A Prediction Model to Help with the Assessment of Adenopathy in Lung Cancer: HAL

Estimating the probability of finding N2 or N3 (prN2/3) malignant nodal disease on endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) in patients with non-small cell lung cancer (NSCLC) can facilitate the selection of subsequent management strategies. To develop a clinical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of respiratory and critical care medicine 2017-06, Vol.195 (12), p.1651-1660
Hauptverfasser: O'Connell, Oisin J, Almeida, Francisco A, Simoff, Michael J, Yarmus, Lonny, Lazarus, Ray, Young, Benjamin, Chen, Yu, Semaan, Roy, Saettele, Timothy M, Cicenia, Joseph, Bedi, Harmeet, Kliment, Corrine, Li, Liang, Sethi, Sonali, Diaz-Mendoza, Javier, Feller-Kopman, David, Song, Juhee, Gildea, Thomas, Lee, Hans, Grosu, Horiana B, Machuzak, Michael, Rodriguez-Vial, Macarena, Eapen, George A, Jimenez, Carlos A, Casal, Roberto F, Ost, David E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1660
container_issue 12
container_start_page 1651
container_title American journal of respiratory and critical care medicine
container_volume 195
creator O'Connell, Oisin J
Almeida, Francisco A
Simoff, Michael J
Yarmus, Lonny
Lazarus, Ray
Young, Benjamin
Chen, Yu
Semaan, Roy
Saettele, Timothy M
Cicenia, Joseph
Bedi, Harmeet
Kliment, Corrine
Li, Liang
Sethi, Sonali
Diaz-Mendoza, Javier
Feller-Kopman, David
Song, Juhee
Gildea, Thomas
Lee, Hans
Grosu, Horiana B
Machuzak, Michael
Rodriguez-Vial, Macarena
Eapen, George A
Jimenez, Carlos A
Casal, Roberto F
Ost, David E
description Estimating the probability of finding N2 or N3 (prN2/3) malignant nodal disease on endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) in patients with non-small cell lung cancer (NSCLC) can facilitate the selection of subsequent management strategies. To develop a clinical prediction model for estimating the prN2/3. We used the AQuIRE (American College of Chest Physicians Quality Improvement Registry, Evaluation, and Education) registry to identify patients with NSCLC with clinical radiographic stage T1-3, N0-3, M0 disease that had EBUS-TBNA for staging. The dependent variable was the presence of N2 or N3 disease (vs. N0 or N1) as assessed by EBUS-TBNA. Univariate followed by multivariable logistic regression analysis was used to develop a parsimonious clinical prediction model to estimate prN2/3. External validation was performed using data from three other hospitals. The model derivation cohort (n = 633) had a 25% prevalence of malignant N2 or N3 disease. Younger age, central location, adenocarcinoma histology, and higher positron emission tomography-computed tomography N stage were associated with a higher prN2/3. Area under the receiver operating characteristic curve was 0.85 (95% confidence interval, 0.82-0.89), model fit was acceptable (Hosmer-Lemeshow, P = 0.62; Brier score, 0.125). We externally validated the model in 722 patients. Area under the receiver operating characteristic curve was 0.88 (95% confidence interval, 0.85-0.90). Calibration using the general calibration model method resulted in acceptable goodness of fit (Hosmer-Lemeshow test, P = 0.54; Brier score, 0.132). Our prediction rule can be used to estimate prN2/3 in patients with NSCLC. The model has the potential to facilitate clinical decision making in the staging of NSCLC.
doi_str_mv 10.1164/rccm.201607-1397OC
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5476908</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1851695182</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-d66640c0d1e1d39dc9b8e37a735385257c2f6e506a9ab1145aa6a8a17f2d631a3</originalsourceid><addsrcrecordid>eNpdkU9v1DAQxS1ERUvhC3BAlrhwSevxf3NAilYti7SoPYDEzfLaTjdVEi92QtVvX1dbKuA0I82bp3nzQ-gdkDMAyc-z9-MZJSCJaoAZdbV6gU5AMNFwo8jL2hPFGs7Nz2P0upRbQoBqIK_QMdWEUKnZCbpu8XWOofdznyb8LYU44DnhdRz2-K6fd3jeRdyWEksZ4zTj1OE2xCnt3by7x_2EN8t0g1du8jF_wut28wYddW4o8e1TPUU_Li--r9bN5urL11W7aTxnZG6ClJITTwJECMwEb7Y6MuUUE0wLKpSnnYyCSGfcFoAL56TTDlRHg2Tg2Cn6fPDdL9sxBl-Py26w-9yPLt_b5Hr772Tqd_Ym_baCK2mIrgYfnwxy-rXEMtuxLz4Og5tiWooFLUAaAZpW6Yf_pLdpyVONZ8HUJ_P6fFNV9KDyOZWSY_d8DBD7CMw-ArMHYPYArC69_zvG88ofQuwBt0SRFQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1910743979</pqid></control><display><type>article</type><title>A Prediction Model to Help with the Assessment of Adenopathy in Lung Cancer: HAL</title><source>MEDLINE</source><source>Journals@Ovid Complete</source><source>American Thoracic Society (ATS) Journals Online</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>O'Connell, Oisin J ; Almeida, Francisco A ; Simoff, Michael J ; Yarmus, Lonny ; Lazarus, Ray ; Young, Benjamin ; Chen, Yu ; Semaan, Roy ; Saettele, Timothy M ; Cicenia, Joseph ; Bedi, Harmeet ; Kliment, Corrine ; Li, Liang ; Sethi, Sonali ; Diaz-Mendoza, Javier ; Feller-Kopman, David ; Song, Juhee ; Gildea, Thomas ; Lee, Hans ; Grosu, Horiana B ; Machuzak, Michael ; Rodriguez-Vial, Macarena ; Eapen, George A ; Jimenez, Carlos A ; Casal, Roberto F ; Ost, David E</creator><creatorcontrib>O'Connell, Oisin J ; Almeida, Francisco A ; Simoff, Michael J ; Yarmus, Lonny ; Lazarus, Ray ; Young, Benjamin ; Chen, Yu ; Semaan, Roy ; Saettele, Timothy M ; Cicenia, Joseph ; Bedi, Harmeet ; Kliment, Corrine ; Li, Liang ; Sethi, Sonali ; Diaz-Mendoza, Javier ; Feller-Kopman, David ; Song, Juhee ; Gildea, Thomas ; Lee, Hans ; Grosu, Horiana B ; Machuzak, Michael ; Rodriguez-Vial, Macarena ; Eapen, George A ; Jimenez, Carlos A ; Casal, Roberto F ; Ost, David E</creatorcontrib><description>Estimating the probability of finding N2 or N3 (prN2/3) malignant nodal disease on endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) in patients with non-small cell lung cancer (NSCLC) can facilitate the selection of subsequent management strategies. To develop a clinical prediction model for estimating the prN2/3. We used the AQuIRE (American College of Chest Physicians Quality Improvement Registry, Evaluation, and Education) registry to identify patients with NSCLC with clinical radiographic stage T1-3, N0-3, M0 disease that had EBUS-TBNA for staging. The dependent variable was the presence of N2 or N3 disease (vs. N0 or N1) as assessed by EBUS-TBNA. Univariate followed by multivariable logistic regression analysis was used to develop a parsimonious clinical prediction model to estimate prN2/3. External validation was performed using data from three other hospitals. The model derivation cohort (n = 633) had a 25% prevalence of malignant N2 or N3 disease. Younger age, central location, adenocarcinoma histology, and higher positron emission tomography-computed tomography N stage were associated with a higher prN2/3. Area under the receiver operating characteristic curve was 0.85 (95% confidence interval, 0.82-0.89), model fit was acceptable (Hosmer-Lemeshow, P = 0.62; Brier score, 0.125). We externally validated the model in 722 patients. Area under the receiver operating characteristic curve was 0.88 (95% confidence interval, 0.85-0.90). Calibration using the general calibration model method resulted in acceptable goodness of fit (Hosmer-Lemeshow test, P = 0.54; Brier score, 0.132). Our prediction rule can be used to estimate prN2/3 in patients with NSCLC. The model has the potential to facilitate clinical decision making in the staging of NSCLC.</description><identifier>ISSN: 1073-449X</identifier><identifier>EISSN: 1535-4970</identifier><identifier>DOI: 10.1164/rccm.201607-1397OC</identifier><identifier>PMID: 28002683</identifier><language>eng</language><publisher>United States: American Thoracic Society</publisher><subject>Aged ; Carcinoma, Non-Small-Cell Lung - pathology ; Colleges &amp; universities ; Confidence intervals ; Endoscopic Ultrasound-Guided Fine Needle Aspiration ; Female ; Humans ; Lung cancer ; Lung Neoplasms - pathology ; Lymph Nodes - pathology ; Lymphadenopathy - pathology ; Lymphatic Metastasis ; Lymphatic system ; Male ; Medical imaging ; Medical screening ; Metastasis ; Neural networks ; Original ; Physicians ; Predictive Value of Tests ; Quality ; Retrospective Studies ; Surgery ; Thoracic surgery ; Tomography ; Ultrasonic imaging</subject><ispartof>American journal of respiratory and critical care medicine, 2017-06, Vol.195 (12), p.1651-1660</ispartof><rights>Copyright American Thoracic Society Jun 15, 2017</rights><rights>Copyright © 2017 by the American Thoracic Society 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-d66640c0d1e1d39dc9b8e37a735385257c2f6e506a9ab1145aa6a8a17f2d631a3</citedby><cites>FETCH-LOGICAL-c430t-d66640c0d1e1d39dc9b8e37a735385257c2f6e506a9ab1145aa6a8a17f2d631a3</cites><orcidid>0000-0001-6351-5552</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4025,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28002683$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>O'Connell, Oisin J</creatorcontrib><creatorcontrib>Almeida, Francisco A</creatorcontrib><creatorcontrib>Simoff, Michael J</creatorcontrib><creatorcontrib>Yarmus, Lonny</creatorcontrib><creatorcontrib>Lazarus, Ray</creatorcontrib><creatorcontrib>Young, Benjamin</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><creatorcontrib>Semaan, Roy</creatorcontrib><creatorcontrib>Saettele, Timothy M</creatorcontrib><creatorcontrib>Cicenia, Joseph</creatorcontrib><creatorcontrib>Bedi, Harmeet</creatorcontrib><creatorcontrib>Kliment, Corrine</creatorcontrib><creatorcontrib>Li, Liang</creatorcontrib><creatorcontrib>Sethi, Sonali</creatorcontrib><creatorcontrib>Diaz-Mendoza, Javier</creatorcontrib><creatorcontrib>Feller-Kopman, David</creatorcontrib><creatorcontrib>Song, Juhee</creatorcontrib><creatorcontrib>Gildea, Thomas</creatorcontrib><creatorcontrib>Lee, Hans</creatorcontrib><creatorcontrib>Grosu, Horiana B</creatorcontrib><creatorcontrib>Machuzak, Michael</creatorcontrib><creatorcontrib>Rodriguez-Vial, Macarena</creatorcontrib><creatorcontrib>Eapen, George A</creatorcontrib><creatorcontrib>Jimenez, Carlos A</creatorcontrib><creatorcontrib>Casal, Roberto F</creatorcontrib><creatorcontrib>Ost, David E</creatorcontrib><title>A Prediction Model to Help with the Assessment of Adenopathy in Lung Cancer: HAL</title><title>American journal of respiratory and critical care medicine</title><addtitle>Am J Respir Crit Care Med</addtitle><description>Estimating the probability of finding N2 or N3 (prN2/3) malignant nodal disease on endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) in patients with non-small cell lung cancer (NSCLC) can facilitate the selection of subsequent management strategies. To develop a clinical prediction model for estimating the prN2/3. We used the AQuIRE (American College of Chest Physicians Quality Improvement Registry, Evaluation, and Education) registry to identify patients with NSCLC with clinical radiographic stage T1-3, N0-3, M0 disease that had EBUS-TBNA for staging. The dependent variable was the presence of N2 or N3 disease (vs. N0 or N1) as assessed by EBUS-TBNA. Univariate followed by multivariable logistic regression analysis was used to develop a parsimonious clinical prediction model to estimate prN2/3. External validation was performed using data from three other hospitals. The model derivation cohort (n = 633) had a 25% prevalence of malignant N2 or N3 disease. Younger age, central location, adenocarcinoma histology, and higher positron emission tomography-computed tomography N stage were associated with a higher prN2/3. Area under the receiver operating characteristic curve was 0.85 (95% confidence interval, 0.82-0.89), model fit was acceptable (Hosmer-Lemeshow, P = 0.62; Brier score, 0.125). We externally validated the model in 722 patients. Area under the receiver operating characteristic curve was 0.88 (95% confidence interval, 0.85-0.90). Calibration using the general calibration model method resulted in acceptable goodness of fit (Hosmer-Lemeshow test, P = 0.54; Brier score, 0.132). Our prediction rule can be used to estimate prN2/3 in patients with NSCLC. The model has the potential to facilitate clinical decision making in the staging of NSCLC.</description><subject>Aged</subject><subject>Carcinoma, Non-Small-Cell Lung - pathology</subject><subject>Colleges &amp; universities</subject><subject>Confidence intervals</subject><subject>Endoscopic Ultrasound-Guided Fine Needle Aspiration</subject><subject>Female</subject><subject>Humans</subject><subject>Lung cancer</subject><subject>Lung Neoplasms - pathology</subject><subject>Lymph Nodes - pathology</subject><subject>Lymphadenopathy - pathology</subject><subject>Lymphatic Metastasis</subject><subject>Lymphatic system</subject><subject>Male</subject><subject>Medical imaging</subject><subject>Medical screening</subject><subject>Metastasis</subject><subject>Neural networks</subject><subject>Original</subject><subject>Physicians</subject><subject>Predictive Value of Tests</subject><subject>Quality</subject><subject>Retrospective Studies</subject><subject>Surgery</subject><subject>Thoracic surgery</subject><subject>Tomography</subject><subject>Ultrasonic imaging</subject><issn>1073-449X</issn><issn>1535-4970</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNpdkU9v1DAQxS1ERUvhC3BAlrhwSevxf3NAilYti7SoPYDEzfLaTjdVEi92QtVvX1dbKuA0I82bp3nzQ-gdkDMAyc-z9-MZJSCJaoAZdbV6gU5AMNFwo8jL2hPFGs7Nz2P0upRbQoBqIK_QMdWEUKnZCbpu8XWOofdznyb8LYU44DnhdRz2-K6fd3jeRdyWEksZ4zTj1OE2xCnt3by7x_2EN8t0g1du8jF_wut28wYddW4o8e1TPUU_Li--r9bN5urL11W7aTxnZG6ClJITTwJECMwEb7Y6MuUUE0wLKpSnnYyCSGfcFoAL56TTDlRHg2Tg2Cn6fPDdL9sxBl-Py26w-9yPLt_b5Hr772Tqd_Ym_baCK2mIrgYfnwxy-rXEMtuxLz4Og5tiWooFLUAaAZpW6Yf_pLdpyVONZ8HUJ_P6fFNV9KDyOZWSY_d8DBD7CMw-ArMHYPYArC69_zvG88ofQuwBt0SRFQ</recordid><startdate>20170615</startdate><enddate>20170615</enddate><creator>O'Connell, Oisin J</creator><creator>Almeida, Francisco A</creator><creator>Simoff, Michael J</creator><creator>Yarmus, Lonny</creator><creator>Lazarus, Ray</creator><creator>Young, Benjamin</creator><creator>Chen, Yu</creator><creator>Semaan, Roy</creator><creator>Saettele, Timothy M</creator><creator>Cicenia, Joseph</creator><creator>Bedi, Harmeet</creator><creator>Kliment, Corrine</creator><creator>Li, Liang</creator><creator>Sethi, Sonali</creator><creator>Diaz-Mendoza, Javier</creator><creator>Feller-Kopman, David</creator><creator>Song, Juhee</creator><creator>Gildea, Thomas</creator><creator>Lee, Hans</creator><creator>Grosu, Horiana B</creator><creator>Machuzak, Michael</creator><creator>Rodriguez-Vial, Macarena</creator><creator>Eapen, George A</creator><creator>Jimenez, Carlos A</creator><creator>Casal, Roberto F</creator><creator>Ost, David E</creator><general>American Thoracic Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AN0</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6351-5552</orcidid></search><sort><creationdate>20170615</creationdate><title>A Prediction Model to Help with the Assessment of Adenopathy in Lung Cancer: HAL</title><author>O'Connell, Oisin J ; Almeida, Francisco A ; Simoff, Michael J ; Yarmus, Lonny ; Lazarus, Ray ; Young, Benjamin ; Chen, Yu ; Semaan, Roy ; Saettele, Timothy M ; Cicenia, Joseph ; Bedi, Harmeet ; Kliment, Corrine ; Li, Liang ; Sethi, Sonali ; Diaz-Mendoza, Javier ; Feller-Kopman, David ; Song, Juhee ; Gildea, Thomas ; Lee, Hans ; Grosu, Horiana B ; Machuzak, Michael ; Rodriguez-Vial, Macarena ; Eapen, George A ; Jimenez, Carlos A ; Casal, Roberto F ; Ost, David E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-d66640c0d1e1d39dc9b8e37a735385257c2f6e506a9ab1145aa6a8a17f2d631a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aged</topic><topic>Carcinoma, Non-Small-Cell Lung - pathology</topic><topic>Colleges &amp; universities</topic><topic>Confidence intervals</topic><topic>Endoscopic Ultrasound-Guided Fine Needle Aspiration</topic><topic>Female</topic><topic>Humans</topic><topic>Lung cancer</topic><topic>Lung Neoplasms - pathology</topic><topic>Lymph Nodes - pathology</topic><topic>Lymphadenopathy - pathology</topic><topic>Lymphatic Metastasis</topic><topic>Lymphatic system</topic><topic>Male</topic><topic>Medical imaging</topic><topic>Medical screening</topic><topic>Metastasis</topic><topic>Neural networks</topic><topic>Original</topic><topic>Physicians</topic><topic>Predictive Value of Tests</topic><topic>Quality</topic><topic>Retrospective Studies</topic><topic>Surgery</topic><topic>Thoracic surgery</topic><topic>Tomography</topic><topic>Ultrasonic imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>O'Connell, Oisin J</creatorcontrib><creatorcontrib>Almeida, Francisco A</creatorcontrib><creatorcontrib>Simoff, Michael J</creatorcontrib><creatorcontrib>Yarmus, Lonny</creatorcontrib><creatorcontrib>Lazarus, Ray</creatorcontrib><creatorcontrib>Young, Benjamin</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><creatorcontrib>Semaan, Roy</creatorcontrib><creatorcontrib>Saettele, Timothy M</creatorcontrib><creatorcontrib>Cicenia, Joseph</creatorcontrib><creatorcontrib>Bedi, Harmeet</creatorcontrib><creatorcontrib>Kliment, Corrine</creatorcontrib><creatorcontrib>Li, Liang</creatorcontrib><creatorcontrib>Sethi, Sonali</creatorcontrib><creatorcontrib>Diaz-Mendoza, Javier</creatorcontrib><creatorcontrib>Feller-Kopman, David</creatorcontrib><creatorcontrib>Song, Juhee</creatorcontrib><creatorcontrib>Gildea, Thomas</creatorcontrib><creatorcontrib>Lee, Hans</creatorcontrib><creatorcontrib>Grosu, Horiana B</creatorcontrib><creatorcontrib>Machuzak, Michael</creatorcontrib><creatorcontrib>Rodriguez-Vial, Macarena</creatorcontrib><creatorcontrib>Eapen, George A</creatorcontrib><creatorcontrib>Jimenez, Carlos A</creatorcontrib><creatorcontrib>Casal, Roberto F</creatorcontrib><creatorcontrib>Ost, David E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Proquest Nursing &amp; Allied Health Source</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>British Nursing Database</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>American journal of respiratory and critical care medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>O'Connell, Oisin J</au><au>Almeida, Francisco A</au><au>Simoff, Michael J</au><au>Yarmus, Lonny</au><au>Lazarus, Ray</au><au>Young, Benjamin</au><au>Chen, Yu</au><au>Semaan, Roy</au><au>Saettele, Timothy M</au><au>Cicenia, Joseph</au><au>Bedi, Harmeet</au><au>Kliment, Corrine</au><au>Li, Liang</au><au>Sethi, Sonali</au><au>Diaz-Mendoza, Javier</au><au>Feller-Kopman, David</au><au>Song, Juhee</au><au>Gildea, Thomas</au><au>Lee, Hans</au><au>Grosu, Horiana B</au><au>Machuzak, Michael</au><au>Rodriguez-Vial, Macarena</au><au>Eapen, George A</au><au>Jimenez, Carlos A</au><au>Casal, Roberto F</au><au>Ost, David E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Prediction Model to Help with the Assessment of Adenopathy in Lung Cancer: HAL</atitle><jtitle>American journal of respiratory and critical care medicine</jtitle><addtitle>Am J Respir Crit Care Med</addtitle><date>2017-06-15</date><risdate>2017</risdate><volume>195</volume><issue>12</issue><spage>1651</spage><epage>1660</epage><pages>1651-1660</pages><issn>1073-449X</issn><eissn>1535-4970</eissn><abstract>Estimating the probability of finding N2 or N3 (prN2/3) malignant nodal disease on endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) in patients with non-small cell lung cancer (NSCLC) can facilitate the selection of subsequent management strategies. To develop a clinical prediction model for estimating the prN2/3. We used the AQuIRE (American College of Chest Physicians Quality Improvement Registry, Evaluation, and Education) registry to identify patients with NSCLC with clinical radiographic stage T1-3, N0-3, M0 disease that had EBUS-TBNA for staging. The dependent variable was the presence of N2 or N3 disease (vs. N0 or N1) as assessed by EBUS-TBNA. Univariate followed by multivariable logistic regression analysis was used to develop a parsimonious clinical prediction model to estimate prN2/3. External validation was performed using data from three other hospitals. The model derivation cohort (n = 633) had a 25% prevalence of malignant N2 or N3 disease. Younger age, central location, adenocarcinoma histology, and higher positron emission tomography-computed tomography N stage were associated with a higher prN2/3. Area under the receiver operating characteristic curve was 0.85 (95% confidence interval, 0.82-0.89), model fit was acceptable (Hosmer-Lemeshow, P = 0.62; Brier score, 0.125). We externally validated the model in 722 patients. Area under the receiver operating characteristic curve was 0.88 (95% confidence interval, 0.85-0.90). Calibration using the general calibration model method resulted in acceptable goodness of fit (Hosmer-Lemeshow test, P = 0.54; Brier score, 0.132). Our prediction rule can be used to estimate prN2/3 in patients with NSCLC. The model has the potential to facilitate clinical decision making in the staging of NSCLC.</abstract><cop>United States</cop><pub>American Thoracic Society</pub><pmid>28002683</pmid><doi>10.1164/rccm.201607-1397OC</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6351-5552</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1073-449X
ispartof American journal of respiratory and critical care medicine, 2017-06, Vol.195 (12), p.1651-1660
issn 1073-449X
1535-4970
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5476908
source MEDLINE; Journals@Ovid Complete; American Thoracic Society (ATS) Journals Online; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Aged
Carcinoma, Non-Small-Cell Lung - pathology
Colleges & universities
Confidence intervals
Endoscopic Ultrasound-Guided Fine Needle Aspiration
Female
Humans
Lung cancer
Lung Neoplasms - pathology
Lymph Nodes - pathology
Lymphadenopathy - pathology
Lymphatic Metastasis
Lymphatic system
Male
Medical imaging
Medical screening
Metastasis
Neural networks
Original
Physicians
Predictive Value of Tests
Quality
Retrospective Studies
Surgery
Thoracic surgery
Tomography
Ultrasonic imaging
title A Prediction Model to Help with the Assessment of Adenopathy in Lung Cancer: HAL
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A01%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Prediction%20Model%20to%20Help%20with%20the%20Assessment%20of%20Adenopathy%20in%20Lung%20Cancer:%20HAL&rft.jtitle=American%20journal%20of%20respiratory%20and%20critical%20care%20medicine&rft.au=O'Connell,%20Oisin%20J&rft.date=2017-06-15&rft.volume=195&rft.issue=12&rft.spage=1651&rft.epage=1660&rft.pages=1651-1660&rft.issn=1073-449X&rft.eissn=1535-4970&rft_id=info:doi/10.1164/rccm.201607-1397OC&rft_dat=%3Cproquest_pubme%3E1851695182%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1910743979&rft_id=info:pmid/28002683&rfr_iscdi=true