A parametric model of the brain vascular system for estimation of the arterial input function (AIF) at the tissue level

In this paper, we introduce a novel model of the brain vascular system, which is developed based on laws of fluid dynamics and vascular morphology. This model is used to address dispersion and delay of the arterial input function (AIF) at different levels of the vascular structure and to estimate th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NMR in biomedicine 2017-05, Vol.30 (5), p.np-n/a
Hauptverfasser: Nejad‐Davarani, Siamak P., Bagher‐Ebadian, Hassan, Ewing, James R., Noll, Douglas C., Mikkelsen, Tom, Chopp, Michael, Jiang, Quan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 5
container_start_page np
container_title NMR in biomedicine
container_volume 30
creator Nejad‐Davarani, Siamak P.
Bagher‐Ebadian, Hassan
Ewing, James R.
Noll, Douglas C.
Mikkelsen, Tom
Chopp, Michael
Jiang, Quan
description In this paper, we introduce a novel model of the brain vascular system, which is developed based on laws of fluid dynamics and vascular morphology. This model is used to address dispersion and delay of the arterial input function (AIF) at different levels of the vascular structure and to estimate the local AIF in DCE images. We developed a method based on the simplex algorithm and Akaike information criterion to estimate the likelihood of the contrast agent concentration signal sampled in DCE images belonging to different layers of the vascular tree or being a combination of different signal levels from different nodes of this structure. To evaluate this method, we tested the method on simulated local AIF signals at different levels of this structure. Even down to a signal to noise ratio of 5.5 our method was able to accurately detect the branching level of the simulated signals. When two signals with the same power level were combined, our method was able to separate the base signals of the composite AIF at the 50% threshold. We applied this method to dynamic contrast enhanced computed tomography (DCE‐CT) data, and using the parameters estimated by our method we created an arrival time map of the brain. Our model corrected AIF can be used for solving the pharmacokinetic equations for more accurate estimation of vascular permeability parameters in DCE imaging studies. We present a model of the cerebral vascular system based on vascular morphology and laws of fluid dynamics, to be used for estimating the local arterial input function in DSC and DCE MRI and DCE‐CT studies. Using this local arterial input function can reduce errors in estimation of permeability and perfusion parameters in these studies. The model was tested on DCE‐CT images by creating an arrival time map using the model parameters, which matched the expected values in the brain.
doi_str_mv 10.1002/nbm.3695
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5489236</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1869969430</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4715-1dd7c4865e1d96bb6fd192f1946375bec298593fdbbbab4f4a8b25e60a4ff563</originalsourceid><addsrcrecordid>eNqNkdtrFDEUh4Modq2Cf4EEfKkPU3ObbPIibIu9QNWXvodk5sSmZCZrktmy_72z2wtVEHw6D-fjO5cfQu8pOaaEsM-jG4651O0LtKBE64YKzV6iBdEta7hQ5AC9KeWWEKIEZ6_RAVOMUi35At2t8NpmO0DNocND6iHi5HG9AeyyDSPe2NJN0WZctqXCgH3KGEoNg60hjY-szRVysBGHcT1V7Kex27ePVpdnn7Cte6iGUibAETYQ36JX3sYC7x7qIbo--3p9etFc_Ti_PF1dNZ1Y0rahfb_shJIt0F5L56TvqWaeaiH5snXQMa1azX3vnLNOeGGVYy1IYoX3reSH6Mu9dj25AfoOxpptNOs875-3Jtlg_uyM4cb8TBvTCqUZ3wmOHgQ5_Zrmw80QSgcx2hHSVAxVmiol5h__Byq1llrwHfrxL_Q2TXmcHzFTSgpJmH42u8uplAz-aW9KzC53M-dudrnP6Ifndz6Bj0HPQHMP3IUI23-KzPeTb3vhb9cTuAs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1886460296</pqid></control><display><type>article</type><title>A parametric model of the brain vascular system for estimation of the arterial input function (AIF) at the tissue level</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Nejad‐Davarani, Siamak P. ; Bagher‐Ebadian, Hassan ; Ewing, James R. ; Noll, Douglas C. ; Mikkelsen, Tom ; Chopp, Michael ; Jiang, Quan</creator><creatorcontrib>Nejad‐Davarani, Siamak P. ; Bagher‐Ebadian, Hassan ; Ewing, James R. ; Noll, Douglas C. ; Mikkelsen, Tom ; Chopp, Michael ; Jiang, Quan</creatorcontrib><description>In this paper, we introduce a novel model of the brain vascular system, which is developed based on laws of fluid dynamics and vascular morphology. This model is used to address dispersion and delay of the arterial input function (AIF) at different levels of the vascular structure and to estimate the local AIF in DCE images. We developed a method based on the simplex algorithm and Akaike information criterion to estimate the likelihood of the contrast agent concentration signal sampled in DCE images belonging to different layers of the vascular tree or being a combination of different signal levels from different nodes of this structure. To evaluate this method, we tested the method on simulated local AIF signals at different levels of this structure. Even down to a signal to noise ratio of 5.5 our method was able to accurately detect the branching level of the simulated signals. When two signals with the same power level were combined, our method was able to separate the base signals of the composite AIF at the 50% threshold. We applied this method to dynamic contrast enhanced computed tomography (DCE‐CT) data, and using the parameters estimated by our method we created an arrival time map of the brain. Our model corrected AIF can be used for solving the pharmacokinetic equations for more accurate estimation of vascular permeability parameters in DCE imaging studies. We present a model of the cerebral vascular system based on vascular morphology and laws of fluid dynamics, to be used for estimating the local arterial input function in DSC and DCE MRI and DCE‐CT studies. Using this local arterial input function can reduce errors in estimation of permeability and perfusion parameters in these studies. The model was tested on DCE‐CT images by creating an arrival time map using the model parameters, which matched the expected values in the brain.</description><identifier>ISSN: 0952-3480</identifier><identifier>EISSN: 1099-1492</identifier><identifier>DOI: 10.1002/nbm.3695</identifier><identifier>PMID: 28211963</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>arterial input function ; Blood Flow Velocity - physiology ; Cerebral Arteries - physiology ; Cerebrovascular Circulation - physiology ; Computer Simulation ; Contrast Media - pharmacokinetics ; dynamic contrast enhanced imaging ; Humans ; laminar flow ; Magnetic Resonance Angiography - methods ; Models, Cardiovascular ; Models, Neurological ; perfusion ; Reproducibility of Results ; Sensitivity and Specificity ; vascular modeling ; vascular permeability</subject><ispartof>NMR in biomedicine, 2017-05, Vol.30 (5), p.np-n/a</ispartof><rights>Copyright © 2017 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4715-1dd7c4865e1d96bb6fd192f1946375bec298593fdbbbab4f4a8b25e60a4ff563</citedby><cites>FETCH-LOGICAL-c4715-1dd7c4865e1d96bb6fd192f1946375bec298593fdbbbab4f4a8b25e60a4ff563</cites><orcidid>0000-0002-2415-6689</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnbm.3695$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnbm.3695$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,777,781,882,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28211963$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nejad‐Davarani, Siamak P.</creatorcontrib><creatorcontrib>Bagher‐Ebadian, Hassan</creatorcontrib><creatorcontrib>Ewing, James R.</creatorcontrib><creatorcontrib>Noll, Douglas C.</creatorcontrib><creatorcontrib>Mikkelsen, Tom</creatorcontrib><creatorcontrib>Chopp, Michael</creatorcontrib><creatorcontrib>Jiang, Quan</creatorcontrib><title>A parametric model of the brain vascular system for estimation of the arterial input function (AIF) at the tissue level</title><title>NMR in biomedicine</title><addtitle>NMR Biomed</addtitle><description>In this paper, we introduce a novel model of the brain vascular system, which is developed based on laws of fluid dynamics and vascular morphology. This model is used to address dispersion and delay of the arterial input function (AIF) at different levels of the vascular structure and to estimate the local AIF in DCE images. We developed a method based on the simplex algorithm and Akaike information criterion to estimate the likelihood of the contrast agent concentration signal sampled in DCE images belonging to different layers of the vascular tree or being a combination of different signal levels from different nodes of this structure. To evaluate this method, we tested the method on simulated local AIF signals at different levels of this structure. Even down to a signal to noise ratio of 5.5 our method was able to accurately detect the branching level of the simulated signals. When two signals with the same power level were combined, our method was able to separate the base signals of the composite AIF at the 50% threshold. We applied this method to dynamic contrast enhanced computed tomography (DCE‐CT) data, and using the parameters estimated by our method we created an arrival time map of the brain. Our model corrected AIF can be used for solving the pharmacokinetic equations for more accurate estimation of vascular permeability parameters in DCE imaging studies. We present a model of the cerebral vascular system based on vascular morphology and laws of fluid dynamics, to be used for estimating the local arterial input function in DSC and DCE MRI and DCE‐CT studies. Using this local arterial input function can reduce errors in estimation of permeability and perfusion parameters in these studies. The model was tested on DCE‐CT images by creating an arrival time map using the model parameters, which matched the expected values in the brain.</description><subject>arterial input function</subject><subject>Blood Flow Velocity - physiology</subject><subject>Cerebral Arteries - physiology</subject><subject>Cerebrovascular Circulation - physiology</subject><subject>Computer Simulation</subject><subject>Contrast Media - pharmacokinetics</subject><subject>dynamic contrast enhanced imaging</subject><subject>Humans</subject><subject>laminar flow</subject><subject>Magnetic Resonance Angiography - methods</subject><subject>Models, Cardiovascular</subject><subject>Models, Neurological</subject><subject>perfusion</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>vascular modeling</subject><subject>vascular permeability</subject><issn>0952-3480</issn><issn>1099-1492</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkdtrFDEUh4Modq2Cf4EEfKkPU3ObbPIibIu9QNWXvodk5sSmZCZrktmy_72z2wtVEHw6D-fjO5cfQu8pOaaEsM-jG4651O0LtKBE64YKzV6iBdEta7hQ5AC9KeWWEKIEZ6_RAVOMUi35At2t8NpmO0DNocND6iHi5HG9AeyyDSPe2NJN0WZctqXCgH3KGEoNg60hjY-szRVysBGHcT1V7Kex27ePVpdnn7Cte6iGUibAETYQ36JX3sYC7x7qIbo--3p9etFc_Ti_PF1dNZ1Y0rahfb_shJIt0F5L56TvqWaeaiH5snXQMa1azX3vnLNOeGGVYy1IYoX3reSH6Mu9dj25AfoOxpptNOs875-3Jtlg_uyM4cb8TBvTCqUZ3wmOHgQ5_Zrmw80QSgcx2hHSVAxVmiol5h__Byq1llrwHfrxL_Q2TXmcHzFTSgpJmH42u8uplAz-aW9KzC53M-dudrnP6Ifndz6Bj0HPQHMP3IUI23-KzPeTb3vhb9cTuAs</recordid><startdate>201705</startdate><enddate>201705</enddate><creator>Nejad‐Davarani, Siamak P.</creator><creator>Bagher‐Ebadian, Hassan</creator><creator>Ewing, James R.</creator><creator>Noll, Douglas C.</creator><creator>Mikkelsen, Tom</creator><creator>Chopp, Michael</creator><creator>Jiang, Quan</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2415-6689</orcidid></search><sort><creationdate>201705</creationdate><title>A parametric model of the brain vascular system for estimation of the arterial input function (AIF) at the tissue level</title><author>Nejad‐Davarani, Siamak P. ; Bagher‐Ebadian, Hassan ; Ewing, James R. ; Noll, Douglas C. ; Mikkelsen, Tom ; Chopp, Michael ; Jiang, Quan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4715-1dd7c4865e1d96bb6fd192f1946375bec298593fdbbbab4f4a8b25e60a4ff563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>arterial input function</topic><topic>Blood Flow Velocity - physiology</topic><topic>Cerebral Arteries - physiology</topic><topic>Cerebrovascular Circulation - physiology</topic><topic>Computer Simulation</topic><topic>Contrast Media - pharmacokinetics</topic><topic>dynamic contrast enhanced imaging</topic><topic>Humans</topic><topic>laminar flow</topic><topic>Magnetic Resonance Angiography - methods</topic><topic>Models, Cardiovascular</topic><topic>Models, Neurological</topic><topic>perfusion</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>vascular modeling</topic><topic>vascular permeability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nejad‐Davarani, Siamak P.</creatorcontrib><creatorcontrib>Bagher‐Ebadian, Hassan</creatorcontrib><creatorcontrib>Ewing, James R.</creatorcontrib><creatorcontrib>Noll, Douglas C.</creatorcontrib><creatorcontrib>Mikkelsen, Tom</creatorcontrib><creatorcontrib>Chopp, Michael</creatorcontrib><creatorcontrib>Jiang, Quan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>NMR in biomedicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nejad‐Davarani, Siamak P.</au><au>Bagher‐Ebadian, Hassan</au><au>Ewing, James R.</au><au>Noll, Douglas C.</au><au>Mikkelsen, Tom</au><au>Chopp, Michael</au><au>Jiang, Quan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A parametric model of the brain vascular system for estimation of the arterial input function (AIF) at the tissue level</atitle><jtitle>NMR in biomedicine</jtitle><addtitle>NMR Biomed</addtitle><date>2017-05</date><risdate>2017</risdate><volume>30</volume><issue>5</issue><spage>np</spage><epage>n/a</epage><pages>np-n/a</pages><issn>0952-3480</issn><eissn>1099-1492</eissn><abstract>In this paper, we introduce a novel model of the brain vascular system, which is developed based on laws of fluid dynamics and vascular morphology. This model is used to address dispersion and delay of the arterial input function (AIF) at different levels of the vascular structure and to estimate the local AIF in DCE images. We developed a method based on the simplex algorithm and Akaike information criterion to estimate the likelihood of the contrast agent concentration signal sampled in DCE images belonging to different layers of the vascular tree or being a combination of different signal levels from different nodes of this structure. To evaluate this method, we tested the method on simulated local AIF signals at different levels of this structure. Even down to a signal to noise ratio of 5.5 our method was able to accurately detect the branching level of the simulated signals. When two signals with the same power level were combined, our method was able to separate the base signals of the composite AIF at the 50% threshold. We applied this method to dynamic contrast enhanced computed tomography (DCE‐CT) data, and using the parameters estimated by our method we created an arrival time map of the brain. Our model corrected AIF can be used for solving the pharmacokinetic equations for more accurate estimation of vascular permeability parameters in DCE imaging studies. We present a model of the cerebral vascular system based on vascular morphology and laws of fluid dynamics, to be used for estimating the local arterial input function in DSC and DCE MRI and DCE‐CT studies. Using this local arterial input function can reduce errors in estimation of permeability and perfusion parameters in these studies. The model was tested on DCE‐CT images by creating an arrival time map using the model parameters, which matched the expected values in the brain.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28211963</pmid><doi>10.1002/nbm.3695</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2415-6689</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0952-3480
ispartof NMR in biomedicine, 2017-05, Vol.30 (5), p.np-n/a
issn 0952-3480
1099-1492
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5489236
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects arterial input function
Blood Flow Velocity - physiology
Cerebral Arteries - physiology
Cerebrovascular Circulation - physiology
Computer Simulation
Contrast Media - pharmacokinetics
dynamic contrast enhanced imaging
Humans
laminar flow
Magnetic Resonance Angiography - methods
Models, Cardiovascular
Models, Neurological
perfusion
Reproducibility of Results
Sensitivity and Specificity
vascular modeling
vascular permeability
title A parametric model of the brain vascular system for estimation of the arterial input function (AIF) at the tissue level
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T01%3A41%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20parametric%20model%20of%20the%20brain%20vascular%20system%20for%20estimation%20of%20the%20arterial%20input%20function%20(AIF)%20at%20the%20tissue%20level&rft.jtitle=NMR%20in%20biomedicine&rft.au=Nejad%E2%80%90Davarani,%20Siamak%20P.&rft.date=2017-05&rft.volume=30&rft.issue=5&rft.spage=np&rft.epage=n/a&rft.pages=np-n/a&rft.issn=0952-3480&rft.eissn=1099-1492&rft_id=info:doi/10.1002/nbm.3695&rft_dat=%3Cproquest_pubme%3E1869969430%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1886460296&rft_id=info:pmid/28211963&rfr_iscdi=true