Girdin is an intrinsic regulator of neuroblast chain migration in the rostral migratory stream of the postnatal brain
In postnatally developing and adult brains, interneurons of the olfactory bulb (OB) are continuously generated at the subventricular zone of the forebrain. The newborn neuroblasts migrate tangentially to the OB through a well defined pathway, the rostral migratory stream (RMS), where the neuroblasts...
Gespeichert in:
Veröffentlicht in: | The Journal of neuroscience 2011-06, Vol.31 (22), p.8109-8122 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8122 |
---|---|
container_issue | 22 |
container_start_page | 8109 |
container_title | The Journal of neuroscience |
container_volume | 31 |
creator | Wang, Yun Kaneko, Naoko Asai, Naoya Enomoto, Atsushi Isotani-Sakakibara, Mayu Kato, Takuya Asai, Masato Murakumo, Yoshiki Ota, Haruko Hikita, Takao Namba, Takashi Kuroda, Keisuke Kaibuchi, Kozo Ming, Guo-li Song, Hongjun Sawamoto, Kazunobu Takahashi, Masahide |
description | In postnatally developing and adult brains, interneurons of the olfactory bulb (OB) are continuously generated at the subventricular zone of the forebrain. The newborn neuroblasts migrate tangentially to the OB through a well defined pathway, the rostral migratory stream (RMS), where the neuroblasts undergo collective migration termed "chain migration." The cell-intrinsic regulatory mechanism of neuroblast chain migration, however, has not been uncovered. Here we show that mice lacking the actin-binding Akt substrate Girdin (a protein that interacts with Disrupted-In-Schizophrenia 1 to regulate neurogenesis in the dentate gyrus) have profound defects in neuroblast chain migration along the RMS. Analysis of two gene knock-in mice harboring Girdin mutants identified unique amino acid residues in Girdin's C-terminal domain that are responsible for the regulation of neuroblast chain migration but revealed no apparent requirement of Girdin phosphorylation by Akt. Electron microscopic analyses demonstrated the involvement of Girdin in neuroblast cell-cell interactions. These findings suggest that Girdin is an important intrinsic factor that specifically governs neuroblast chain migration along the RMS. |
doi_str_mv | 10.1523/jneurosci.1130-11.2011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5491307</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>878821419</sourcerecordid><originalsourceid>FETCH-LOGICAL-c532t-b3db8722d0e52e51d0feb7563b680213ae17b6447b7860e5471c21c1735836643</originalsourceid><addsrcrecordid>eNpVUctuGyEURVGj2E37CxG7rsblAgPjTaTKSt1UUSPlsUbAYBtrZnCBieS_L9M4Ubu5CJ3HPboHoSsgC6gp-7of3BhDsn4BwEgFsKAE4AzNC7qsKCfwAc0JlaQSXPIZ-pjSnhAiCcgLNKMgGF0yNkfj2sfWD9gnrMsccvRD8hZHtx07nUPEYYP_7jKdThnbnS7s3m-jzj5MCpx3DpcoOeruBIR4xOXvdD-pJ_xQ8EHnwjCxGHxC5xvdJff59F6i5-83T6sf1d39-nb17a6yNaO5Mqw1jaS0Ja6mroaWbJyRtWBGNIQC0w6kEZxLIxtROFyCpWBBsrphQnB2ia5ffQ-j6V1r3TClVIfoex2PKmiv_kcGv1Pb8KJqvixnlcXgy8kght-jS1n1PlnXdXpwYUyqkU1DgcOyMMUr05ZbpOg271uAqKky9fPXzfPD_ePqVk2VlaGmyorw6t-M77K3jtgfpKmWvQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>878821419</pqid></control><display><type>article</type><title>Girdin is an intrinsic regulator of neuroblast chain migration in the rostral migratory stream of the postnatal brain</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Wang, Yun ; Kaneko, Naoko ; Asai, Naoya ; Enomoto, Atsushi ; Isotani-Sakakibara, Mayu ; Kato, Takuya ; Asai, Masato ; Murakumo, Yoshiki ; Ota, Haruko ; Hikita, Takao ; Namba, Takashi ; Kuroda, Keisuke ; Kaibuchi, Kozo ; Ming, Guo-li ; Song, Hongjun ; Sawamoto, Kazunobu ; Takahashi, Masahide</creator><creatorcontrib>Wang, Yun ; Kaneko, Naoko ; Asai, Naoya ; Enomoto, Atsushi ; Isotani-Sakakibara, Mayu ; Kato, Takuya ; Asai, Masato ; Murakumo, Yoshiki ; Ota, Haruko ; Hikita, Takao ; Namba, Takashi ; Kuroda, Keisuke ; Kaibuchi, Kozo ; Ming, Guo-li ; Song, Hongjun ; Sawamoto, Kazunobu ; Takahashi, Masahide</creatorcontrib><description>In postnatally developing and adult brains, interneurons of the olfactory bulb (OB) are continuously generated at the subventricular zone of the forebrain. The newborn neuroblasts migrate tangentially to the OB through a well defined pathway, the rostral migratory stream (RMS), where the neuroblasts undergo collective migration termed "chain migration." The cell-intrinsic regulatory mechanism of neuroblast chain migration, however, has not been uncovered. Here we show that mice lacking the actin-binding Akt substrate Girdin (a protein that interacts with Disrupted-In-Schizophrenia 1 to regulate neurogenesis in the dentate gyrus) have profound defects in neuroblast chain migration along the RMS. Analysis of two gene knock-in mice harboring Girdin mutants identified unique amino acid residues in Girdin's C-terminal domain that are responsible for the regulation of neuroblast chain migration but revealed no apparent requirement of Girdin phosphorylation by Akt. Electron microscopic analyses demonstrated the involvement of Girdin in neuroblast cell-cell interactions. These findings suggest that Girdin is an important intrinsic factor that specifically governs neuroblast chain migration along the RMS.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/jneurosci.1130-11.2011</identifier><identifier>PMID: 21632933</identifier><language>eng</language><publisher>United States: Society for Neuroscience</publisher><subject>Animals ; Brain - anatomy & histology ; Brain - growth & development ; Brain - metabolism ; Brain - physiology ; Brain - ultrastructure ; Cell Movement - genetics ; Cell Movement - physiology ; Cells, Cultured ; Gene Knock-In Techniques - methods ; Intercellular Junctions - genetics ; Intercellular Junctions - ultrastructure ; Interneurons - metabolism ; Interneurons - physiology ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Microfilament Proteins - genetics ; Microfilament Proteins - metabolism ; Microfilament Proteins - physiology ; Mutation ; Nerve Tissue Proteins - genetics ; Nerve Tissue Proteins - physiology ; Neural Stem Cells - metabolism ; Neural Stem Cells - physiology ; Neural Stem Cells - ultrastructure ; Olfactory Bulb - anatomy & histology ; Olfactory Bulb - growth & development ; Olfactory Bulb - metabolism ; Olfactory Bulb - physiology ; Olfactory Bulb - ultrastructure ; Vesicular Transport Proteins - genetics ; Vesicular Transport Proteins - metabolism ; Vesicular Transport Proteins - physiology</subject><ispartof>The Journal of neuroscience, 2011-06, Vol.31 (22), p.8109-8122</ispartof><rights>Copyright © 2011 the authors 0270-6474/11/318109-14$15.00/0 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c532t-b3db8722d0e52e51d0feb7563b680213ae17b6447b7860e5471c21c1735836643</citedby><cites>FETCH-LOGICAL-c532t-b3db8722d0e52e51d0feb7563b680213ae17b6447b7860e5471c21c1735836643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5491307/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5491307/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21632933$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Yun</creatorcontrib><creatorcontrib>Kaneko, Naoko</creatorcontrib><creatorcontrib>Asai, Naoya</creatorcontrib><creatorcontrib>Enomoto, Atsushi</creatorcontrib><creatorcontrib>Isotani-Sakakibara, Mayu</creatorcontrib><creatorcontrib>Kato, Takuya</creatorcontrib><creatorcontrib>Asai, Masato</creatorcontrib><creatorcontrib>Murakumo, Yoshiki</creatorcontrib><creatorcontrib>Ota, Haruko</creatorcontrib><creatorcontrib>Hikita, Takao</creatorcontrib><creatorcontrib>Namba, Takashi</creatorcontrib><creatorcontrib>Kuroda, Keisuke</creatorcontrib><creatorcontrib>Kaibuchi, Kozo</creatorcontrib><creatorcontrib>Ming, Guo-li</creatorcontrib><creatorcontrib>Song, Hongjun</creatorcontrib><creatorcontrib>Sawamoto, Kazunobu</creatorcontrib><creatorcontrib>Takahashi, Masahide</creatorcontrib><title>Girdin is an intrinsic regulator of neuroblast chain migration in the rostral migratory stream of the postnatal brain</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>In postnatally developing and adult brains, interneurons of the olfactory bulb (OB) are continuously generated at the subventricular zone of the forebrain. The newborn neuroblasts migrate tangentially to the OB through a well defined pathway, the rostral migratory stream (RMS), where the neuroblasts undergo collective migration termed "chain migration." The cell-intrinsic regulatory mechanism of neuroblast chain migration, however, has not been uncovered. Here we show that mice lacking the actin-binding Akt substrate Girdin (a protein that interacts with Disrupted-In-Schizophrenia 1 to regulate neurogenesis in the dentate gyrus) have profound defects in neuroblast chain migration along the RMS. Analysis of two gene knock-in mice harboring Girdin mutants identified unique amino acid residues in Girdin's C-terminal domain that are responsible for the regulation of neuroblast chain migration but revealed no apparent requirement of Girdin phosphorylation by Akt. Electron microscopic analyses demonstrated the involvement of Girdin in neuroblast cell-cell interactions. These findings suggest that Girdin is an important intrinsic factor that specifically governs neuroblast chain migration along the RMS.</description><subject>Animals</subject><subject>Brain - anatomy & histology</subject><subject>Brain - growth & development</subject><subject>Brain - metabolism</subject><subject>Brain - physiology</subject><subject>Brain - ultrastructure</subject><subject>Cell Movement - genetics</subject><subject>Cell Movement - physiology</subject><subject>Cells, Cultured</subject><subject>Gene Knock-In Techniques - methods</subject><subject>Intercellular Junctions - genetics</subject><subject>Intercellular Junctions - ultrastructure</subject><subject>Interneurons - metabolism</subject><subject>Interneurons - physiology</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Microfilament Proteins - genetics</subject><subject>Microfilament Proteins - metabolism</subject><subject>Microfilament Proteins - physiology</subject><subject>Mutation</subject><subject>Nerve Tissue Proteins - genetics</subject><subject>Nerve Tissue Proteins - physiology</subject><subject>Neural Stem Cells - metabolism</subject><subject>Neural Stem Cells - physiology</subject><subject>Neural Stem Cells - ultrastructure</subject><subject>Olfactory Bulb - anatomy & histology</subject><subject>Olfactory Bulb - growth & development</subject><subject>Olfactory Bulb - metabolism</subject><subject>Olfactory Bulb - physiology</subject><subject>Olfactory Bulb - ultrastructure</subject><subject>Vesicular Transport Proteins - genetics</subject><subject>Vesicular Transport Proteins - metabolism</subject><subject>Vesicular Transport Proteins - physiology</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUctuGyEURVGj2E37CxG7rsblAgPjTaTKSt1UUSPlsUbAYBtrZnCBieS_L9M4Ubu5CJ3HPboHoSsgC6gp-7of3BhDsn4BwEgFsKAE4AzNC7qsKCfwAc0JlaQSXPIZ-pjSnhAiCcgLNKMgGF0yNkfj2sfWD9gnrMsccvRD8hZHtx07nUPEYYP_7jKdThnbnS7s3m-jzj5MCpx3DpcoOeruBIR4xOXvdD-pJ_xQ8EHnwjCxGHxC5xvdJff59F6i5-83T6sf1d39-nb17a6yNaO5Mqw1jaS0Ja6mroaWbJyRtWBGNIQC0w6kEZxLIxtROFyCpWBBsrphQnB2ia5ffQ-j6V1r3TClVIfoex2PKmiv_kcGv1Pb8KJqvixnlcXgy8kght-jS1n1PlnXdXpwYUyqkU1DgcOyMMUr05ZbpOg271uAqKky9fPXzfPD_ePqVk2VlaGmyorw6t-M77K3jtgfpKmWvQ</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>Wang, Yun</creator><creator>Kaneko, Naoko</creator><creator>Asai, Naoya</creator><creator>Enomoto, Atsushi</creator><creator>Isotani-Sakakibara, Mayu</creator><creator>Kato, Takuya</creator><creator>Asai, Masato</creator><creator>Murakumo, Yoshiki</creator><creator>Ota, Haruko</creator><creator>Hikita, Takao</creator><creator>Namba, Takashi</creator><creator>Kuroda, Keisuke</creator><creator>Kaibuchi, Kozo</creator><creator>Ming, Guo-li</creator><creator>Song, Hongjun</creator><creator>Sawamoto, Kazunobu</creator><creator>Takahashi, Masahide</creator><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110601</creationdate><title>Girdin is an intrinsic regulator of neuroblast chain migration in the rostral migratory stream of the postnatal brain</title><author>Wang, Yun ; Kaneko, Naoko ; Asai, Naoya ; Enomoto, Atsushi ; Isotani-Sakakibara, Mayu ; Kato, Takuya ; Asai, Masato ; Murakumo, Yoshiki ; Ota, Haruko ; Hikita, Takao ; Namba, Takashi ; Kuroda, Keisuke ; Kaibuchi, Kozo ; Ming, Guo-li ; Song, Hongjun ; Sawamoto, Kazunobu ; Takahashi, Masahide</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c532t-b3db8722d0e52e51d0feb7563b680213ae17b6447b7860e5471c21c1735836643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Brain - anatomy & histology</topic><topic>Brain - growth & development</topic><topic>Brain - metabolism</topic><topic>Brain - physiology</topic><topic>Brain - ultrastructure</topic><topic>Cell Movement - genetics</topic><topic>Cell Movement - physiology</topic><topic>Cells, Cultured</topic><topic>Gene Knock-In Techniques - methods</topic><topic>Intercellular Junctions - genetics</topic><topic>Intercellular Junctions - ultrastructure</topic><topic>Interneurons - metabolism</topic><topic>Interneurons - physiology</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Microfilament Proteins - genetics</topic><topic>Microfilament Proteins - metabolism</topic><topic>Microfilament Proteins - physiology</topic><topic>Mutation</topic><topic>Nerve Tissue Proteins - genetics</topic><topic>Nerve Tissue Proteins - physiology</topic><topic>Neural Stem Cells - metabolism</topic><topic>Neural Stem Cells - physiology</topic><topic>Neural Stem Cells - ultrastructure</topic><topic>Olfactory Bulb - anatomy & histology</topic><topic>Olfactory Bulb - growth & development</topic><topic>Olfactory Bulb - metabolism</topic><topic>Olfactory Bulb - physiology</topic><topic>Olfactory Bulb - ultrastructure</topic><topic>Vesicular Transport Proteins - genetics</topic><topic>Vesicular Transport Proteins - metabolism</topic><topic>Vesicular Transport Proteins - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yun</creatorcontrib><creatorcontrib>Kaneko, Naoko</creatorcontrib><creatorcontrib>Asai, Naoya</creatorcontrib><creatorcontrib>Enomoto, Atsushi</creatorcontrib><creatorcontrib>Isotani-Sakakibara, Mayu</creatorcontrib><creatorcontrib>Kato, Takuya</creatorcontrib><creatorcontrib>Asai, Masato</creatorcontrib><creatorcontrib>Murakumo, Yoshiki</creatorcontrib><creatorcontrib>Ota, Haruko</creatorcontrib><creatorcontrib>Hikita, Takao</creatorcontrib><creatorcontrib>Namba, Takashi</creatorcontrib><creatorcontrib>Kuroda, Keisuke</creatorcontrib><creatorcontrib>Kaibuchi, Kozo</creatorcontrib><creatorcontrib>Ming, Guo-li</creatorcontrib><creatorcontrib>Song, Hongjun</creatorcontrib><creatorcontrib>Sawamoto, Kazunobu</creatorcontrib><creatorcontrib>Takahashi, Masahide</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yun</au><au>Kaneko, Naoko</au><au>Asai, Naoya</au><au>Enomoto, Atsushi</au><au>Isotani-Sakakibara, Mayu</au><au>Kato, Takuya</au><au>Asai, Masato</au><au>Murakumo, Yoshiki</au><au>Ota, Haruko</au><au>Hikita, Takao</au><au>Namba, Takashi</au><au>Kuroda, Keisuke</au><au>Kaibuchi, Kozo</au><au>Ming, Guo-li</au><au>Song, Hongjun</au><au>Sawamoto, Kazunobu</au><au>Takahashi, Masahide</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Girdin is an intrinsic regulator of neuroblast chain migration in the rostral migratory stream of the postnatal brain</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2011-06-01</date><risdate>2011</risdate><volume>31</volume><issue>22</issue><spage>8109</spage><epage>8122</epage><pages>8109-8122</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>In postnatally developing and adult brains, interneurons of the olfactory bulb (OB) are continuously generated at the subventricular zone of the forebrain. The newborn neuroblasts migrate tangentially to the OB through a well defined pathway, the rostral migratory stream (RMS), where the neuroblasts undergo collective migration termed "chain migration." The cell-intrinsic regulatory mechanism of neuroblast chain migration, however, has not been uncovered. Here we show that mice lacking the actin-binding Akt substrate Girdin (a protein that interacts with Disrupted-In-Schizophrenia 1 to regulate neurogenesis in the dentate gyrus) have profound defects in neuroblast chain migration along the RMS. Analysis of two gene knock-in mice harboring Girdin mutants identified unique amino acid residues in Girdin's C-terminal domain that are responsible for the regulation of neuroblast chain migration but revealed no apparent requirement of Girdin phosphorylation by Akt. Electron microscopic analyses demonstrated the involvement of Girdin in neuroblast cell-cell interactions. These findings suggest that Girdin is an important intrinsic factor that specifically governs neuroblast chain migration along the RMS.</abstract><cop>United States</cop><pub>Society for Neuroscience</pub><pmid>21632933</pmid><doi>10.1523/jneurosci.1130-11.2011</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0270-6474 |
ispartof | The Journal of neuroscience, 2011-06, Vol.31 (22), p.8109-8122 |
issn | 0270-6474 1529-2401 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5491307 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Animals Brain - anatomy & histology Brain - growth & development Brain - metabolism Brain - physiology Brain - ultrastructure Cell Movement - genetics Cell Movement - physiology Cells, Cultured Gene Knock-In Techniques - methods Intercellular Junctions - genetics Intercellular Junctions - ultrastructure Interneurons - metabolism Interneurons - physiology Mice Mice, Inbred C57BL Mice, Knockout Microfilament Proteins - genetics Microfilament Proteins - metabolism Microfilament Proteins - physiology Mutation Nerve Tissue Proteins - genetics Nerve Tissue Proteins - physiology Neural Stem Cells - metabolism Neural Stem Cells - physiology Neural Stem Cells - ultrastructure Olfactory Bulb - anatomy & histology Olfactory Bulb - growth & development Olfactory Bulb - metabolism Olfactory Bulb - physiology Olfactory Bulb - ultrastructure Vesicular Transport Proteins - genetics Vesicular Transport Proteins - metabolism Vesicular Transport Proteins - physiology |
title | Girdin is an intrinsic regulator of neuroblast chain migration in the rostral migratory stream of the postnatal brain |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T11%3A36%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Girdin%20is%20an%20intrinsic%20regulator%20of%20neuroblast%20chain%20migration%20in%20the%20rostral%20migratory%20stream%20of%20the%20postnatal%20brain&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Wang,%20Yun&rft.date=2011-06-01&rft.volume=31&rft.issue=22&rft.spage=8109&rft.epage=8122&rft.pages=8109-8122&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/jneurosci.1130-11.2011&rft_dat=%3Cproquest_pubme%3E878821419%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=878821419&rft_id=info:pmid/21632933&rfr_iscdi=true |