A Prediction Model to Help with the Assessment of Adenopathy in Lung Cancer: HAL
Estimating the probability of finding N2 or N3 (prN2/3) malignant nodal disease on endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) in patients with non-small cell lung cancer (NSCLC) can facilitate the selection of subsequent management strategies. To develop a clinical...
Gespeichert in:
Veröffentlicht in: | American journal of respiratory and critical care medicine 2017-06, Vol.195 (12), p.1651-1660 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1660 |
---|---|
container_issue | 12 |
container_start_page | 1651 |
container_title | American journal of respiratory and critical care medicine |
container_volume | 195 |
creator | O'Connell, Oisin J Almeida, Francisco A Simoff, Michael J Yarmus, Lonny Lazarus, Ray Young, Benjamin Chen, Yu Semaan, Roy Saettele, Timothy M Cicenia, Joseph Bedi, Harmeet Kliment, Corrine Li, Liang Sethi, Sonali Diaz-Mendoza, Javier Feller-Kopman, David Song, Juhee Gildea, Thomas Lee, Hans Grosu, Horiana B Machuzak, Michael Rodriguez-Vial, Macarena Eapen, George A Jimenez, Carlos A Casal, Roberto F Ost, David E |
description | Estimating the probability of finding N2 or N3 (prN2/3) malignant nodal disease on endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) in patients with non-small cell lung cancer (NSCLC) can facilitate the selection of subsequent management strategies.
To develop a clinical prediction model for estimating the prN2/3.
We used the AQuIRE (American College of Chest Physicians Quality Improvement Registry, Evaluation, and Education) registry to identify patients with NSCLC with clinical radiographic stage T1-3, N0-3, M0 disease that had EBUS-TBNA for staging. The dependent variable was the presence of N2 or N3 disease (vs. N0 or N1) as assessed by EBUS-TBNA. Univariate followed by multivariable logistic regression analysis was used to develop a parsimonious clinical prediction model to estimate prN2/3. External validation was performed using data from three other hospitals.
The model derivation cohort (n = 633) had a 25% prevalence of malignant N2 or N3 disease. Younger age, central location, adenocarcinoma histology, and higher positron emission tomography-computed tomography N stage were associated with a higher prN2/3. Area under the receiver operating characteristic curve was 0.85 (95% confidence interval, 0.82-0.89), model fit was acceptable (Hosmer-Lemeshow, P = 0.62; Brier score, 0.125). We externally validated the model in 722 patients. Area under the receiver operating characteristic curve was 0.88 (95% confidence interval, 0.85-0.90). Calibration using the general calibration model method resulted in acceptable goodness of fit (Hosmer-Lemeshow test, P = 0.54; Brier score, 0.132).
Our prediction rule can be used to estimate prN2/3 in patients with NSCLC. The model has the potential to facilitate clinical decision making in the staging of NSCLC. |
doi_str_mv | 10.1164/rccm.201607-1397OC |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5476908</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1851695182</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-d66640c0d1e1d39dc9b8e37a735385257c2f6e506a9ab1145aa6a8a17f2d631a3</originalsourceid><addsrcrecordid>eNpdkU9v1DAQxS1ERUvhC3BAlrhwSevxf3NAilYti7SoPYDEzfLaTjdVEi92QtVvX1dbKuA0I82bp3nzQ-gdkDMAyc-z9-MZJSCJaoAZdbV6gU5AMNFwo8jL2hPFGs7Nz2P0upRbQoBqIK_QMdWEUKnZCbpu8XWOofdznyb8LYU44DnhdRz2-K6fd3jeRdyWEksZ4zTj1OE2xCnt3by7x_2EN8t0g1du8jF_wut28wYddW4o8e1TPUU_Li--r9bN5urL11W7aTxnZG6ClJITTwJECMwEb7Y6MuUUE0wLKpSnnYyCSGfcFoAL56TTDlRHg2Tg2Cn6fPDdL9sxBl-Py26w-9yPLt_b5Hr772Tqd_Ym_baCK2mIrgYfnwxy-rXEMtuxLz4Og5tiWooFLUAaAZpW6Yf_pLdpyVONZ8HUJ_P6fFNV9KDyOZWSY_d8DBD7CMw-ArMHYPYArC69_zvG88ofQuwBt0SRFQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1910743979</pqid></control><display><type>article</type><title>A Prediction Model to Help with the Assessment of Adenopathy in Lung Cancer: HAL</title><source>MEDLINE</source><source>Journals@Ovid Complete</source><source>American Thoracic Society (ATS) Journals Online</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>O'Connell, Oisin J ; Almeida, Francisco A ; Simoff, Michael J ; Yarmus, Lonny ; Lazarus, Ray ; Young, Benjamin ; Chen, Yu ; Semaan, Roy ; Saettele, Timothy M ; Cicenia, Joseph ; Bedi, Harmeet ; Kliment, Corrine ; Li, Liang ; Sethi, Sonali ; Diaz-Mendoza, Javier ; Feller-Kopman, David ; Song, Juhee ; Gildea, Thomas ; Lee, Hans ; Grosu, Horiana B ; Machuzak, Michael ; Rodriguez-Vial, Macarena ; Eapen, George A ; Jimenez, Carlos A ; Casal, Roberto F ; Ost, David E</creator><creatorcontrib>O'Connell, Oisin J ; Almeida, Francisco A ; Simoff, Michael J ; Yarmus, Lonny ; Lazarus, Ray ; Young, Benjamin ; Chen, Yu ; Semaan, Roy ; Saettele, Timothy M ; Cicenia, Joseph ; Bedi, Harmeet ; Kliment, Corrine ; Li, Liang ; Sethi, Sonali ; Diaz-Mendoza, Javier ; Feller-Kopman, David ; Song, Juhee ; Gildea, Thomas ; Lee, Hans ; Grosu, Horiana B ; Machuzak, Michael ; Rodriguez-Vial, Macarena ; Eapen, George A ; Jimenez, Carlos A ; Casal, Roberto F ; Ost, David E</creatorcontrib><description>Estimating the probability of finding N2 or N3 (prN2/3) malignant nodal disease on endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) in patients with non-small cell lung cancer (NSCLC) can facilitate the selection of subsequent management strategies.
To develop a clinical prediction model for estimating the prN2/3.
We used the AQuIRE (American College of Chest Physicians Quality Improvement Registry, Evaluation, and Education) registry to identify patients with NSCLC with clinical radiographic stage T1-3, N0-3, M0 disease that had EBUS-TBNA for staging. The dependent variable was the presence of N2 or N3 disease (vs. N0 or N1) as assessed by EBUS-TBNA. Univariate followed by multivariable logistic regression analysis was used to develop a parsimonious clinical prediction model to estimate prN2/3. External validation was performed using data from three other hospitals.
The model derivation cohort (n = 633) had a 25% prevalence of malignant N2 or N3 disease. Younger age, central location, adenocarcinoma histology, and higher positron emission tomography-computed tomography N stage were associated with a higher prN2/3. Area under the receiver operating characteristic curve was 0.85 (95% confidence interval, 0.82-0.89), model fit was acceptable (Hosmer-Lemeshow, P = 0.62; Brier score, 0.125). We externally validated the model in 722 patients. Area under the receiver operating characteristic curve was 0.88 (95% confidence interval, 0.85-0.90). Calibration using the general calibration model method resulted in acceptable goodness of fit (Hosmer-Lemeshow test, P = 0.54; Brier score, 0.132).
Our prediction rule can be used to estimate prN2/3 in patients with NSCLC. The model has the potential to facilitate clinical decision making in the staging of NSCLC.</description><identifier>ISSN: 1073-449X</identifier><identifier>EISSN: 1535-4970</identifier><identifier>DOI: 10.1164/rccm.201607-1397OC</identifier><identifier>PMID: 28002683</identifier><language>eng</language><publisher>United States: American Thoracic Society</publisher><subject>Aged ; Carcinoma, Non-Small-Cell Lung - pathology ; Colleges & universities ; Confidence intervals ; Endoscopic Ultrasound-Guided Fine Needle Aspiration ; Female ; Humans ; Lung cancer ; Lung Neoplasms - pathology ; Lymph Nodes - pathology ; Lymphadenopathy - pathology ; Lymphatic Metastasis ; Lymphatic system ; Male ; Medical imaging ; Medical screening ; Metastasis ; Neural networks ; Original ; Physicians ; Predictive Value of Tests ; Quality ; Retrospective Studies ; Surgery ; Thoracic surgery ; Tomography ; Ultrasonic imaging</subject><ispartof>American journal of respiratory and critical care medicine, 2017-06, Vol.195 (12), p.1651-1660</ispartof><rights>Copyright American Thoracic Society Jun 15, 2017</rights><rights>Copyright © 2017 by the American Thoracic Society 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-d66640c0d1e1d39dc9b8e37a735385257c2f6e506a9ab1145aa6a8a17f2d631a3</citedby><cites>FETCH-LOGICAL-c430t-d66640c0d1e1d39dc9b8e37a735385257c2f6e506a9ab1145aa6a8a17f2d631a3</cites><orcidid>0000-0001-6351-5552</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4025,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28002683$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>O'Connell, Oisin J</creatorcontrib><creatorcontrib>Almeida, Francisco A</creatorcontrib><creatorcontrib>Simoff, Michael J</creatorcontrib><creatorcontrib>Yarmus, Lonny</creatorcontrib><creatorcontrib>Lazarus, Ray</creatorcontrib><creatorcontrib>Young, Benjamin</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><creatorcontrib>Semaan, Roy</creatorcontrib><creatorcontrib>Saettele, Timothy M</creatorcontrib><creatorcontrib>Cicenia, Joseph</creatorcontrib><creatorcontrib>Bedi, Harmeet</creatorcontrib><creatorcontrib>Kliment, Corrine</creatorcontrib><creatorcontrib>Li, Liang</creatorcontrib><creatorcontrib>Sethi, Sonali</creatorcontrib><creatorcontrib>Diaz-Mendoza, Javier</creatorcontrib><creatorcontrib>Feller-Kopman, David</creatorcontrib><creatorcontrib>Song, Juhee</creatorcontrib><creatorcontrib>Gildea, Thomas</creatorcontrib><creatorcontrib>Lee, Hans</creatorcontrib><creatorcontrib>Grosu, Horiana B</creatorcontrib><creatorcontrib>Machuzak, Michael</creatorcontrib><creatorcontrib>Rodriguez-Vial, Macarena</creatorcontrib><creatorcontrib>Eapen, George A</creatorcontrib><creatorcontrib>Jimenez, Carlos A</creatorcontrib><creatorcontrib>Casal, Roberto F</creatorcontrib><creatorcontrib>Ost, David E</creatorcontrib><title>A Prediction Model to Help with the Assessment of Adenopathy in Lung Cancer: HAL</title><title>American journal of respiratory and critical care medicine</title><addtitle>Am J Respir Crit Care Med</addtitle><description>Estimating the probability of finding N2 or N3 (prN2/3) malignant nodal disease on endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) in patients with non-small cell lung cancer (NSCLC) can facilitate the selection of subsequent management strategies.
To develop a clinical prediction model for estimating the prN2/3.
We used the AQuIRE (American College of Chest Physicians Quality Improvement Registry, Evaluation, and Education) registry to identify patients with NSCLC with clinical radiographic stage T1-3, N0-3, M0 disease that had EBUS-TBNA for staging. The dependent variable was the presence of N2 or N3 disease (vs. N0 or N1) as assessed by EBUS-TBNA. Univariate followed by multivariable logistic regression analysis was used to develop a parsimonious clinical prediction model to estimate prN2/3. External validation was performed using data from three other hospitals.
The model derivation cohort (n = 633) had a 25% prevalence of malignant N2 or N3 disease. Younger age, central location, adenocarcinoma histology, and higher positron emission tomography-computed tomography N stage were associated with a higher prN2/3. Area under the receiver operating characteristic curve was 0.85 (95% confidence interval, 0.82-0.89), model fit was acceptable (Hosmer-Lemeshow, P = 0.62; Brier score, 0.125). We externally validated the model in 722 patients. Area under the receiver operating characteristic curve was 0.88 (95% confidence interval, 0.85-0.90). Calibration using the general calibration model method resulted in acceptable goodness of fit (Hosmer-Lemeshow test, P = 0.54; Brier score, 0.132).
Our prediction rule can be used to estimate prN2/3 in patients with NSCLC. The model has the potential to facilitate clinical decision making in the staging of NSCLC.</description><subject>Aged</subject><subject>Carcinoma, Non-Small-Cell Lung - pathology</subject><subject>Colleges & universities</subject><subject>Confidence intervals</subject><subject>Endoscopic Ultrasound-Guided Fine Needle Aspiration</subject><subject>Female</subject><subject>Humans</subject><subject>Lung cancer</subject><subject>Lung Neoplasms - pathology</subject><subject>Lymph Nodes - pathology</subject><subject>Lymphadenopathy - pathology</subject><subject>Lymphatic Metastasis</subject><subject>Lymphatic system</subject><subject>Male</subject><subject>Medical imaging</subject><subject>Medical screening</subject><subject>Metastasis</subject><subject>Neural networks</subject><subject>Original</subject><subject>Physicians</subject><subject>Predictive Value of Tests</subject><subject>Quality</subject><subject>Retrospective Studies</subject><subject>Surgery</subject><subject>Thoracic surgery</subject><subject>Tomography</subject><subject>Ultrasonic imaging</subject><issn>1073-449X</issn><issn>1535-4970</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNpdkU9v1DAQxS1ERUvhC3BAlrhwSevxf3NAilYti7SoPYDEzfLaTjdVEi92QtVvX1dbKuA0I82bp3nzQ-gdkDMAyc-z9-MZJSCJaoAZdbV6gU5AMNFwo8jL2hPFGs7Nz2P0upRbQoBqIK_QMdWEUKnZCbpu8XWOofdznyb8LYU44DnhdRz2-K6fd3jeRdyWEksZ4zTj1OE2xCnt3by7x_2EN8t0g1du8jF_wut28wYddW4o8e1TPUU_Li--r9bN5urL11W7aTxnZG6ClJITTwJECMwEb7Y6MuUUE0wLKpSnnYyCSGfcFoAL56TTDlRHg2Tg2Cn6fPDdL9sxBl-Py26w-9yPLt_b5Hr772Tqd_Ym_baCK2mIrgYfnwxy-rXEMtuxLz4Og5tiWooFLUAaAZpW6Yf_pLdpyVONZ8HUJ_P6fFNV9KDyOZWSY_d8DBD7CMw-ArMHYPYArC69_zvG88ofQuwBt0SRFQ</recordid><startdate>20170615</startdate><enddate>20170615</enddate><creator>O'Connell, Oisin J</creator><creator>Almeida, Francisco A</creator><creator>Simoff, Michael J</creator><creator>Yarmus, Lonny</creator><creator>Lazarus, Ray</creator><creator>Young, Benjamin</creator><creator>Chen, Yu</creator><creator>Semaan, Roy</creator><creator>Saettele, Timothy M</creator><creator>Cicenia, Joseph</creator><creator>Bedi, Harmeet</creator><creator>Kliment, Corrine</creator><creator>Li, Liang</creator><creator>Sethi, Sonali</creator><creator>Diaz-Mendoza, Javier</creator><creator>Feller-Kopman, David</creator><creator>Song, Juhee</creator><creator>Gildea, Thomas</creator><creator>Lee, Hans</creator><creator>Grosu, Horiana B</creator><creator>Machuzak, Michael</creator><creator>Rodriguez-Vial, Macarena</creator><creator>Eapen, George A</creator><creator>Jimenez, Carlos A</creator><creator>Casal, Roberto F</creator><creator>Ost, David E</creator><general>American Thoracic Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AN0</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6351-5552</orcidid></search><sort><creationdate>20170615</creationdate><title>A Prediction Model to Help with the Assessment of Adenopathy in Lung Cancer: HAL</title><author>O'Connell, Oisin J ; Almeida, Francisco A ; Simoff, Michael J ; Yarmus, Lonny ; Lazarus, Ray ; Young, Benjamin ; Chen, Yu ; Semaan, Roy ; Saettele, Timothy M ; Cicenia, Joseph ; Bedi, Harmeet ; Kliment, Corrine ; Li, Liang ; Sethi, Sonali ; Diaz-Mendoza, Javier ; Feller-Kopman, David ; Song, Juhee ; Gildea, Thomas ; Lee, Hans ; Grosu, Horiana B ; Machuzak, Michael ; Rodriguez-Vial, Macarena ; Eapen, George A ; Jimenez, Carlos A ; Casal, Roberto F ; Ost, David E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-d66640c0d1e1d39dc9b8e37a735385257c2f6e506a9ab1145aa6a8a17f2d631a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aged</topic><topic>Carcinoma, Non-Small-Cell Lung - pathology</topic><topic>Colleges & universities</topic><topic>Confidence intervals</topic><topic>Endoscopic Ultrasound-Guided Fine Needle Aspiration</topic><topic>Female</topic><topic>Humans</topic><topic>Lung cancer</topic><topic>Lung Neoplasms - pathology</topic><topic>Lymph Nodes - pathology</topic><topic>Lymphadenopathy - pathology</topic><topic>Lymphatic Metastasis</topic><topic>Lymphatic system</topic><topic>Male</topic><topic>Medical imaging</topic><topic>Medical screening</topic><topic>Metastasis</topic><topic>Neural networks</topic><topic>Original</topic><topic>Physicians</topic><topic>Predictive Value of Tests</topic><topic>Quality</topic><topic>Retrospective Studies</topic><topic>Surgery</topic><topic>Thoracic surgery</topic><topic>Tomography</topic><topic>Ultrasonic imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>O'Connell, Oisin J</creatorcontrib><creatorcontrib>Almeida, Francisco A</creatorcontrib><creatorcontrib>Simoff, Michael J</creatorcontrib><creatorcontrib>Yarmus, Lonny</creatorcontrib><creatorcontrib>Lazarus, Ray</creatorcontrib><creatorcontrib>Young, Benjamin</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><creatorcontrib>Semaan, Roy</creatorcontrib><creatorcontrib>Saettele, Timothy M</creatorcontrib><creatorcontrib>Cicenia, Joseph</creatorcontrib><creatorcontrib>Bedi, Harmeet</creatorcontrib><creatorcontrib>Kliment, Corrine</creatorcontrib><creatorcontrib>Li, Liang</creatorcontrib><creatorcontrib>Sethi, Sonali</creatorcontrib><creatorcontrib>Diaz-Mendoza, Javier</creatorcontrib><creatorcontrib>Feller-Kopman, David</creatorcontrib><creatorcontrib>Song, Juhee</creatorcontrib><creatorcontrib>Gildea, Thomas</creatorcontrib><creatorcontrib>Lee, Hans</creatorcontrib><creatorcontrib>Grosu, Horiana B</creatorcontrib><creatorcontrib>Machuzak, Michael</creatorcontrib><creatorcontrib>Rodriguez-Vial, Macarena</creatorcontrib><creatorcontrib>Eapen, George A</creatorcontrib><creatorcontrib>Jimenez, Carlos A</creatorcontrib><creatorcontrib>Casal, Roberto F</creatorcontrib><creatorcontrib>Ost, David E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>British Nursing Database</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>American journal of respiratory and critical care medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>O'Connell, Oisin J</au><au>Almeida, Francisco A</au><au>Simoff, Michael J</au><au>Yarmus, Lonny</au><au>Lazarus, Ray</au><au>Young, Benjamin</au><au>Chen, Yu</au><au>Semaan, Roy</au><au>Saettele, Timothy M</au><au>Cicenia, Joseph</au><au>Bedi, Harmeet</au><au>Kliment, Corrine</au><au>Li, Liang</au><au>Sethi, Sonali</au><au>Diaz-Mendoza, Javier</au><au>Feller-Kopman, David</au><au>Song, Juhee</au><au>Gildea, Thomas</au><au>Lee, Hans</au><au>Grosu, Horiana B</au><au>Machuzak, Michael</au><au>Rodriguez-Vial, Macarena</au><au>Eapen, George A</au><au>Jimenez, Carlos A</au><au>Casal, Roberto F</au><au>Ost, David E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Prediction Model to Help with the Assessment of Adenopathy in Lung Cancer: HAL</atitle><jtitle>American journal of respiratory and critical care medicine</jtitle><addtitle>Am J Respir Crit Care Med</addtitle><date>2017-06-15</date><risdate>2017</risdate><volume>195</volume><issue>12</issue><spage>1651</spage><epage>1660</epage><pages>1651-1660</pages><issn>1073-449X</issn><eissn>1535-4970</eissn><abstract>Estimating the probability of finding N2 or N3 (prN2/3) malignant nodal disease on endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) in patients with non-small cell lung cancer (NSCLC) can facilitate the selection of subsequent management strategies.
To develop a clinical prediction model for estimating the prN2/3.
We used the AQuIRE (American College of Chest Physicians Quality Improvement Registry, Evaluation, and Education) registry to identify patients with NSCLC with clinical radiographic stage T1-3, N0-3, M0 disease that had EBUS-TBNA for staging. The dependent variable was the presence of N2 or N3 disease (vs. N0 or N1) as assessed by EBUS-TBNA. Univariate followed by multivariable logistic regression analysis was used to develop a parsimonious clinical prediction model to estimate prN2/3. External validation was performed using data from three other hospitals.
The model derivation cohort (n = 633) had a 25% prevalence of malignant N2 or N3 disease. Younger age, central location, adenocarcinoma histology, and higher positron emission tomography-computed tomography N stage were associated with a higher prN2/3. Area under the receiver operating characteristic curve was 0.85 (95% confidence interval, 0.82-0.89), model fit was acceptable (Hosmer-Lemeshow, P = 0.62; Brier score, 0.125). We externally validated the model in 722 patients. Area under the receiver operating characteristic curve was 0.88 (95% confidence interval, 0.85-0.90). Calibration using the general calibration model method resulted in acceptable goodness of fit (Hosmer-Lemeshow test, P = 0.54; Brier score, 0.132).
Our prediction rule can be used to estimate prN2/3 in patients with NSCLC. The model has the potential to facilitate clinical decision making in the staging of NSCLC.</abstract><cop>United States</cop><pub>American Thoracic Society</pub><pmid>28002683</pmid><doi>10.1164/rccm.201607-1397OC</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6351-5552</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-449X |
ispartof | American journal of respiratory and critical care medicine, 2017-06, Vol.195 (12), p.1651-1660 |
issn | 1073-449X 1535-4970 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5476908 |
source | MEDLINE; Journals@Ovid Complete; American Thoracic Society (ATS) Journals Online; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Aged Carcinoma, Non-Small-Cell Lung - pathology Colleges & universities Confidence intervals Endoscopic Ultrasound-Guided Fine Needle Aspiration Female Humans Lung cancer Lung Neoplasms - pathology Lymph Nodes - pathology Lymphadenopathy - pathology Lymphatic Metastasis Lymphatic system Male Medical imaging Medical screening Metastasis Neural networks Original Physicians Predictive Value of Tests Quality Retrospective Studies Surgery Thoracic surgery Tomography Ultrasonic imaging |
title | A Prediction Model to Help with the Assessment of Adenopathy in Lung Cancer: HAL |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A01%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Prediction%20Model%20to%20Help%20with%20the%20Assessment%20of%20Adenopathy%20in%20Lung%20Cancer:%20HAL&rft.jtitle=American%20journal%20of%20respiratory%20and%20critical%20care%20medicine&rft.au=O'Connell,%20Oisin%20J&rft.date=2017-06-15&rft.volume=195&rft.issue=12&rft.spage=1651&rft.epage=1660&rft.pages=1651-1660&rft.issn=1073-449X&rft.eissn=1535-4970&rft_id=info:doi/10.1164/rccm.201607-1397OC&rft_dat=%3Cproquest_pubme%3E1851695182%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1910743979&rft_id=info:pmid/28002683&rfr_iscdi=true |