Identification of Pharmacologically Tractable Protein Complexes in Cancer Using the R-Based Network Clustering and Visualization Program MCODER

Current multiomics assay platforms facilitate systematic identification of functional entities that are mappable in a biological network, and computational methods that are better able to detect densely connected clusters of signals within a biological network are considered increasingly important....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BioMed research international 2017-01, Vol.2017 (2017), p.1-8
Hauptverfasser: Kwon, Sungjin, Kim, Hyun Seok, Kim, Hyosil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue 2017
container_start_page 1
container_title BioMed research international
container_volume 2017
creator Kwon, Sungjin
Kim, Hyun Seok
Kim, Hyosil
description Current multiomics assay platforms facilitate systematic identification of functional entities that are mappable in a biological network, and computational methods that are better able to detect densely connected clusters of signals within a biological network are considered increasingly important. One of the most famous algorithms for detecting network subclusters is Molecular Complex Detection (MCODE). MCODE, however, is limited in simultaneous analyses of multiple, large-scale data sets, since it runs on the Cytoscape platform, which requires extensive computational resources and has limited coding flexibility. In the present study, we implemented the MCODE algorithm in R programming language and developed a related package, which we called MCODER. We found the MCODER package to be particularly useful in analyzing multiple omics data sets simultaneously within the R framework. Thus, we applied MCODER to detect pharmacologically tractable protein-protein interactions selectively elevated in molecular subtypes of ovarian and colorectal tumors. In doing so, we found that a single molecular subtype representing epithelial-mesenchymal transition in both cancer types exhibited enhanced production of the collagen-integrin protein complex. These results suggest that tumors of this molecular subtype could be susceptible to pharmacological inhibition of integrin signaling.
doi_str_mv 10.1155/2017/1016305
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5485287</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A557301222</galeid><sourcerecordid>A557301222</sourcerecordid><originalsourceid>FETCH-LOGICAL-c499t-67e0ba219e279e7f725c4f3aec34211c47d74f8daef7edaf87dd4d8512c6871d3</originalsourceid><addsrcrecordid>eNqNkk1v1DAQQCMEolXpjTOyxAUJlsZ2YicXpLIUqFRoVbVcrak93nVx4q2dUMqf4C_jaJctcMIXf8zzG481RfGUlq8presDVlJ5QEsqeFk_KHYZp9VM0Io-3K453yn2U7ou82ioKFvxuNhhjWjzLb5b_Dw22A_OOg2DCz0JlpwtIXaggw-LfOr9HbmIoAe48kjOYhjQ9WQeupXH75jItIFeYySXyfULMiyRnM_eQkJDPuNwG-JXMvdjGjBOYegN-eLSCN79WGfMykWEjnyan747On9SPLLgE-5v5r3i8v3Rxfzj7OT0w_H88GSmq7YdZkJieQWMtshki9JKVuvKckDNK0aprqSRlW0MoJVowDbSmMo0NWVaNJIavle8WXtX41WHRudPiODVKroO4p0K4NTfkd4t1SJ8U3XV1KyRWfBiI4jhZsQ0qM4ljd5Dj2FMirZUCsG5qDL6_B_0Ooyxz-VNFBdcMkbvqQV4VK63IefVk1Qd1rXkJWWMZerVmtIxpBTRbp9MSzW1hJpaQm1aIuPP_ixzC_9ugAy8XANL1xu4df-pw8yghXs6q-q25L8AhwDIxw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1913637221</pqid></control><display><type>article</type><title>Identification of Pharmacologically Tractable Protein Complexes in Cancer Using the R-Based Network Clustering and Visualization Program MCODER</title><source>MEDLINE</source><source>PubMed Central Open Access</source><source>Wiley Online Library (Open Access Collection)</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Kwon, Sungjin ; Kim, Hyun Seok ; Kim, Hyosil</creator><contributor>Zhao, Xingming</contributor><creatorcontrib>Kwon, Sungjin ; Kim, Hyun Seok ; Kim, Hyosil ; Zhao, Xingming</creatorcontrib><description>Current multiomics assay platforms facilitate systematic identification of functional entities that are mappable in a biological network, and computational methods that are better able to detect densely connected clusters of signals within a biological network are considered increasingly important. One of the most famous algorithms for detecting network subclusters is Molecular Complex Detection (MCODE). MCODE, however, is limited in simultaneous analyses of multiple, large-scale data sets, since it runs on the Cytoscape platform, which requires extensive computational resources and has limited coding flexibility. In the present study, we implemented the MCODE algorithm in R programming language and developed a related package, which we called MCODER. We found the MCODER package to be particularly useful in analyzing multiple omics data sets simultaneously within the R framework. Thus, we applied MCODER to detect pharmacologically tractable protein-protein interactions selectively elevated in molecular subtypes of ovarian and colorectal tumors. In doing so, we found that a single molecular subtype representing epithelial-mesenchymal transition in both cancer types exhibited enhanced production of the collagen-integrin protein complex. These results suggest that tumors of this molecular subtype could be susceptible to pharmacological inhibition of integrin signaling.</description><identifier>ISSN: 2314-6133</identifier><identifier>EISSN: 2314-6141</identifier><identifier>DOI: 10.1155/2017/1016305</identifier><identifier>PMID: 28691013</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Antineoplastic Agents - pharmacology ; Biochemical assays ; Biomedical research ; Cancer ; Cluster Analysis ; Humans ; Identification and classification ; Methods ; Multiprotein Complexes - metabolism ; Neoplasm Proteins - metabolism ; Neoplasms - metabolism ; Physiological aspects ; Proteins ; Software ; Time Factors</subject><ispartof>BioMed research international, 2017-01, Vol.2017 (2017), p.1-8</ispartof><rights>Copyright © 2017 Sungjin Kwon et al.</rights><rights>COPYRIGHT 2017 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2017 Sungjin Kwon et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright © 2017 Sungjin Kwon et al. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c499t-67e0ba219e279e7f725c4f3aec34211c47d74f8daef7edaf87dd4d8512c6871d3</citedby><cites>FETCH-LOGICAL-c499t-67e0ba219e279e7f725c4f3aec34211c47d74f8daef7edaf87dd4d8512c6871d3</cites><orcidid>0000-0002-6991-2644 ; 0000-0003-4498-8690 ; 0000-0002-4269-6638</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5485287/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5485287/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28691013$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Zhao, Xingming</contributor><creatorcontrib>Kwon, Sungjin</creatorcontrib><creatorcontrib>Kim, Hyun Seok</creatorcontrib><creatorcontrib>Kim, Hyosil</creatorcontrib><title>Identification of Pharmacologically Tractable Protein Complexes in Cancer Using the R-Based Network Clustering and Visualization Program MCODER</title><title>BioMed research international</title><addtitle>Biomed Res Int</addtitle><description>Current multiomics assay platforms facilitate systematic identification of functional entities that are mappable in a biological network, and computational methods that are better able to detect densely connected clusters of signals within a biological network are considered increasingly important. One of the most famous algorithms for detecting network subclusters is Molecular Complex Detection (MCODE). MCODE, however, is limited in simultaneous analyses of multiple, large-scale data sets, since it runs on the Cytoscape platform, which requires extensive computational resources and has limited coding flexibility. In the present study, we implemented the MCODE algorithm in R programming language and developed a related package, which we called MCODER. We found the MCODER package to be particularly useful in analyzing multiple omics data sets simultaneously within the R framework. Thus, we applied MCODER to detect pharmacologically tractable protein-protein interactions selectively elevated in molecular subtypes of ovarian and colorectal tumors. In doing so, we found that a single molecular subtype representing epithelial-mesenchymal transition in both cancer types exhibited enhanced production of the collagen-integrin protein complex. These results suggest that tumors of this molecular subtype could be susceptible to pharmacological inhibition of integrin signaling.</description><subject>Algorithms</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Biochemical assays</subject><subject>Biomedical research</subject><subject>Cancer</subject><subject>Cluster Analysis</subject><subject>Humans</subject><subject>Identification and classification</subject><subject>Methods</subject><subject>Multiprotein Complexes - metabolism</subject><subject>Neoplasm Proteins - metabolism</subject><subject>Neoplasms - metabolism</subject><subject>Physiological aspects</subject><subject>Proteins</subject><subject>Software</subject><subject>Time Factors</subject><issn>2314-6133</issn><issn>2314-6141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkk1v1DAQQCMEolXpjTOyxAUJlsZ2YicXpLIUqFRoVbVcrak93nVx4q2dUMqf4C_jaJctcMIXf8zzG481RfGUlq8presDVlJ5QEsqeFk_KHYZp9VM0Io-3K453yn2U7ou82ioKFvxuNhhjWjzLb5b_Dw22A_OOg2DCz0JlpwtIXaggw-LfOr9HbmIoAe48kjOYhjQ9WQeupXH75jItIFeYySXyfULMiyRnM_eQkJDPuNwG-JXMvdjGjBOYegN-eLSCN79WGfMykWEjnyan747On9SPLLgE-5v5r3i8v3Rxfzj7OT0w_H88GSmq7YdZkJieQWMtshki9JKVuvKckDNK0aprqSRlW0MoJVowDbSmMo0NWVaNJIavle8WXtX41WHRudPiODVKroO4p0K4NTfkd4t1SJ8U3XV1KyRWfBiI4jhZsQ0qM4ljd5Dj2FMirZUCsG5qDL6_B_0Ooyxz-VNFBdcMkbvqQV4VK63IefVk1Qd1rXkJWWMZerVmtIxpBTRbp9MSzW1hJpaQm1aIuPP_ixzC_9ugAy8XANL1xu4df-pw8yghXs6q-q25L8AhwDIxw</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Kwon, Sungjin</creator><creator>Kim, Hyun Seok</creator><creator>Kim, Hyosil</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6991-2644</orcidid><orcidid>https://orcid.org/0000-0003-4498-8690</orcidid><orcidid>https://orcid.org/0000-0002-4269-6638</orcidid></search><sort><creationdate>20170101</creationdate><title>Identification of Pharmacologically Tractable Protein Complexes in Cancer Using the R-Based Network Clustering and Visualization Program MCODER</title><author>Kwon, Sungjin ; Kim, Hyun Seok ; Kim, Hyosil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c499t-67e0ba219e279e7f725c4f3aec34211c47d74f8daef7edaf87dd4d8512c6871d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Biochemical assays</topic><topic>Biomedical research</topic><topic>Cancer</topic><topic>Cluster Analysis</topic><topic>Humans</topic><topic>Identification and classification</topic><topic>Methods</topic><topic>Multiprotein Complexes - metabolism</topic><topic>Neoplasm Proteins - metabolism</topic><topic>Neoplasms - metabolism</topic><topic>Physiological aspects</topic><topic>Proteins</topic><topic>Software</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kwon, Sungjin</creatorcontrib><creatorcontrib>Kim, Hyun Seok</creatorcontrib><creatorcontrib>Kim, Hyosil</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BioMed research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kwon, Sungjin</au><au>Kim, Hyun Seok</au><au>Kim, Hyosil</au><au>Zhao, Xingming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of Pharmacologically Tractable Protein Complexes in Cancer Using the R-Based Network Clustering and Visualization Program MCODER</atitle><jtitle>BioMed research international</jtitle><addtitle>Biomed Res Int</addtitle><date>2017-01-01</date><risdate>2017</risdate><volume>2017</volume><issue>2017</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>2314-6133</issn><eissn>2314-6141</eissn><abstract>Current multiomics assay platforms facilitate systematic identification of functional entities that are mappable in a biological network, and computational methods that are better able to detect densely connected clusters of signals within a biological network are considered increasingly important. One of the most famous algorithms for detecting network subclusters is Molecular Complex Detection (MCODE). MCODE, however, is limited in simultaneous analyses of multiple, large-scale data sets, since it runs on the Cytoscape platform, which requires extensive computational resources and has limited coding flexibility. In the present study, we implemented the MCODE algorithm in R programming language and developed a related package, which we called MCODER. We found the MCODER package to be particularly useful in analyzing multiple omics data sets simultaneously within the R framework. Thus, we applied MCODER to detect pharmacologically tractable protein-protein interactions selectively elevated in molecular subtypes of ovarian and colorectal tumors. In doing so, we found that a single molecular subtype representing epithelial-mesenchymal transition in both cancer types exhibited enhanced production of the collagen-integrin protein complex. These results suggest that tumors of this molecular subtype could be susceptible to pharmacological inhibition of integrin signaling.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>28691013</pmid><doi>10.1155/2017/1016305</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-6991-2644</orcidid><orcidid>https://orcid.org/0000-0003-4498-8690</orcidid><orcidid>https://orcid.org/0000-0002-4269-6638</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2314-6133
ispartof BioMed research international, 2017-01, Vol.2017 (2017), p.1-8
issn 2314-6133
2314-6141
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5485287
source MEDLINE; PubMed Central Open Access; Wiley Online Library (Open Access Collection); PubMed Central; Alma/SFX Local Collection
subjects Algorithms
Antineoplastic Agents - pharmacology
Biochemical assays
Biomedical research
Cancer
Cluster Analysis
Humans
Identification and classification
Methods
Multiprotein Complexes - metabolism
Neoplasm Proteins - metabolism
Neoplasms - metabolism
Physiological aspects
Proteins
Software
Time Factors
title Identification of Pharmacologically Tractable Protein Complexes in Cancer Using the R-Based Network Clustering and Visualization Program MCODER
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-31T00%3A37%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20Pharmacologically%20Tractable%20Protein%20Complexes%20in%20Cancer%20Using%20the%20R-Based%20Network%20Clustering%20and%20Visualization%20Program%20MCODER&rft.jtitle=BioMed%20research%20international&rft.au=Kwon,%20Sungjin&rft.date=2017-01-01&rft.volume=2017&rft.issue=2017&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=2314-6133&rft.eissn=2314-6141&rft_id=info:doi/10.1155/2017/1016305&rft_dat=%3Cgale_pubme%3EA557301222%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1913637221&rft_id=info:pmid/28691013&rft_galeid=A557301222&rfr_iscdi=true