Probing the Structural Dynamics of the NMDA Receptor Activation by Coarse-Grained Modeling

N-Methyl-D-aspartate (NMDA) receptors are glutamate-gated excitatory channels that play essential roles in brain functions. High-resolution structures have been solved for an allosterically inhibited and agonist-bound form of a functional NMDA receptor; however, other key functional states (particul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 2017-06, Vol.112 (12), p.2589-2601
Hauptverfasser: Zheng, Wenjun, Wen, Han, Iacobucci, Gary J., Popescu, Gabriela K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2601
container_issue 12
container_start_page 2589
container_title Biophysical journal
container_volume 112
creator Zheng, Wenjun
Wen, Han
Iacobucci, Gary J.
Popescu, Gabriela K.
description N-Methyl-D-aspartate (NMDA) receptors are glutamate-gated excitatory channels that play essential roles in brain functions. High-resolution structures have been solved for an allosterically inhibited and agonist-bound form of a functional NMDA receptor; however, other key functional states (particularly the active open-channel state) were only resolved at moderate resolutions by cryo-electron microscopy (cryo-EM). To decrypt the mechanism of the NMDA receptor activation, structural modeling is essential to provide presently missing information about structural dynamics. We performed systematic coarse-grained modeling using an elastic network model and related modeling/analysis tools (e.g., normal mode analysis, flexibility and hotspot analysis, cryo-EM flexible fitting, and transition pathway modeling) based on an active-state cryo-EM map. We observed extensive conformational changes that allosterically couple the extracellular regulatory and agonist-binding domains to the pore-forming trans-membrane domain (TMD), and validated these, to our knowledge, new observations against known mutational and functional studies. Our results predict two key modes of collective motions featuring shearing/twisting of the extracellular domains relative to the TMD, reveal subunit-specific flexibility profiles, and identify functional hotspot residues at key domain-domain interfaces. Finally, by examining the conformational transition pathway between the allosterically inhibited form and the active form, we predict a discrete sequence of domain motions, which propagate from the extracellular domains to the TMD. In summary, our results offer rich structural and dynamic information, which is consistent with the literature on structure-function relationships in NMDA receptors, and will guide in-depth studies on the activation dynamics of this important neurotransmitter receptor.
doi_str_mv 10.1016/j.bpj.2017.04.043
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5479051</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349517304599</els_id><sourcerecordid>1923045025</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-3811d68b75e2ba11b82e6fc04f72e3661a126c866013c357c8a6b694153637263</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxSMEokvhA3BBkbhwyTJjx04iJKTVlhakFhB_Llwsx5m0jrLxYjsr7bevly0VcEAayYf5zfO8eVn2HGGJgPL1sGy3w5IBVksoU_EH2QJFyQqAWj7MFgAgC1424iR7EsIAgEwAPs5OWC25bFAssh-fvWvtdJ3HG8q_Rj-bOHs95mf7SW-sCbnrf7U-Xp2t8i9kaBudz1cm2p2O1k15u8_XTvtAxYXXdqIuv3IdjUnyafao12OgZ3fvafb9_N239fvi8tPFh_XqsjBl1cSC14idrNtKEGs1Ylszkr2Bsq8YcSlRI5OmlhKQGy4qU2vZyqZEwSWvmOSn2duj7nZuN9QZmmJyoLbebrTfK6et-rsz2Rt17XZKpP9BYBJ4dSfg3c-ZQlQbGwyNo57IzUFhkzaAWrAD-vIfdHCzn5K9RDEOpQAmEoVHyngXgqf-fhkEdUhODSolpw7JKShT8TTz4k8X9xO_o0rAmyNA6ZY7S14FY2ky1FlPJqrO2f_I3wJNlKfM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1923045025</pqid></control><display><type>article</type><title>Probing the Structural Dynamics of the NMDA Receptor Activation by Coarse-Grained Modeling</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Zheng, Wenjun ; Wen, Han ; Iacobucci, Gary J. ; Popescu, Gabriela K.</creator><creatorcontrib>Zheng, Wenjun ; Wen, Han ; Iacobucci, Gary J. ; Popescu, Gabriela K.</creatorcontrib><description>N-Methyl-D-aspartate (NMDA) receptors are glutamate-gated excitatory channels that play essential roles in brain functions. High-resolution structures have been solved for an allosterically inhibited and agonist-bound form of a functional NMDA receptor; however, other key functional states (particularly the active open-channel state) were only resolved at moderate resolutions by cryo-electron microscopy (cryo-EM). To decrypt the mechanism of the NMDA receptor activation, structural modeling is essential to provide presently missing information about structural dynamics. We performed systematic coarse-grained modeling using an elastic network model and related modeling/analysis tools (e.g., normal mode analysis, flexibility and hotspot analysis, cryo-EM flexible fitting, and transition pathway modeling) based on an active-state cryo-EM map. We observed extensive conformational changes that allosterically couple the extracellular regulatory and agonist-binding domains to the pore-forming trans-membrane domain (TMD), and validated these, to our knowledge, new observations against known mutational and functional studies. Our results predict two key modes of collective motions featuring shearing/twisting of the extracellular domains relative to the TMD, reveal subunit-specific flexibility profiles, and identify functional hotspot residues at key domain-domain interfaces. Finally, by examining the conformational transition pathway between the allosterically inhibited form and the active form, we predict a discrete sequence of domain motions, which propagate from the extracellular domains to the TMD. In summary, our results offer rich structural and dynamic information, which is consistent with the literature on structure-function relationships in NMDA receptors, and will guide in-depth studies on the activation dynamics of this important neurotransmitter receptor.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2017.04.043</identifier><identifier>PMID: 28636915</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Activation ; Activation analysis ; Allosteric Regulation ; Analysis ; Animals ; Brain ; Cryoelectron Microscopy ; Dynamic structural analysis ; Elasticity ; Electron microscopy ; Flexibility ; Glutamic acid receptors (ionotropic) ; High resolution ; Interfaces ; Mathematical models ; Modelling ; Models, Molecular ; Mutation ; N-Methyl-D-aspartic acid receptors ; Pore formation ; Protein Conformation ; Proteins ; Rats ; Receptor mechanisms ; Receptors ; Receptors, N-Methyl-D-Aspartate - agonists ; Receptors, N-Methyl-D-Aspartate - antagonists &amp; inhibitors ; Receptors, N-Methyl-D-Aspartate - genetics ; Receptors, N-Methyl-D-Aspartate - metabolism ; Shearing ; Structure-function relationships ; Transmission electron microscopy ; Twisting ; Xenopus laevis</subject><ispartof>Biophysical journal, 2017-06, Vol.112 (12), p.2589-2601</ispartof><rights>2017 Biophysical Society</rights><rights>Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><rights>Copyright Biophysical Society Jun 20, 2017</rights><rights>2017 Biophysical Society. 2017 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-3811d68b75e2ba11b82e6fc04f72e3661a126c866013c357c8a6b694153637263</citedby><cites>FETCH-LOGICAL-c479t-3811d68b75e2ba11b82e6fc04f72e3661a126c866013c357c8a6b694153637263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5479051/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bpj.2017.04.043$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3550,27924,27925,45995,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28636915$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zheng, Wenjun</creatorcontrib><creatorcontrib>Wen, Han</creatorcontrib><creatorcontrib>Iacobucci, Gary J.</creatorcontrib><creatorcontrib>Popescu, Gabriela K.</creatorcontrib><title>Probing the Structural Dynamics of the NMDA Receptor Activation by Coarse-Grained Modeling</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>N-Methyl-D-aspartate (NMDA) receptors are glutamate-gated excitatory channels that play essential roles in brain functions. High-resolution structures have been solved for an allosterically inhibited and agonist-bound form of a functional NMDA receptor; however, other key functional states (particularly the active open-channel state) were only resolved at moderate resolutions by cryo-electron microscopy (cryo-EM). To decrypt the mechanism of the NMDA receptor activation, structural modeling is essential to provide presently missing information about structural dynamics. We performed systematic coarse-grained modeling using an elastic network model and related modeling/analysis tools (e.g., normal mode analysis, flexibility and hotspot analysis, cryo-EM flexible fitting, and transition pathway modeling) based on an active-state cryo-EM map. We observed extensive conformational changes that allosterically couple the extracellular regulatory and agonist-binding domains to the pore-forming trans-membrane domain (TMD), and validated these, to our knowledge, new observations against known mutational and functional studies. Our results predict two key modes of collective motions featuring shearing/twisting of the extracellular domains relative to the TMD, reveal subunit-specific flexibility profiles, and identify functional hotspot residues at key domain-domain interfaces. Finally, by examining the conformational transition pathway between the allosterically inhibited form and the active form, we predict a discrete sequence of domain motions, which propagate from the extracellular domains to the TMD. In summary, our results offer rich structural and dynamic information, which is consistent with the literature on structure-function relationships in NMDA receptors, and will guide in-depth studies on the activation dynamics of this important neurotransmitter receptor.</description><subject>Activation</subject><subject>Activation analysis</subject><subject>Allosteric Regulation</subject><subject>Analysis</subject><subject>Animals</subject><subject>Brain</subject><subject>Cryoelectron Microscopy</subject><subject>Dynamic structural analysis</subject><subject>Elasticity</subject><subject>Electron microscopy</subject><subject>Flexibility</subject><subject>Glutamic acid receptors (ionotropic)</subject><subject>High resolution</subject><subject>Interfaces</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Models, Molecular</subject><subject>Mutation</subject><subject>N-Methyl-D-aspartic acid receptors</subject><subject>Pore formation</subject><subject>Protein Conformation</subject><subject>Proteins</subject><subject>Rats</subject><subject>Receptor mechanisms</subject><subject>Receptors</subject><subject>Receptors, N-Methyl-D-Aspartate - agonists</subject><subject>Receptors, N-Methyl-D-Aspartate - antagonists &amp; inhibitors</subject><subject>Receptors, N-Methyl-D-Aspartate - genetics</subject><subject>Receptors, N-Methyl-D-Aspartate - metabolism</subject><subject>Shearing</subject><subject>Structure-function relationships</subject><subject>Transmission electron microscopy</subject><subject>Twisting</subject><subject>Xenopus laevis</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU9v1DAQxSMEokvhA3BBkbhwyTJjx04iJKTVlhakFhB_Llwsx5m0jrLxYjsr7bevly0VcEAayYf5zfO8eVn2HGGJgPL1sGy3w5IBVksoU_EH2QJFyQqAWj7MFgAgC1424iR7EsIAgEwAPs5OWC25bFAssh-fvWvtdJ3HG8q_Rj-bOHs95mf7SW-sCbnrf7U-Xp2t8i9kaBudz1cm2p2O1k15u8_XTvtAxYXXdqIuv3IdjUnyafao12OgZ3fvafb9_N239fvi8tPFh_XqsjBl1cSC14idrNtKEGs1Ylszkr2Bsq8YcSlRI5OmlhKQGy4qU2vZyqZEwSWvmOSn2duj7nZuN9QZmmJyoLbebrTfK6et-rsz2Rt17XZKpP9BYBJ4dSfg3c-ZQlQbGwyNo57IzUFhkzaAWrAD-vIfdHCzn5K9RDEOpQAmEoVHyngXgqf-fhkEdUhODSolpw7JKShT8TTz4k8X9xO_o0rAmyNA6ZY7S14FY2ky1FlPJqrO2f_I3wJNlKfM</recordid><startdate>20170620</startdate><enddate>20170620</enddate><creator>Zheng, Wenjun</creator><creator>Wen, Han</creator><creator>Iacobucci, Gary J.</creator><creator>Popescu, Gabriela K.</creator><general>Elsevier Inc</general><general>Biophysical Society</general><general>The Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170620</creationdate><title>Probing the Structural Dynamics of the NMDA Receptor Activation by Coarse-Grained Modeling</title><author>Zheng, Wenjun ; Wen, Han ; Iacobucci, Gary J. ; Popescu, Gabriela K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-3811d68b75e2ba11b82e6fc04f72e3661a126c866013c357c8a6b694153637263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Activation</topic><topic>Activation analysis</topic><topic>Allosteric Regulation</topic><topic>Analysis</topic><topic>Animals</topic><topic>Brain</topic><topic>Cryoelectron Microscopy</topic><topic>Dynamic structural analysis</topic><topic>Elasticity</topic><topic>Electron microscopy</topic><topic>Flexibility</topic><topic>Glutamic acid receptors (ionotropic)</topic><topic>High resolution</topic><topic>Interfaces</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Models, Molecular</topic><topic>Mutation</topic><topic>N-Methyl-D-aspartic acid receptors</topic><topic>Pore formation</topic><topic>Protein Conformation</topic><topic>Proteins</topic><topic>Rats</topic><topic>Receptor mechanisms</topic><topic>Receptors</topic><topic>Receptors, N-Methyl-D-Aspartate - agonists</topic><topic>Receptors, N-Methyl-D-Aspartate - antagonists &amp; inhibitors</topic><topic>Receptors, N-Methyl-D-Aspartate - genetics</topic><topic>Receptors, N-Methyl-D-Aspartate - metabolism</topic><topic>Shearing</topic><topic>Structure-function relationships</topic><topic>Transmission electron microscopy</topic><topic>Twisting</topic><topic>Xenopus laevis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Wenjun</creatorcontrib><creatorcontrib>Wen, Han</creatorcontrib><creatorcontrib>Iacobucci, Gary J.</creatorcontrib><creatorcontrib>Popescu, Gabriela K.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Wenjun</au><au>Wen, Han</au><au>Iacobucci, Gary J.</au><au>Popescu, Gabriela K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probing the Structural Dynamics of the NMDA Receptor Activation by Coarse-Grained Modeling</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2017-06-20</date><risdate>2017</risdate><volume>112</volume><issue>12</issue><spage>2589</spage><epage>2601</epage><pages>2589-2601</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>N-Methyl-D-aspartate (NMDA) receptors are glutamate-gated excitatory channels that play essential roles in brain functions. High-resolution structures have been solved for an allosterically inhibited and agonist-bound form of a functional NMDA receptor; however, other key functional states (particularly the active open-channel state) were only resolved at moderate resolutions by cryo-electron microscopy (cryo-EM). To decrypt the mechanism of the NMDA receptor activation, structural modeling is essential to provide presently missing information about structural dynamics. We performed systematic coarse-grained modeling using an elastic network model and related modeling/analysis tools (e.g., normal mode analysis, flexibility and hotspot analysis, cryo-EM flexible fitting, and transition pathway modeling) based on an active-state cryo-EM map. We observed extensive conformational changes that allosterically couple the extracellular regulatory and agonist-binding domains to the pore-forming trans-membrane domain (TMD), and validated these, to our knowledge, new observations against known mutational and functional studies. Our results predict two key modes of collective motions featuring shearing/twisting of the extracellular domains relative to the TMD, reveal subunit-specific flexibility profiles, and identify functional hotspot residues at key domain-domain interfaces. Finally, by examining the conformational transition pathway between the allosterically inhibited form and the active form, we predict a discrete sequence of domain motions, which propagate from the extracellular domains to the TMD. In summary, our results offer rich structural and dynamic information, which is consistent with the literature on structure-function relationships in NMDA receptors, and will guide in-depth studies on the activation dynamics of this important neurotransmitter receptor.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>28636915</pmid><doi>10.1016/j.bpj.2017.04.043</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2017-06, Vol.112 (12), p.2589-2601
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5479051
source MEDLINE; Cell Press Free Archives; Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Activation
Activation analysis
Allosteric Regulation
Analysis
Animals
Brain
Cryoelectron Microscopy
Dynamic structural analysis
Elasticity
Electron microscopy
Flexibility
Glutamic acid receptors (ionotropic)
High resolution
Interfaces
Mathematical models
Modelling
Models, Molecular
Mutation
N-Methyl-D-aspartic acid receptors
Pore formation
Protein Conformation
Proteins
Rats
Receptor mechanisms
Receptors
Receptors, N-Methyl-D-Aspartate - agonists
Receptors, N-Methyl-D-Aspartate - antagonists & inhibitors
Receptors, N-Methyl-D-Aspartate - genetics
Receptors, N-Methyl-D-Aspartate - metabolism
Shearing
Structure-function relationships
Transmission electron microscopy
Twisting
Xenopus laevis
title Probing the Structural Dynamics of the NMDA Receptor Activation by Coarse-Grained Modeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A59%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probing%20the%20Structural%20Dynamics%20of%20the%20NMDA%20Receptor%20Activation%20by%20Coarse-Grained%20Modeling&rft.jtitle=Biophysical%20journal&rft.au=Zheng,%20Wenjun&rft.date=2017-06-20&rft.volume=112&rft.issue=12&rft.spage=2589&rft.epage=2601&rft.pages=2589-2601&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2017.04.043&rft_dat=%3Cproquest_pubme%3E1923045025%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1923045025&rft_id=info:pmid/28636915&rft_els_id=S0006349517304599&rfr_iscdi=true