Thalamic nuclei convey diverse contextual information to layer 1 of visual cortex

Current models of active vision emphasize the role of intracortical feedback projections. The authors report that thalamocortical projections, in particular from the higher order lateral posterior nucleus, provide an alternative pathway by which contextual sensory and motor information, as well as p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature neuroscience 2016-02, Vol.19 (2), p.299-307
Hauptverfasser: Roth, Morgane M, Dahmen, Johannes C, Muir, Dylan R, Imhof, Fabia, Martini, Francisco J, Hofer, Sonja B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 307
container_issue 2
container_start_page 299
container_title Nature neuroscience
container_volume 19
creator Roth, Morgane M
Dahmen, Johannes C
Muir, Dylan R
Imhof, Fabia
Martini, Francisco J
Hofer, Sonja B
description Current models of active vision emphasize the role of intracortical feedback projections. The authors report that thalamocortical projections, in particular from the higher order lateral posterior nucleus, provide an alternative pathway by which contextual sensory and motor information, as well as putative visuomotor error signals, are conveyed to primary visual cortex. Sensory perception depends on the context in which a stimulus occurs. Prevailing models emphasize cortical feedback as the source of contextual modulation. However, higher order thalamic nuclei, such as the pulvinar, interconnect with many cortical and subcortical areas, suggesting a role for the thalamus in providing sensory and behavioral context. Yet the nature of the signals conveyed to cortex by higher order thalamus remains poorly understood. Here we use axonal calcium imaging to measure information provided to visual cortex by the pulvinar equivalent in mice, the lateral posterior nucleus (LP), as well as the dorsolateral geniculate nucleus (dLGN). We found that dLGN conveys retinotopically precise visual signals, while LP provides distributed information from the visual scene. Both LP and dLGN projections carry locomotion signals. However, while dLGN inputs often respond to positive combinations of running and visual flow speed, LP signals discrepancies between self-generated and external visual motion. This higher order thalamic nucleus therefore conveys diverse contextual signals that inform visual cortex about visual scene changes not predicted by the animal's own actions.
doi_str_mv 10.1038/nn.4197
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5480596</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A632744224</galeid><sourcerecordid>A632744224</sourcerecordid><originalsourceid>FETCH-LOGICAL-c567t-325286f1c255248379877ca388f3da8d5f4116a37366df33cc8304dfc39d8dd53</originalsourceid><addsrcrecordid>eNqNkUlvFDEQhVuIiCwg_gGyxIFw6OB9uSBFEUukSAgIZ8t4mTjqtoPdPWL-PW7NkO2Uk8uqT6-q3uu61wieIEjkh5ROKFLiWXeAGOU9Epg_bzVUoueY8f3usNZrCKFgUr3o9jHnCkksD7rvl1dmMGO0IM128BHYnNZ-A1xc-1L98p3832k2A4gp5DKaKeYEpgwGs_EFIJADWMe6ADaXxr7s9oIZqn-1e4-6X58_XZ597S--fTk_O73oLeNi6glmWPKALGYMU0mEkkJYQ6QMxBnpWKAIcUME4dwFQqyVBFIXLFFOOsfIUfdxq3sz_x69sz5NxQz6psTRlI3OJuqHnRSv9CqvNaMSMsWbwPFOoOQ_s6-THmO1fhhM8nmuGgkumcCirfAEFFGmEFYNffsIvc5zSc2JheJYCSKX2e-31MoMXse0s3ll5lr1-c8f-pQTLCjFmDb23Za1JddafLi9EUG9pK9T0kv6jXxz35Jb7n_cd3fU1korX-4t90jrH3Cstp8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1766297386</pqid></control><display><type>article</type><title>Thalamic nuclei convey diverse contextual information to layer 1 of visual cortex</title><source>MEDLINE</source><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Roth, Morgane M ; Dahmen, Johannes C ; Muir, Dylan R ; Imhof, Fabia ; Martini, Francisco J ; Hofer, Sonja B</creator><creatorcontrib>Roth, Morgane M ; Dahmen, Johannes C ; Muir, Dylan R ; Imhof, Fabia ; Martini, Francisco J ; Hofer, Sonja B</creatorcontrib><description>Current models of active vision emphasize the role of intracortical feedback projections. The authors report that thalamocortical projections, in particular from the higher order lateral posterior nucleus, provide an alternative pathway by which contextual sensory and motor information, as well as putative visuomotor error signals, are conveyed to primary visual cortex. Sensory perception depends on the context in which a stimulus occurs. Prevailing models emphasize cortical feedback as the source of contextual modulation. However, higher order thalamic nuclei, such as the pulvinar, interconnect with many cortical and subcortical areas, suggesting a role for the thalamus in providing sensory and behavioral context. Yet the nature of the signals conveyed to cortex by higher order thalamus remains poorly understood. Here we use axonal calcium imaging to measure information provided to visual cortex by the pulvinar equivalent in mice, the lateral posterior nucleus (LP), as well as the dorsolateral geniculate nucleus (dLGN). We found that dLGN conveys retinotopically precise visual signals, while LP provides distributed information from the visual scene. Both LP and dLGN projections carry locomotion signals. However, while dLGN inputs often respond to positive combinations of running and visual flow speed, LP signals discrepancies between self-generated and external visual motion. This higher order thalamic nucleus therefore conveys diverse contextual signals that inform visual cortex about visual scene changes not predicted by the animal's own actions.</description><identifier>ISSN: 1097-6256</identifier><identifier>EISSN: 1546-1726</identifier><identifier>DOI: 10.1038/nn.4197</identifier><identifier>PMID: 26691828</identifier><identifier>CODEN: NANEFN</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>14/35 ; 14/69 ; 631/378/2613/1838 ; 631/378/2629 ; 631/378/3917 ; 64/60 ; Afferent Pathways - physiology ; Algorithms ; Analysis ; Anatomy &amp; physiology ; Animal Genetics and Genomics ; Animals ; Axons - physiology ; Behavioral Sciences ; Biological Techniques ; Biomedicine ; Efferent Pathways - physiology ; Electrophysiological Phenomena ; Eye movements ; Feedback, Physiological ; Female ; Geniculate Bodies - physiology ; Male ; Mice ; Mice, Inbred C57BL ; Motion Perception - physiology ; Motor Cortex - physiology ; Neural Pathways - physiology ; Neurobiology ; Neuroimaging ; Neurosciences ; Perceptual orientation ; Photic Stimulation ; Physiology ; Psychomotor Performance - physiology ; Sensation - physiology ; Thalamic Nuclei - physiology ; Thalamus ; Topography ; Visual cortex ; Visual Cortex - physiology ; Visual Pathways - physiology</subject><ispartof>Nature neuroscience, 2016-02, Vol.19 (2), p.299-307</ispartof><rights>Springer Nature America, Inc. 2015</rights><rights>COPYRIGHT 2016 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Feb 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c567t-325286f1c255248379877ca388f3da8d5f4116a37366df33cc8304dfc39d8dd53</citedby><cites>FETCH-LOGICAL-c567t-325286f1c255248379877ca388f3da8d5f4116a37366df33cc8304dfc39d8dd53</cites><orcidid>0000-0003-3856-826X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nn.4197$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nn.4197$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26691828$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Roth, Morgane M</creatorcontrib><creatorcontrib>Dahmen, Johannes C</creatorcontrib><creatorcontrib>Muir, Dylan R</creatorcontrib><creatorcontrib>Imhof, Fabia</creatorcontrib><creatorcontrib>Martini, Francisco J</creatorcontrib><creatorcontrib>Hofer, Sonja B</creatorcontrib><title>Thalamic nuclei convey diverse contextual information to layer 1 of visual cortex</title><title>Nature neuroscience</title><addtitle>Nat Neurosci</addtitle><addtitle>Nat Neurosci</addtitle><description>Current models of active vision emphasize the role of intracortical feedback projections. The authors report that thalamocortical projections, in particular from the higher order lateral posterior nucleus, provide an alternative pathway by which contextual sensory and motor information, as well as putative visuomotor error signals, are conveyed to primary visual cortex. Sensory perception depends on the context in which a stimulus occurs. Prevailing models emphasize cortical feedback as the source of contextual modulation. However, higher order thalamic nuclei, such as the pulvinar, interconnect with many cortical and subcortical areas, suggesting a role for the thalamus in providing sensory and behavioral context. Yet the nature of the signals conveyed to cortex by higher order thalamus remains poorly understood. Here we use axonal calcium imaging to measure information provided to visual cortex by the pulvinar equivalent in mice, the lateral posterior nucleus (LP), as well as the dorsolateral geniculate nucleus (dLGN). We found that dLGN conveys retinotopically precise visual signals, while LP provides distributed information from the visual scene. Both LP and dLGN projections carry locomotion signals. However, while dLGN inputs often respond to positive combinations of running and visual flow speed, LP signals discrepancies between self-generated and external visual motion. This higher order thalamic nucleus therefore conveys diverse contextual signals that inform visual cortex about visual scene changes not predicted by the animal's own actions.</description><subject>14/35</subject><subject>14/69</subject><subject>631/378/2613/1838</subject><subject>631/378/2629</subject><subject>631/378/3917</subject><subject>64/60</subject><subject>Afferent Pathways - physiology</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Anatomy &amp; physiology</subject><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Axons - physiology</subject><subject>Behavioral Sciences</subject><subject>Biological Techniques</subject><subject>Biomedicine</subject><subject>Efferent Pathways - physiology</subject><subject>Electrophysiological Phenomena</subject><subject>Eye movements</subject><subject>Feedback, Physiological</subject><subject>Female</subject><subject>Geniculate Bodies - physiology</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Motion Perception - physiology</subject><subject>Motor Cortex - physiology</subject><subject>Neural Pathways - physiology</subject><subject>Neurobiology</subject><subject>Neuroimaging</subject><subject>Neurosciences</subject><subject>Perceptual orientation</subject><subject>Photic Stimulation</subject><subject>Physiology</subject><subject>Psychomotor Performance - physiology</subject><subject>Sensation - physiology</subject><subject>Thalamic Nuclei - physiology</subject><subject>Thalamus</subject><subject>Topography</subject><subject>Visual cortex</subject><subject>Visual Cortex - physiology</subject><subject>Visual Pathways - physiology</subject><issn>1097-6256</issn><issn>1546-1726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkUlvFDEQhVuIiCwg_gGyxIFw6OB9uSBFEUukSAgIZ8t4mTjqtoPdPWL-PW7NkO2Uk8uqT6-q3uu61wieIEjkh5ROKFLiWXeAGOU9Epg_bzVUoueY8f3usNZrCKFgUr3o9jHnCkksD7rvl1dmMGO0IM128BHYnNZ-A1xc-1L98p3832k2A4gp5DKaKeYEpgwGs_EFIJADWMe6ADaXxr7s9oIZqn-1e4-6X58_XZ597S--fTk_O73oLeNi6glmWPKALGYMU0mEkkJYQ6QMxBnpWKAIcUME4dwFQqyVBFIXLFFOOsfIUfdxq3sz_x69sz5NxQz6psTRlI3OJuqHnRSv9CqvNaMSMsWbwPFOoOQ_s6-THmO1fhhM8nmuGgkumcCirfAEFFGmEFYNffsIvc5zSc2JheJYCSKX2e-31MoMXse0s3ll5lr1-c8f-pQTLCjFmDb23Za1JddafLi9EUG9pK9T0kv6jXxz35Jb7n_cd3fU1korX-4t90jrH3Cstp8</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Roth, Morgane M</creator><creator>Dahmen, Johannes C</creator><creator>Muir, Dylan R</creator><creator>Imhof, Fabia</creator><creator>Martini, Francisco J</creator><creator>Hofer, Sonja B</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3856-826X</orcidid></search><sort><creationdate>20160201</creationdate><title>Thalamic nuclei convey diverse contextual information to layer 1 of visual cortex</title><author>Roth, Morgane M ; Dahmen, Johannes C ; Muir, Dylan R ; Imhof, Fabia ; Martini, Francisco J ; Hofer, Sonja B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c567t-325286f1c255248379877ca388f3da8d5f4116a37366df33cc8304dfc39d8dd53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>14/35</topic><topic>14/69</topic><topic>631/378/2613/1838</topic><topic>631/378/2629</topic><topic>631/378/3917</topic><topic>64/60</topic><topic>Afferent Pathways - physiology</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Anatomy &amp; physiology</topic><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Axons - physiology</topic><topic>Behavioral Sciences</topic><topic>Biological Techniques</topic><topic>Biomedicine</topic><topic>Efferent Pathways - physiology</topic><topic>Electrophysiological Phenomena</topic><topic>Eye movements</topic><topic>Feedback, Physiological</topic><topic>Female</topic><topic>Geniculate Bodies - physiology</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Motion Perception - physiology</topic><topic>Motor Cortex - physiology</topic><topic>Neural Pathways - physiology</topic><topic>Neurobiology</topic><topic>Neuroimaging</topic><topic>Neurosciences</topic><topic>Perceptual orientation</topic><topic>Photic Stimulation</topic><topic>Physiology</topic><topic>Psychomotor Performance - physiology</topic><topic>Sensation - physiology</topic><topic>Thalamic Nuclei - physiology</topic><topic>Thalamus</topic><topic>Topography</topic><topic>Visual cortex</topic><topic>Visual Cortex - physiology</topic><topic>Visual Pathways - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roth, Morgane M</creatorcontrib><creatorcontrib>Dahmen, Johannes C</creatorcontrib><creatorcontrib>Muir, Dylan R</creatorcontrib><creatorcontrib>Imhof, Fabia</creatorcontrib><creatorcontrib>Martini, Francisco J</creatorcontrib><creatorcontrib>Hofer, Sonja B</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roth, Morgane M</au><au>Dahmen, Johannes C</au><au>Muir, Dylan R</au><au>Imhof, Fabia</au><au>Martini, Francisco J</au><au>Hofer, Sonja B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thalamic nuclei convey diverse contextual information to layer 1 of visual cortex</atitle><jtitle>Nature neuroscience</jtitle><stitle>Nat Neurosci</stitle><addtitle>Nat Neurosci</addtitle><date>2016-02-01</date><risdate>2016</risdate><volume>19</volume><issue>2</issue><spage>299</spage><epage>307</epage><pages>299-307</pages><issn>1097-6256</issn><eissn>1546-1726</eissn><coden>NANEFN</coden><abstract>Current models of active vision emphasize the role of intracortical feedback projections. The authors report that thalamocortical projections, in particular from the higher order lateral posterior nucleus, provide an alternative pathway by which contextual sensory and motor information, as well as putative visuomotor error signals, are conveyed to primary visual cortex. Sensory perception depends on the context in which a stimulus occurs. Prevailing models emphasize cortical feedback as the source of contextual modulation. However, higher order thalamic nuclei, such as the pulvinar, interconnect with many cortical and subcortical areas, suggesting a role for the thalamus in providing sensory and behavioral context. Yet the nature of the signals conveyed to cortex by higher order thalamus remains poorly understood. Here we use axonal calcium imaging to measure information provided to visual cortex by the pulvinar equivalent in mice, the lateral posterior nucleus (LP), as well as the dorsolateral geniculate nucleus (dLGN). We found that dLGN conveys retinotopically precise visual signals, while LP provides distributed information from the visual scene. Both LP and dLGN projections carry locomotion signals. However, while dLGN inputs often respond to positive combinations of running and visual flow speed, LP signals discrepancies between self-generated and external visual motion. This higher order thalamic nucleus therefore conveys diverse contextual signals that inform visual cortex about visual scene changes not predicted by the animal's own actions.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>26691828</pmid><doi>10.1038/nn.4197</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3856-826X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1097-6256
ispartof Nature neuroscience, 2016-02, Vol.19 (2), p.299-307
issn 1097-6256
1546-1726
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5480596
source MEDLINE; Nature; SpringerLink Journals - AutoHoldings
subjects 14/35
14/69
631/378/2613/1838
631/378/2629
631/378/3917
64/60
Afferent Pathways - physiology
Algorithms
Analysis
Anatomy & physiology
Animal Genetics and Genomics
Animals
Axons - physiology
Behavioral Sciences
Biological Techniques
Biomedicine
Efferent Pathways - physiology
Electrophysiological Phenomena
Eye movements
Feedback, Physiological
Female
Geniculate Bodies - physiology
Male
Mice
Mice, Inbred C57BL
Motion Perception - physiology
Motor Cortex - physiology
Neural Pathways - physiology
Neurobiology
Neuroimaging
Neurosciences
Perceptual orientation
Photic Stimulation
Physiology
Psychomotor Performance - physiology
Sensation - physiology
Thalamic Nuclei - physiology
Thalamus
Topography
Visual cortex
Visual Cortex - physiology
Visual Pathways - physiology
title Thalamic nuclei convey diverse contextual information to layer 1 of visual cortex
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T19%3A53%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thalamic%20nuclei%20convey%20diverse%20contextual%20information%20to%20layer%201%20of%20visual%20cortex&rft.jtitle=Nature%20neuroscience&rft.au=Roth,%20Morgane%20M&rft.date=2016-02-01&rft.volume=19&rft.issue=2&rft.spage=299&rft.epage=307&rft.pages=299-307&rft.issn=1097-6256&rft.eissn=1546-1726&rft.coden=NANEFN&rft_id=info:doi/10.1038/nn.4197&rft_dat=%3Cgale_pubme%3EA632744224%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1766297386&rft_id=info:pmid/26691828&rft_galeid=A632744224&rfr_iscdi=true