Analysis of the CDR3 length repertoire and the diversity of T cell receptor α and β chains in swine CD4+ and CD8+ T lymphocytes
The T cell receptor (TCR) is a complex heterodimer that recognizes fragments of antigens as peptides and binds to major histocompatibility complex molecules. The TCR α and β chains possess three hypervariable regions termed complementarity determining regions (CDR1, 2 and 3). CDR3 is responsible for...
Gespeichert in:
Veröffentlicht in: | Molecular medicine reports 2017-07, Vol.16 (1), p.75-86 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 86 |
---|---|
container_issue | 1 |
container_start_page | 75 |
container_title | Molecular medicine reports |
container_volume | 16 |
creator | Wang, Chun-Yan Fang, Yong-Xiang Chen, Guo-Hua Jia, Huai-Jie Zeng, Shuang He, Xiao-Bing Feng, Yuan Li, Shou-Jie Jin, Qi-Wang Cheng, Wen-Yu Jing, Zhi-Zhong |
description | The T cell receptor (TCR) is a complex heterodimer that recognizes fragments of antigens as peptides and binds to major histocompatibility complex molecules. The TCR α and β chains possess three hypervariable regions termed complementarity determining regions (CDR1, 2 and 3). CDR3 is responsible for recognizing processed antigen peptides. Immunoscope spectratyping is a simple technique for analyzing CDR3 polymorphisms and sequence length diversity, in order to investigate T cell function and the pattern of TCR utilization. The present study employed this technique to analyze CDR3 polymorphisms and the sequence length diversity of TCR α and β chains in porcine CD4+ and CD8+ T cells. Polymerase chain reaction products of 19 TCR α variable regions (AV) and 20 TCR β variable regions (BV) gene families obtained from the CD4+ and CD8+ T cells revealed a clear band following separation by 1.5% agarose gel electrophoresis, and each family exhibited >8 bands following separation by 6% sequencing gel electrophoresis. CDR3 spectratyping of all identified TCR AV and BV gene families in the sorted CD4+ and CD8+ T cells by GeneScan, demonstrated a standard Gaussian distribution with >8 peaks. CDR3 in CD4+ and CD8+ T cells demonstrated different expression patterns. The majority of CDR3 recombined in frame and the results revealed that there were 10 and 14 amino acid discrepancies between the longest and shortest CDR3 lengths in specific TCR AV and TCR BV gene families, respectively. The results demonstrated that CDR3 polymorphism and length diversity demonstrated different expression and utilization patterns in CD4+ and CD8+ T cells. These results may facilitate future research investigating the porcine TCR CDR3 gene repertoire as well as the functional complexity and specificity of the TCR molecule. |
doi_str_mv | 10.3892/mmr.2017.6601 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5482108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1962583077</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-156da3feaf47d03158e21a2e7a2b4ac99beaf772b765cdd4db00934d4d63bc283</originalsourceid><addsrcrecordid>eNpdkc1qFTEYhoMotlaXbiXgRihzzN9MJhuhnPoHBUHqOmQymU7KTDImOS2z9JL0QnpNJqfHoq7ywfvkJfkeAF5itKGtIG_nOWwIwnzTNAg_AseYC1xRhNjjw0yE4EfgWYzXCDU1qcVTcETamjIh6DH4cebUtEYboR9gGg3cnn-lcDLuKo0wmMWE5G0wULl-H_f2xoRo01r4S6jNNGVMmyX5AO9-7rm7X1CPyroIrYPx1rrSyk732fa8Pc33pnVeRq_XZOJz8GRQUzQvDucJ-Pbh_eX2U3Xx5ePn7dlFpRmuU4Xrpld0MGpgvEcU160hWBHDFemY0kJ0OeKcdLypdd-zvkNIUJaHhnaatPQEvLvvXXbdbHptXApqkkuwswqr9MrKfxNnR3nlb2TNWoJRKXhzKAj--87EJGcbywKUM34XJRZZQ0MZLujr_9Brvwt504VqSN1SxHmmqntKBx9jMMPDYzCSRa7McmWRK4vczL_6-wcP9B-b9DcYSaG4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1962583077</pqid></control><display><type>article</type><title>Analysis of the CDR3 length repertoire and the diversity of T cell receptor α and β chains in swine CD4+ and CD8+ T lymphocytes</title><source>Spandidos Publications Journals</source><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Wang, Chun-Yan ; Fang, Yong-Xiang ; Chen, Guo-Hua ; Jia, Huai-Jie ; Zeng, Shuang ; He, Xiao-Bing ; Feng, Yuan ; Li, Shou-Jie ; Jin, Qi-Wang ; Cheng, Wen-Yu ; Jing, Zhi-Zhong</creator><creatorcontrib>Wang, Chun-Yan ; Fang, Yong-Xiang ; Chen, Guo-Hua ; Jia, Huai-Jie ; Zeng, Shuang ; He, Xiao-Bing ; Feng, Yuan ; Li, Shou-Jie ; Jin, Qi-Wang ; Cheng, Wen-Yu ; Jing, Zhi-Zhong</creatorcontrib><description>The T cell receptor (TCR) is a complex heterodimer that recognizes fragments of antigens as peptides and binds to major histocompatibility complex molecules. The TCR α and β chains possess three hypervariable regions termed complementarity determining regions (CDR1, 2 and 3). CDR3 is responsible for recognizing processed antigen peptides. Immunoscope spectratyping is a simple technique for analyzing CDR3 polymorphisms and sequence length diversity, in order to investigate T cell function and the pattern of TCR utilization. The present study employed this technique to analyze CDR3 polymorphisms and the sequence length diversity of TCR α and β chains in porcine CD4+ and CD8+ T cells. Polymerase chain reaction products of 19 TCR α variable regions (AV) and 20 TCR β variable regions (BV) gene families obtained from the CD4+ and CD8+ T cells revealed a clear band following separation by 1.5% agarose gel electrophoresis, and each family exhibited >8 bands following separation by 6% sequencing gel electrophoresis. CDR3 spectratyping of all identified TCR AV and BV gene families in the sorted CD4+ and CD8+ T cells by GeneScan, demonstrated a standard Gaussian distribution with >8 peaks. CDR3 in CD4+ and CD8+ T cells demonstrated different expression patterns. The majority of CDR3 recombined in frame and the results revealed that there were 10 and 14 amino acid discrepancies between the longest and shortest CDR3 lengths in specific TCR AV and TCR BV gene families, respectively. The results demonstrated that CDR3 polymorphism and length diversity demonstrated different expression and utilization patterns in CD4+ and CD8+ T cells. These results may facilitate future research investigating the porcine TCR CDR3 gene repertoire as well as the functional complexity and specificity of the TCR molecule.</description><identifier>ISSN: 1791-2997</identifier><identifier>EISSN: 1791-3004</identifier><identifier>DOI: 10.3892/mmr.2017.6601</identifier><identifier>PMID: 28534993</identifier><language>eng</language><publisher>Greece: Spandidos Publications UK Ltd</publisher><subject>Amino acids ; Animals ; Antigens ; Binding sites ; CD4 antigen ; CD4-Positive T-Lymphocytes - immunology ; CD4-Positive T-Lymphocytes - metabolism ; CD8 antigen ; CD8-Positive T-Lymphocytes - immunology ; CD8-Positive T-Lymphocytes - metabolism ; Complementarity Determining Regions - genetics ; Complementarity-determining region 1 ; Complementarity-determining region 3 ; Female ; Gel electrophoresis ; Gene Expression ; Gene families ; Gene Frequency ; Gene polymorphism ; Genes ; Genetic Variation ; Health care ; Hogs ; Laboratory animals ; Lymphocytes ; Lymphocytes T ; Major histocompatibility complex ; Multigene Family ; Polymerase chain reaction ; Receptors, Antigen, T-Cell, alpha-beta - genetics ; Sequence Analysis, DNA ; Swine ; T cell receptors ; West Nile virus</subject><ispartof>Molecular medicine reports, 2017-07, Vol.16 (1), p.75-86</ispartof><rights>Copyright Spandidos Publications UK Ltd. 2017</rights><rights>Copyright: © Wang et al. 2017</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-156da3feaf47d03158e21a2e7a2b4ac99beaf772b765cdd4db00934d4d63bc283</citedby><cites>FETCH-LOGICAL-c415t-156da3feaf47d03158e21a2e7a2b4ac99beaf772b765cdd4db00934d4d63bc283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28534993$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Chun-Yan</creatorcontrib><creatorcontrib>Fang, Yong-Xiang</creatorcontrib><creatorcontrib>Chen, Guo-Hua</creatorcontrib><creatorcontrib>Jia, Huai-Jie</creatorcontrib><creatorcontrib>Zeng, Shuang</creatorcontrib><creatorcontrib>He, Xiao-Bing</creatorcontrib><creatorcontrib>Feng, Yuan</creatorcontrib><creatorcontrib>Li, Shou-Jie</creatorcontrib><creatorcontrib>Jin, Qi-Wang</creatorcontrib><creatorcontrib>Cheng, Wen-Yu</creatorcontrib><creatorcontrib>Jing, Zhi-Zhong</creatorcontrib><title>Analysis of the CDR3 length repertoire and the diversity of T cell receptor α and β chains in swine CD4+ and CD8+ T lymphocytes</title><title>Molecular medicine reports</title><addtitle>Mol Med Rep</addtitle><description>The T cell receptor (TCR) is a complex heterodimer that recognizes fragments of antigens as peptides and binds to major histocompatibility complex molecules. The TCR α and β chains possess three hypervariable regions termed complementarity determining regions (CDR1, 2 and 3). CDR3 is responsible for recognizing processed antigen peptides. Immunoscope spectratyping is a simple technique for analyzing CDR3 polymorphisms and sequence length diversity, in order to investigate T cell function and the pattern of TCR utilization. The present study employed this technique to analyze CDR3 polymorphisms and the sequence length diversity of TCR α and β chains in porcine CD4+ and CD8+ T cells. Polymerase chain reaction products of 19 TCR α variable regions (AV) and 20 TCR β variable regions (BV) gene families obtained from the CD4+ and CD8+ T cells revealed a clear band following separation by 1.5% agarose gel electrophoresis, and each family exhibited >8 bands following separation by 6% sequencing gel electrophoresis. CDR3 spectratyping of all identified TCR AV and BV gene families in the sorted CD4+ and CD8+ T cells by GeneScan, demonstrated a standard Gaussian distribution with >8 peaks. CDR3 in CD4+ and CD8+ T cells demonstrated different expression patterns. The majority of CDR3 recombined in frame and the results revealed that there were 10 and 14 amino acid discrepancies between the longest and shortest CDR3 lengths in specific TCR AV and TCR BV gene families, respectively. The results demonstrated that CDR3 polymorphism and length diversity demonstrated different expression and utilization patterns in CD4+ and CD8+ T cells. These results may facilitate future research investigating the porcine TCR CDR3 gene repertoire as well as the functional complexity and specificity of the TCR molecule.</description><subject>Amino acids</subject><subject>Animals</subject><subject>Antigens</subject><subject>Binding sites</subject><subject>CD4 antigen</subject><subject>CD4-Positive T-Lymphocytes - immunology</subject><subject>CD4-Positive T-Lymphocytes - metabolism</subject><subject>CD8 antigen</subject><subject>CD8-Positive T-Lymphocytes - immunology</subject><subject>CD8-Positive T-Lymphocytes - metabolism</subject><subject>Complementarity Determining Regions - genetics</subject><subject>Complementarity-determining region 1</subject><subject>Complementarity-determining region 3</subject><subject>Female</subject><subject>Gel electrophoresis</subject><subject>Gene Expression</subject><subject>Gene families</subject><subject>Gene Frequency</subject><subject>Gene polymorphism</subject><subject>Genes</subject><subject>Genetic Variation</subject><subject>Health care</subject><subject>Hogs</subject><subject>Laboratory animals</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Major histocompatibility complex</subject><subject>Multigene Family</subject><subject>Polymerase chain reaction</subject><subject>Receptors, Antigen, T-Cell, alpha-beta - genetics</subject><subject>Sequence Analysis, DNA</subject><subject>Swine</subject><subject>T cell receptors</subject><subject>West Nile virus</subject><issn>1791-2997</issn><issn>1791-3004</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkc1qFTEYhoMotlaXbiXgRihzzN9MJhuhnPoHBUHqOmQymU7KTDImOS2z9JL0QnpNJqfHoq7ywfvkJfkeAF5itKGtIG_nOWwIwnzTNAg_AseYC1xRhNjjw0yE4EfgWYzXCDU1qcVTcETamjIh6DH4cebUtEYboR9gGg3cnn-lcDLuKo0wmMWE5G0wULl-H_f2xoRo01r4S6jNNGVMmyX5AO9-7rm7X1CPyroIrYPx1rrSyk732fa8Pc33pnVeRq_XZOJz8GRQUzQvDucJ-Pbh_eX2U3Xx5ePn7dlFpRmuU4Xrpld0MGpgvEcU160hWBHDFemY0kJ0OeKcdLypdd-zvkNIUJaHhnaatPQEvLvvXXbdbHptXApqkkuwswqr9MrKfxNnR3nlb2TNWoJRKXhzKAj--87EJGcbywKUM34XJRZZQ0MZLujr_9Brvwt504VqSN1SxHmmqntKBx9jMMPDYzCSRa7McmWRK4vczL_6-wcP9B-b9DcYSaG4</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Wang, Chun-Yan</creator><creator>Fang, Yong-Xiang</creator><creator>Chen, Guo-Hua</creator><creator>Jia, Huai-Jie</creator><creator>Zeng, Shuang</creator><creator>He, Xiao-Bing</creator><creator>Feng, Yuan</creator><creator>Li, Shou-Jie</creator><creator>Jin, Qi-Wang</creator><creator>Cheng, Wen-Yu</creator><creator>Jing, Zhi-Zhong</creator><general>Spandidos Publications UK Ltd</general><general>D.A. Spandidos</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AN0</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170701</creationdate><title>Analysis of the CDR3 length repertoire and the diversity of T cell receptor α and β chains in swine CD4+ and CD8+ T lymphocytes</title><author>Wang, Chun-Yan ; Fang, Yong-Xiang ; Chen, Guo-Hua ; Jia, Huai-Jie ; Zeng, Shuang ; He, Xiao-Bing ; Feng, Yuan ; Li, Shou-Jie ; Jin, Qi-Wang ; Cheng, Wen-Yu ; Jing, Zhi-Zhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-156da3feaf47d03158e21a2e7a2b4ac99beaf772b765cdd4db00934d4d63bc283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Amino acids</topic><topic>Animals</topic><topic>Antigens</topic><topic>Binding sites</topic><topic>CD4 antigen</topic><topic>CD4-Positive T-Lymphocytes - immunology</topic><topic>CD4-Positive T-Lymphocytes - metabolism</topic><topic>CD8 antigen</topic><topic>CD8-Positive T-Lymphocytes - immunology</topic><topic>CD8-Positive T-Lymphocytes - metabolism</topic><topic>Complementarity Determining Regions - genetics</topic><topic>Complementarity-determining region 1</topic><topic>Complementarity-determining region 3</topic><topic>Female</topic><topic>Gel electrophoresis</topic><topic>Gene Expression</topic><topic>Gene families</topic><topic>Gene Frequency</topic><topic>Gene polymorphism</topic><topic>Genes</topic><topic>Genetic Variation</topic><topic>Health care</topic><topic>Hogs</topic><topic>Laboratory animals</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Major histocompatibility complex</topic><topic>Multigene Family</topic><topic>Polymerase chain reaction</topic><topic>Receptors, Antigen, T-Cell, alpha-beta - genetics</topic><topic>Sequence Analysis, DNA</topic><topic>Swine</topic><topic>T cell receptors</topic><topic>West Nile virus</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Chun-Yan</creatorcontrib><creatorcontrib>Fang, Yong-Xiang</creatorcontrib><creatorcontrib>Chen, Guo-Hua</creatorcontrib><creatorcontrib>Jia, Huai-Jie</creatorcontrib><creatorcontrib>Zeng, Shuang</creatorcontrib><creatorcontrib>He, Xiao-Bing</creatorcontrib><creatorcontrib>Feng, Yuan</creatorcontrib><creatorcontrib>Li, Shou-Jie</creatorcontrib><creatorcontrib>Jin, Qi-Wang</creatorcontrib><creatorcontrib>Cheng, Wen-Yu</creatorcontrib><creatorcontrib>Jing, Zhi-Zhong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>British Nursing Database</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular medicine reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Chun-Yan</au><au>Fang, Yong-Xiang</au><au>Chen, Guo-Hua</au><au>Jia, Huai-Jie</au><au>Zeng, Shuang</au><au>He, Xiao-Bing</au><au>Feng, Yuan</au><au>Li, Shou-Jie</au><au>Jin, Qi-Wang</au><au>Cheng, Wen-Yu</au><au>Jing, Zhi-Zhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of the CDR3 length repertoire and the diversity of T cell receptor α and β chains in swine CD4+ and CD8+ T lymphocytes</atitle><jtitle>Molecular medicine reports</jtitle><addtitle>Mol Med Rep</addtitle><date>2017-07-01</date><risdate>2017</risdate><volume>16</volume><issue>1</issue><spage>75</spage><epage>86</epage><pages>75-86</pages><issn>1791-2997</issn><eissn>1791-3004</eissn><abstract>The T cell receptor (TCR) is a complex heterodimer that recognizes fragments of antigens as peptides and binds to major histocompatibility complex molecules. The TCR α and β chains possess three hypervariable regions termed complementarity determining regions (CDR1, 2 and 3). CDR3 is responsible for recognizing processed antigen peptides. Immunoscope spectratyping is a simple technique for analyzing CDR3 polymorphisms and sequence length diversity, in order to investigate T cell function and the pattern of TCR utilization. The present study employed this technique to analyze CDR3 polymorphisms and the sequence length diversity of TCR α and β chains in porcine CD4+ and CD8+ T cells. Polymerase chain reaction products of 19 TCR α variable regions (AV) and 20 TCR β variable regions (BV) gene families obtained from the CD4+ and CD8+ T cells revealed a clear band following separation by 1.5% agarose gel electrophoresis, and each family exhibited >8 bands following separation by 6% sequencing gel electrophoresis. CDR3 spectratyping of all identified TCR AV and BV gene families in the sorted CD4+ and CD8+ T cells by GeneScan, demonstrated a standard Gaussian distribution with >8 peaks. CDR3 in CD4+ and CD8+ T cells demonstrated different expression patterns. The majority of CDR3 recombined in frame and the results revealed that there were 10 and 14 amino acid discrepancies between the longest and shortest CDR3 lengths in specific TCR AV and TCR BV gene families, respectively. The results demonstrated that CDR3 polymorphism and length diversity demonstrated different expression and utilization patterns in CD4+ and CD8+ T cells. These results may facilitate future research investigating the porcine TCR CDR3 gene repertoire as well as the functional complexity and specificity of the TCR molecule.</abstract><cop>Greece</cop><pub>Spandidos Publications UK Ltd</pub><pmid>28534993</pmid><doi>10.3892/mmr.2017.6601</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1791-2997 |
ispartof | Molecular medicine reports, 2017-07, Vol.16 (1), p.75-86 |
issn | 1791-2997 1791-3004 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5482108 |
source | Spandidos Publications Journals; MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Amino acids Animals Antigens Binding sites CD4 antigen CD4-Positive T-Lymphocytes - immunology CD4-Positive T-Lymphocytes - metabolism CD8 antigen CD8-Positive T-Lymphocytes - immunology CD8-Positive T-Lymphocytes - metabolism Complementarity Determining Regions - genetics Complementarity-determining region 1 Complementarity-determining region 3 Female Gel electrophoresis Gene Expression Gene families Gene Frequency Gene polymorphism Genes Genetic Variation Health care Hogs Laboratory animals Lymphocytes Lymphocytes T Major histocompatibility complex Multigene Family Polymerase chain reaction Receptors, Antigen, T-Cell, alpha-beta - genetics Sequence Analysis, DNA Swine T cell receptors West Nile virus |
title | Analysis of the CDR3 length repertoire and the diversity of T cell receptor α and β chains in swine CD4+ and CD8+ T lymphocytes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T19%3A11%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20the%20CDR3%20length%20repertoire%20and%20the%20diversity%20of%20T%20cell%20receptor%20%CE%B1%20and%20%CE%B2%20chains%20in%20swine%20CD4+%20and%20CD8+%20T%20lymphocytes&rft.jtitle=Molecular%20medicine%20reports&rft.au=Wang,%20Chun-Yan&rft.date=2017-07-01&rft.volume=16&rft.issue=1&rft.spage=75&rft.epage=86&rft.pages=75-86&rft.issn=1791-2997&rft.eissn=1791-3004&rft_id=info:doi/10.3892/mmr.2017.6601&rft_dat=%3Cproquest_pubme%3E1962583077%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1962583077&rft_id=info:pmid/28534993&rfr_iscdi=true |