Deep convolutional neural networks for classifying head and neck cancer using hyperspectral imaging

Surgical cancer resection requires an accurate and timely diagnosis of the cancer margins in order to achieve successful patient remission. Hyperspectral imaging (HSI) has emerged as a useful, noncontact technique for acquiring spectral and optical properties of tissue. A convolutional neural networ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical optics 2017-06, Vol.22 (6), p.060503-060503
Hauptverfasser: Halicek, Martin, Lu, Guolan, Little, James V, Wang, Xu, Patel, Mihir, Griffith, Christopher C, El-Deiry, Mark W, Chen, Amy Y, Fei, Baowei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 060503
container_issue 6
container_start_page 060503
container_title Journal of biomedical optics
container_volume 22
creator Halicek, Martin
Lu, Guolan
Little, James V
Wang, Xu
Patel, Mihir
Griffith, Christopher C
El-Deiry, Mark W
Chen, Amy Y
Fei, Baowei
description Surgical cancer resection requires an accurate and timely diagnosis of the cancer margins in order to achieve successful patient remission. Hyperspectral imaging (HSI) has emerged as a useful, noncontact technique for acquiring spectral and optical properties of tissue. A convolutional neural network (CNN) classifier is developed to classify excised, squamous-cell carcinoma, thyroid cancer, and normal head and neck tissue samples using HSI. The CNN classification was validated by the manual annotation of a pathologist specialized in head and neck cancer. The preliminary results of 50 patients indicate the potential of HSI and deep learning for automatic tissue-labeling of surgical specimens of head and neck patients.
doi_str_mv 10.1117/1.JBO.22.6.060503
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5482930</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1914581283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c677t-f11efaf2888d186988444e5065b85e452a664f3c800b79e066133b0489f9cd2e3</originalsourceid><addsrcrecordid>eNp9kUtP3DAUhS1UVCjtD2BTZdlNUj9ij7OpxJsiJLqga8vjXA-GjB3sBDT8-npmYERpxepa937n-EgHoX2CK0LI5DupLg6vKkorUWGBOWZbaJdwgUtKJfmQ31iykgkhd9CnlG4xxlI04iPaoVJwjjnfReYYoC9M8A-hGwcXvO4KD2NcjeExxLtU2BAL0-mUnF04PytuQLeF9m0mzF1htDcQizGtToseYurBDEsHN9ezvP2Mtq3uEnx5nnvo9-nJ9dF5eXl19vPo4LI0YjIZSksIWG2plLIlOaiUdV0Dx4JPJYeaUy1EbZmRGE8nDWAhCGNTXMvGNqalwPbQj7VvP07n0BrwyxSqjzlHXKignfr74t2NmoUHxWtJG4azwbdngxjuR0iDmrtkoOu0hzAmRRpSc0moZBkla9TEkFIEu_mGYLUsRxGVy1GUKqHW5WTN19f5NoqXNjJQrYHUO1C3YYy5jvSu4_X_BBvsyfVvNavdQRyc6eDX8ek_57617A_5v7ZQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1914581283</pqid></control><display><type>article</type><title>Deep convolutional neural networks for classifying head and neck cancer using hyperspectral imaging</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Halicek, Martin ; Lu, Guolan ; Little, James V ; Wang, Xu ; Patel, Mihir ; Griffith, Christopher C ; El-Deiry, Mark W ; Chen, Amy Y ; Fei, Baowei</creator><creatorcontrib>Halicek, Martin ; Lu, Guolan ; Little, James V ; Wang, Xu ; Patel, Mihir ; Griffith, Christopher C ; El-Deiry, Mark W ; Chen, Amy Y ; Fei, Baowei</creatorcontrib><description>Surgical cancer resection requires an accurate and timely diagnosis of the cancer margins in order to achieve successful patient remission. Hyperspectral imaging (HSI) has emerged as a useful, noncontact technique for acquiring spectral and optical properties of tissue. A convolutional neural network (CNN) classifier is developed to classify excised, squamous-cell carcinoma, thyroid cancer, and normal head and neck tissue samples using HSI. The CNN classification was validated by the manual annotation of a pathologist specialized in head and neck cancer. The preliminary results of 50 patients indicate the potential of HSI and deep learning for automatic tissue-labeling of surgical specimens of head and neck patients.</description><identifier>ISSN: 1083-3668</identifier><identifier>EISSN: 1560-2281</identifier><identifier>DOI: 10.1117/1.JBO.22.6.060503</identifier><identifier>PMID: 28655055</identifier><language>eng</language><publisher>United States: Society of Photo-Optical Instrumentation Engineers</publisher><subject>Diagnostic Imaging - methods ; Head and Neck Neoplasms - diagnostic imaging ; Humans ; JBO Letters ; Letter ; Neural Networks (Computer)</subject><ispartof>Journal of biomedical optics, 2017-06, Vol.22 (6), p.060503-060503</ispartof><rights>The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.</rights><rights>The Authors. The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c677t-f11efaf2888d186988444e5065b85e452a664f3c800b79e066133b0489f9cd2e3</citedby><cites>FETCH-LOGICAL-c677t-f11efaf2888d186988444e5065b85e452a664f3c800b79e066133b0489f9cd2e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5482930/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5482930/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28655055$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Halicek, Martin</creatorcontrib><creatorcontrib>Lu, Guolan</creatorcontrib><creatorcontrib>Little, James V</creatorcontrib><creatorcontrib>Wang, Xu</creatorcontrib><creatorcontrib>Patel, Mihir</creatorcontrib><creatorcontrib>Griffith, Christopher C</creatorcontrib><creatorcontrib>El-Deiry, Mark W</creatorcontrib><creatorcontrib>Chen, Amy Y</creatorcontrib><creatorcontrib>Fei, Baowei</creatorcontrib><title>Deep convolutional neural networks for classifying head and neck cancer using hyperspectral imaging</title><title>Journal of biomedical optics</title><addtitle>J. Biomed. Opt</addtitle><description>Surgical cancer resection requires an accurate and timely diagnosis of the cancer margins in order to achieve successful patient remission. Hyperspectral imaging (HSI) has emerged as a useful, noncontact technique for acquiring spectral and optical properties of tissue. A convolutional neural network (CNN) classifier is developed to classify excised, squamous-cell carcinoma, thyroid cancer, and normal head and neck tissue samples using HSI. The CNN classification was validated by the manual annotation of a pathologist specialized in head and neck cancer. The preliminary results of 50 patients indicate the potential of HSI and deep learning for automatic tissue-labeling of surgical specimens of head and neck patients.</description><subject>Diagnostic Imaging - methods</subject><subject>Head and Neck Neoplasms - diagnostic imaging</subject><subject>Humans</subject><subject>JBO Letters</subject><subject>Letter</subject><subject>Neural Networks (Computer)</subject><issn>1083-3668</issn><issn>1560-2281</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUtP3DAUhS1UVCjtD2BTZdlNUj9ij7OpxJsiJLqga8vjXA-GjB3sBDT8-npmYERpxepa937n-EgHoX2CK0LI5DupLg6vKkorUWGBOWZbaJdwgUtKJfmQ31iykgkhd9CnlG4xxlI04iPaoVJwjjnfReYYoC9M8A-hGwcXvO4KD2NcjeExxLtU2BAL0-mUnF04PytuQLeF9m0mzF1htDcQizGtToseYurBDEsHN9ezvP2Mtq3uEnx5nnvo9-nJ9dF5eXl19vPo4LI0YjIZSksIWG2plLIlOaiUdV0Dx4JPJYeaUy1EbZmRGE8nDWAhCGNTXMvGNqalwPbQj7VvP07n0BrwyxSqjzlHXKignfr74t2NmoUHxWtJG4azwbdngxjuR0iDmrtkoOu0hzAmRRpSc0moZBkla9TEkFIEu_mGYLUsRxGVy1GUKqHW5WTN19f5NoqXNjJQrYHUO1C3YYy5jvSu4_X_BBvsyfVvNavdQRyc6eDX8ek_57617A_5v7ZQ</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Halicek, Martin</creator><creator>Lu, Guolan</creator><creator>Little, James V</creator><creator>Wang, Xu</creator><creator>Patel, Mihir</creator><creator>Griffith, Christopher C</creator><creator>El-Deiry, Mark W</creator><creator>Chen, Amy Y</creator><creator>Fei, Baowei</creator><general>Society of Photo-Optical Instrumentation Engineers</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170601</creationdate><title>Deep convolutional neural networks for classifying head and neck cancer using hyperspectral imaging</title><author>Halicek, Martin ; Lu, Guolan ; Little, James V ; Wang, Xu ; Patel, Mihir ; Griffith, Christopher C ; El-Deiry, Mark W ; Chen, Amy Y ; Fei, Baowei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c677t-f11efaf2888d186988444e5065b85e452a664f3c800b79e066133b0489f9cd2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Diagnostic Imaging - methods</topic><topic>Head and Neck Neoplasms - diagnostic imaging</topic><topic>Humans</topic><topic>JBO Letters</topic><topic>Letter</topic><topic>Neural Networks (Computer)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Halicek, Martin</creatorcontrib><creatorcontrib>Lu, Guolan</creatorcontrib><creatorcontrib>Little, James V</creatorcontrib><creatorcontrib>Wang, Xu</creatorcontrib><creatorcontrib>Patel, Mihir</creatorcontrib><creatorcontrib>Griffith, Christopher C</creatorcontrib><creatorcontrib>El-Deiry, Mark W</creatorcontrib><creatorcontrib>Chen, Amy Y</creatorcontrib><creatorcontrib>Fei, Baowei</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of biomedical optics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Halicek, Martin</au><au>Lu, Guolan</au><au>Little, James V</au><au>Wang, Xu</au><au>Patel, Mihir</au><au>Griffith, Christopher C</au><au>El-Deiry, Mark W</au><au>Chen, Amy Y</au><au>Fei, Baowei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep convolutional neural networks for classifying head and neck cancer using hyperspectral imaging</atitle><jtitle>Journal of biomedical optics</jtitle><addtitle>J. Biomed. Opt</addtitle><date>2017-06-01</date><risdate>2017</risdate><volume>22</volume><issue>6</issue><spage>060503</spage><epage>060503</epage><pages>060503-060503</pages><issn>1083-3668</issn><eissn>1560-2281</eissn><abstract>Surgical cancer resection requires an accurate and timely diagnosis of the cancer margins in order to achieve successful patient remission. Hyperspectral imaging (HSI) has emerged as a useful, noncontact technique for acquiring spectral and optical properties of tissue. A convolutional neural network (CNN) classifier is developed to classify excised, squamous-cell carcinoma, thyroid cancer, and normal head and neck tissue samples using HSI. The CNN classification was validated by the manual annotation of a pathologist specialized in head and neck cancer. The preliminary results of 50 patients indicate the potential of HSI and deep learning for automatic tissue-labeling of surgical specimens of head and neck patients.</abstract><cop>United States</cop><pub>Society of Photo-Optical Instrumentation Engineers</pub><pmid>28655055</pmid><doi>10.1117/1.JBO.22.6.060503</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1083-3668
ispartof Journal of biomedical optics, 2017-06, Vol.22 (6), p.060503-060503
issn 1083-3668
1560-2281
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5482930
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Diagnostic Imaging - methods
Head and Neck Neoplasms - diagnostic imaging
Humans
JBO Letters
Letter
Neural Networks (Computer)
title Deep convolutional neural networks for classifying head and neck cancer using hyperspectral imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A06%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20convolutional%20neural%20networks%20for%20classifying%20head%20and%20neck%20cancer%20using%20hyperspectral%20imaging&rft.jtitle=Journal%20of%20biomedical%20optics&rft.au=Halicek,%20Martin&rft.date=2017-06-01&rft.volume=22&rft.issue=6&rft.spage=060503&rft.epage=060503&rft.pages=060503-060503&rft.issn=1083-3668&rft.eissn=1560-2281&rft_id=info:doi/10.1117/1.JBO.22.6.060503&rft_dat=%3Cproquest_pubme%3E1914581283%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1914581283&rft_id=info:pmid/28655055&rfr_iscdi=true