &amp; development ; Brain - metabolism ; Brain - physiology ; Brain - ultrastructure ; Cell Movement - genetics ; Cell Movement - physiology ; Cells, Cultured ; Gene Knock-In Techniques - methods ; Intercellular Junctions - genetics ; Intercellular Junctions - ultrastructure ; Interneurons - metabolism ; Interneurons - physiology ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Microfilament Proteins - genetics ; Microfilament Proteins - metabolism ; Microfilament Proteins - physiology ; Mutation ; Nerve Tissue Proteins - genetics ; Nerve Tissue Proteins - physiology ; Neural Stem Cells - metabolism ; Neural Stem Cells - physiology ; Neural Stem Cells - ultrastructure ; Olfactory Bulb - anatomy &amp; histology ; Olfactory Bulb - growth &amp; development ; Olfactory Bulb - metabolism ; Olfactory Bulb - physiology ; Olfactory Bulb - ultrastructure ; Vesicular Transport Proteins - genetics ; Vesicular Transport Proteins - metabolism ; Vesicular Transport Proteins - physiology</subject><ispartof>The Journal of neuroscience, 2011-06, Vol.31 (22), p.8109-8122</ispartof><rights>Copyright © 2011 the authors 0270-6474/11/318109-14$15.00/0 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c532t-b3db8722d0e52e51d0feb7563b680213ae17b6447b7860e5471c21c1735836643</citedby><cites>FETCH-LOGICAL-c532t-b3db8722d0e52e51d0feb7563b680213ae17b6447b7860e5471c21c1735836643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5491307/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5491307/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21632933$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Yun</creatorcontrib><creatorcontrib>Kaneko, Naoko</creatorcontrib><creatorcontrib>Asai, Naoya</creatorcontrib><creatorcontrib>Enomoto, Atsushi</creatorcontrib><creatorcontrib>Isotani-Sakakibara, Mayu</creatorcontrib><creatorcontrib>Kato, Takuya</creatorcontrib><creatorcontrib>Asai, Masato</creatorcontrib><creatorcontrib>Murakumo, Yoshiki</creatorcontrib><creatorcontrib>Ota, Haruko</creatorcontrib><creatorcontrib>Hikita, Takao</creatorcontrib><creatorcontrib>Namba, Takashi</creatorcontrib><creatorcontrib>Kuroda, Keisuke</creatorcontrib><creatorcontrib>Kaibuchi, Kozo</creatorcontrib><creatorcontrib>Ming, Guo-li</creatorcontrib><creatorcontrib>Song, Hongjun</creatorcontrib><creatorcontrib>Sawamoto, Kazunobu</creatorcontrib><creatorcontrib>Takahashi, Masahide</creatorcontrib><title>Girdin is an intrinsic regulator of neuroblast chain migration in the rostral migratory stream of the postnatal brain</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>In postnatally developing and adult brains, interneurons of the olfactory bulb (OB) are continuously generated at the subventricular zone of the forebrain. The newborn neuroblasts migrate tangentially to the OB through a well defined pathway, the rostral migratory stream (RMS), where the neuroblasts undergo collective migration termed "chain migration." The cell-intrinsic regulatory mechanism of neuroblast chain migration, however, has not been uncovered. Here we show that mice lacking the actin-binding Akt substrate Girdin (a protein that interacts with Disrupted-In-Schizophrenia 1 to regulate neurogenesis in the dentate gyrus) have profound defects in neuroblast chain migration along the RMS. Analysis of two gene knock-in mice harboring Girdin mutants identified unique amino acid residues in Girdin's C-terminal domain that are responsible for the regulation of neuroblast chain migration but revealed no apparent requirement of Girdin phosphorylation by Akt. Electron microscopic analyses demonstrated the involvement of Girdin in neuroblast cell-cell interactions. These findings suggest that Girdin is an important intrinsic factor that specifically governs neuroblast chain migration along the RMS.</description><subject>Animals</subject><subject>Brain - anatomy &amp; histology</subject><subject>Brain - growth &amp; development</subject><subject>Brain - metabolism</subject><subject>Brain - physiology</subject><subject>Brain - ultrastructure</subject><subject>Cell Movement - genetics</subject><subject>Cell Movement - physiology</subject><subject>Cells, Cultured</subject><subject>Gene Knock-In Techniques - methods</subject><subject>Intercellular Junctions - genetics</subject><subject>Intercellular Junctions - ultrastructure</subject><subject>Interneurons - metabolism</subject><subject>Interneurons - physiology</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Microfilament Proteins - genetics</subject><subject>Microfilament Proteins - metabolism</subject><subject>Microfilament Proteins - physiology</subject><subject>Mutation</subject><subject>Nerve Tissue Proteins - genetics</subject><subject>Nerve Tissue Proteins - physiology</subject><subject>Neural Stem Cells - metabolism</subject><subject>Neural Stem Cells - physiology</subject><subject>Neural Stem Cells - ultrastructure</subject><subject>Olfactory Bulb - anatomy &amp; histology</subject><subject>Olfactory Bulb - growth &amp; development</subject><subject>Olfactory Bulb - metabolism</subject><subject>Olfactory Bulb - physiology</subject><subject>Olfactory Bulb - ultrastructure</subject><subject>Vesicular Transport Proteins - genetics</subject><subject>Vesicular Transport Proteins - metabolism</subject><subject>Vesicular Transport Proteins - physiology</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUctuGyEURVGj2E37CxG7rsblAgPjTaTKSt1UUSPlsUbAYBtrZnCBieS_L9M4Ubu5CJ3HPboHoSsgC6gp-7of3BhDsn4BwEgFsKAE4AzNC7qsKCfwAc0JlaQSXPIZ-pjSnhAiCcgLNKMgGF0yNkfj2sfWD9gnrMsccvRD8hZHtx07nUPEYYP_7jKdThnbnS7s3m-jzj5MCpx3DpcoOeruBIR4xOXvdD-pJ_xQ8EHnwjCxGHxC5xvdJff59F6i5-83T6sf1d39-nb17a6yNaO5Mqw1jaS0Ja6mroaWbJyRtWBGNIQC0w6kEZxLIxtROFyCpWBBsrphQnB2ia5ffQ-j6V1r3TClVIfoex2PKmiv_kcGv1Pb8KJqvixnlcXgy8kght-jS1n1PlnXdXpwYUyqkU1DgcOyMMUr05ZbpOg271uAqKky9fPXzfPD_ePqVk2VlaGmyorw6t-M77K3jtgfpKmWvQ</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>Wang, Yun</creator><creator>Kaneko, Naoko</creator><creator>Asai, Naoya</creator><creator>Enomoto, Atsushi</creator><creator>Isotani-Sakakibara, Mayu</creator><creator>Kato, Takuya</creator><creator>Asai, Masato</creator><creator>Murakumo, Yoshiki</creator><creator>Ota, Haruko</creator><creator>Hikita, Takao</creator><creator>Namba, Takashi</creator><creator>Kuroda, Keisuke</creator><creator>Kaibuchi, Kozo</creator><creator>Ming, Guo-li</creator><creator>Song, Hongjun</creator><creator>Sawamoto, Kazunobu</creator><creator>Takahashi, Masahide</creator><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110601</creationdate><title>Girdin is an intrinsic regulator of neuroblast chain migration in the rostral migratory stream of the postnatal brain</title><author>Wang, Yun ; Kaneko, Naoko ; Asai, Naoya ; Enomoto, Atsushi ; Isotani-Sakakibara, Mayu ; Kato, Takuya ; Asai, Masato ; Murakumo, Yoshiki ; Ota, Haruko ; Hikita, Takao ; Namba, Takashi ; Kuroda, Keisuke ; Kaibuchi, Kozo ; Ming, Guo-li ; Song, Hongjun ; Sawamoto, Kazunobu ; Takahashi, Masahide</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c532t-b3db8722d0e52e51d0feb7563b680213ae17b6447b7860e5471c21c1735836643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Brain - anatomy &amp; histology</topic><topic>Brain - growth &amp; development</topic><topic>Brain - metabolism</topic><topic>Brain - physiology</topic><topic>Brain - ultrastructure</topic><topic>Cell Movement - genetics</topic><topic>Cell Movement - physiology</topic><topic>Cells, Cultured</topic><topic>Gene Knock-In Techniques - methods</topic><topic>Intercellular Junctions - genetics</topic><topic>Intercellular Junctions - ultrastructure</topic><topic>Interneurons - metabolism</topic><topic>Interneurons - physiology</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Microfilament Proteins - genetics</topic><topic>Microfilament Proteins - metabolism</topic><topic>Microfilament Proteins - physiology</topic><topic>Mutation</topic><topic>Nerve Tissue Proteins - genetics</topic><topic>Nerve Tissue Proteins - physiology</topic><topic>Neural Stem Cells - metabolism</topic><topic>Neural Stem Cells - physiology</topic><topic>Neural Stem Cells - ultrastructure</topic><topic>Olfactory Bulb - anatomy &amp; histology</topic><topic>Olfactory Bulb - growth &amp; development</topic><topic>Olfactory Bulb - metabolism</topic><topic>Olfactory Bulb - physiology</topic><topic>Olfactory Bulb - ultrastructure</topic><topic>Vesicular Transport Proteins - genetics</topic><topic>Vesicular Transport Proteins - metabolism</topic><topic>Vesicular Transport Proteins - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yun</creatorcontrib><creatorcontrib>Kaneko, Naoko</creatorcontrib><creatorcontrib>Asai, Naoya</creatorcontrib><creatorcontrib>Enomoto, Atsushi</creatorcontrib><creatorcontrib>Isotani-Sakakibara, Mayu</creatorcontrib><creatorcontrib>Kato, Takuya</creatorcontrib><creatorcontrib>Asai, Masato</creatorcontrib><creatorcontrib>Murakumo, Yoshiki</creatorcontrib><creatorcontrib>Ota, Haruko</creatorcontrib><creatorcontrib>Hikita, Takao</creatorcontrib><creatorcontrib>Namba, Takashi</creatorcontrib><creatorcontrib>Kuroda, Keisuke</creatorcontrib><creatorcontrib>Kaibuchi, Kozo</creatorcontrib><creatorcontrib>Ming, Guo-li</creatorcontrib><creatorcontrib>Song, Hongjun</creatorcontrib><creatorcontrib>Sawamoto, Kazunobu</creatorcontrib><creatorcontrib>Takahashi, Masahide</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yun</au><au>Kaneko, Naoko</au><au>Asai, Naoya</au><au>Enomoto, Atsushi</au><au>Isotani-Sakakibara, Mayu</au><au>Kato, Takuya</au><au>Asai, Masato</au><au>Murakumo, Yoshiki</au><au>Ota, Haruko</au><au>Hikita, Takao</au><au>Namba, Takashi</au><au>Kuroda, Keisuke</au><au>Kaibuchi, Kozo</au><au>Ming, Guo-li</au><au>Song, Hongjun</au><au>Sawamoto, Kazunobu</au><au>Takahashi, Masahide</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Girdin is an intrinsic regulator of neuroblast chain migration in the rostral migratory stream of the postnatal brain</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2011-06-01</date><risdate>2011</risdate><volume>31</volume><issue>22</issue><spage>8109</spage><epage>8122</epage><pages>8109-8122</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>In postnatally developing and adult brains, interneurons of the olfactory bulb (OB) are continuously generated at the subventricular zone of the forebrain. The newborn neuroblasts migrate tangentially to the OB through a well defined pathway, the rostral migratory stream (RMS), where the neuroblasts undergo collective migration termed "chain migration." The cell-intrinsic regulatory mechanism of neuroblast chain migration, however, has not been uncovered. Here we show that mice lacking the actin-binding Akt substrate Girdin (a protein that interacts with Disrupted-In-Schizophrenia 1 to regulate neurogenesis in the dentate gyrus) have profound defects in neuroblast chain migration along the RMS. Analysis of two gene knock-in mice harboring Girdin mutants identified unique amino acid residues in Girdin's C-terminal domain that are responsible for the regulation of neuroblast chain migration but revealed no apparent requirement of Girdin phosphorylation by Akt. Electron microscopic analyses demonstrated the involvement of Girdin in neuroblast cell-cell interactions. These findings suggest that Girdin is an important intrinsic factor that specifically governs neuroblast chain migration along the RMS.</abstract><cop>United States</cop><pub>Society for Neuroscience</pub><pmid>21632933</pmid><doi>10.1523/jneurosci.1130-11.2011</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0270-6474
ispartof The Journal of neuroscience, 2011-06, Vol.31 (22), p.8109-8122
issn 0270-6474
1529-2401
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5491307
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Animals
Brain - anatomy & histology
Brain - growth & development
Brain - metabolism
Brain - physiology
Brain - ultrastructure
Cell Movement - genetics
Cell Movement - physiology
Cells, Cultured
Gene Knock-In Techniques - methods
Intercellular Junctions - genetics
Intercellular Junctions - ultrastructure
Interneurons - metabolism
Interneurons - physiology
Mice
Mice, Inbred C57BL
Mice, Knockout
Microfilament Proteins - genetics
Microfilament Proteins - metabolism
Microfilament Proteins - physiology
Mutation
Nerve Tissue Proteins - genetics
Nerve Tissue Proteins - physiology
Neural Stem Cells - metabolism
Neural Stem Cells - physiology
Neural Stem Cells - ultrastructure
Olfactory Bulb - anatomy & histology
Olfactory Bulb - growth & development
Olfactory Bulb - metabolism
Olfactory Bulb - physiology
Olfactory Bulb - ultrastructure
Vesicular Transport Proteins - genetics
Vesicular Transport Proteins - metabolism
Vesicular Transport Proteins - physiology
title Girdin is an intrinsic regulator of neuroblast chain migration in the rostral migratory stream of the postnatal brain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T11%3A36%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Girdin%20is%20an%20intrinsic%20regulator%20of%20neuroblast%20chain%20migration%20in%20the%20rostral%20migratory%20stream%20of%20the%20postnatal%20brain&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Wang,%20Yun&rft.date=2011-06-01&rft.volume=31&rft.issue=22&rft.spage=8109&rft.epage=8122&rft.pages=8109-8122&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/jneurosci.1130-11.2011&rft_dat=%3Cproquest_pubme%3E878821419%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=878821419&rft_id=info:pmid/21632933&rfr_iscdi=true