Histone deacetylase inhibitors interrupt HSP90•RASGRP1 and HSP90•CRAF interactions to upregulate BIM and circumvent drug resistance in lymphoma cells

Histone deacetylase (HDAC) inhibitors, which are approved for the treatment of cutaneous T-cell lymphoma and multiple myeloma, are undergoing evaluation in other lymphoid neoplasms. How they kill susceptible cells is incompletely understood. Here, we show that trichostatin A, romidepsin and panobino...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Leukemia 2017-07, Vol.31 (7), p.1593-1602
Hauptverfasser: Ding, H, Peterson, K L, Correia, C, Koh, B, Schneider, P A, Nowakowski, G S, Kaufmann, S H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1602
container_issue 7
container_start_page 1593
container_title Leukemia
container_volume 31
creator Ding, H
Peterson, K L
Correia, C
Koh, B
Schneider, P A
Nowakowski, G S
Kaufmann, S H
description Histone deacetylase (HDAC) inhibitors, which are approved for the treatment of cutaneous T-cell lymphoma and multiple myeloma, are undergoing evaluation in other lymphoid neoplasms. How they kill susceptible cells is incompletely understood. Here, we show that trichostatin A, romidepsin and panobinostat induce apoptosis across a panel of malignant B cell lines, including lines that are intrinsically resistant to bortezomib, etoposide, cytarabine and BH3 mimetics. Further analysis traces the pro-apoptotic effects of HDAC inhibitors to increased acetylation of the chaperone heat shock protein 90 (HSP90), causing release and degradation of the HSP90 client proteins RASGRP1 and CRAF, which in turn leads to downregulation of mitogen-activated protein kinase pathway signaling and upregulation of the pro-apoptotic BCL2 family member BIM in vitro and in vivo . Importantly, these pro-apoptotic effects are mimicked by RASGRP1 small interfering RNA (siRNA) or HSP90 inhibition and reversed by overexpression of constitutively active MEK1 or siRNA-mediated downregulation of BIM. Collectively, these observations not only identify a new HSP90 client protein, RASGRP1, but also delineate a complete signaling pathway from HSP90 acetylation through RASGRP1 and CRAF degradation to BIM upregulation that contributes to selective cytotoxicity of HDAC inhibitors in lymphoid malignancies.
doi_str_mv 10.1038/leu.2016.357
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5474223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1844353941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-8a2d3687a81c749b1ea0cc50e5a757be2f2891d73bbe87f501dd90f1bffff2ca3</originalsourceid><addsrcrecordid>eNp9ks1u1DAUhSMEokNhxxpZYsOCDP6JY2eDNIxop1IR1RTWluPczKRK4sE_lWbHa7Dl0XgSHKaMCkJ4Y8v30zn3SCfLnhM8J5jJNz3EOcWknDMuHmQzUogy55yTh9kMSynysqLFSfbE-xuMp2H5ODuhQla4YniWfVt1PtgRUAPaQNj32gPqxm1Xd8E6n54BnIu7gFbXVxX-8fX7enF9vr4iSI_N8W-5XpwdUG1CZ0ePgkVx52ATex0Avbv48Is3nTNxuIUxoMbFDXLgk70ezeSJ-v2w29pBIwN9759mj1rde3h2d59mn8_ef1qu8suP5xfLxWVuCiFDLjVtWCmFlsSIoqoJaGwMx8C14KIG2lJZkUawugYpWo5J01S4JXWbDjWanWZvD7q7WA_QmLSc073auW7Qbq-s7tSfk7Hbqo29VbwQBaUsCby6E3D2SwQf1ND5KYIewUaviCwKxllVkIS-_Au9sdGNKZ6iJeGcsRThfxSpCJeY0FIm6vWBMs5676A9rkywmpqhUjPU1AyVmpHwF_djHuHfVUhAfgB8Go0bcPdc_yX4E-Ccxz8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1915801268</pqid></control><display><type>article</type><title>Histone deacetylase inhibitors interrupt HSP90•RASGRP1 and HSP90•CRAF interactions to upregulate BIM and circumvent drug resistance in lymphoma cells</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Ding, H ; Peterson, K L ; Correia, C ; Koh, B ; Schneider, P A ; Nowakowski, G S ; Kaufmann, S H</creator><creatorcontrib>Ding, H ; Peterson, K L ; Correia, C ; Koh, B ; Schneider, P A ; Nowakowski, G S ; Kaufmann, S H</creatorcontrib><description>Histone deacetylase (HDAC) inhibitors, which are approved for the treatment of cutaneous T-cell lymphoma and multiple myeloma, are undergoing evaluation in other lymphoid neoplasms. How they kill susceptible cells is incompletely understood. Here, we show that trichostatin A, romidepsin and panobinostat induce apoptosis across a panel of malignant B cell lines, including lines that are intrinsically resistant to bortezomib, etoposide, cytarabine and BH3 mimetics. Further analysis traces the pro-apoptotic effects of HDAC inhibitors to increased acetylation of the chaperone heat shock protein 90 (HSP90), causing release and degradation of the HSP90 client proteins RASGRP1 and CRAF, which in turn leads to downregulation of mitogen-activated protein kinase pathway signaling and upregulation of the pro-apoptotic BCL2 family member BIM in vitro and in vivo . Importantly, these pro-apoptotic effects are mimicked by RASGRP1 small interfering RNA (siRNA) or HSP90 inhibition and reversed by overexpression of constitutively active MEK1 or siRNA-mediated downregulation of BIM. Collectively, these observations not only identify a new HSP90 client protein, RASGRP1, but also delineate a complete signaling pathway from HSP90 acetylation through RASGRP1 and CRAF degradation to BIM upregulation that contributes to selective cytotoxicity of HDAC inhibitors in lymphoid malignancies.</description><identifier>ISSN: 0887-6924</identifier><identifier>EISSN: 1476-5551</identifier><identifier>DOI: 10.1038/leu.2016.357</identifier><identifier>PMID: 27890930</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/337/458/1275 ; 631/80/86 ; 692/308/153 ; 692/308/2778 ; 692/699/67/1059/2326 ; 692/699/67/1990/291/1621/1916 ; 96 ; 96/2 ; 96/95 ; Acetylation ; Animals ; Apoptosis ; Bcl-2-Like Protein 11 - genetics ; BIM protein ; Biocompatibility ; Biotechnology ; Bortezomib ; Cancer Research ; Cells, Cultured ; Chromatin ; Critical Care Medicine ; Cytarabine ; Cytotoxicity ; Degradation ; DNA-Binding Proteins - physiology ; Drug resistance ; Drug Resistance, Neoplasm ; Etoposide ; Genes, bcl-2 ; Guanine Nucleotide Exchange Factors - physiology ; Heat shock proteins ; Hematology ; Histone deacetylase ; Histone Deacetylase Inhibitors - pharmacology ; Histones ; HSP90 Heat-Shock Proteins - physiology ; Hsp90 protein ; Humans ; In vitro methods and tests ; Inhibitors ; Intensive ; Internal Medicine ; Kinases ; Lymphocytes B ; Lymphocytes T ; Lymphoma ; Lymphoma, B-Cell - drug therapy ; Lymphoma, B-Cell - pathology ; MAP kinase ; Medicine ; Medicine &amp; Public Health ; Mice ; Multiple myeloma ; Neoplasms ; Oncology ; original-article ; Protein kinase ; Proteins ; Proto-Oncogene Proteins c-raf - physiology ; Ribonucleic acid ; RNA ; Signal transduction ; Signaling ; siRNA ; T-cell lymphoma ; Toxicity ; Trichostatin A ; Up-Regulation</subject><ispartof>Leukemia, 2017-07, Vol.31 (7), p.1593-1602</ispartof><rights>Macmillan Publishers Limited, part of Springer Nature. 2017</rights><rights>Copyright Nature Publishing Group Jul 2017</rights><rights>Macmillan Publishers Limited, part of Springer Nature. 2017.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-8a2d3687a81c749b1ea0cc50e5a757be2f2891d73bbe87f501dd90f1bffff2ca3</citedby><cites>FETCH-LOGICAL-c478t-8a2d3687a81c749b1ea0cc50e5a757be2f2891d73bbe87f501dd90f1bffff2ca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/leu.2016.357$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/leu.2016.357$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27890930$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ding, H</creatorcontrib><creatorcontrib>Peterson, K L</creatorcontrib><creatorcontrib>Correia, C</creatorcontrib><creatorcontrib>Koh, B</creatorcontrib><creatorcontrib>Schneider, P A</creatorcontrib><creatorcontrib>Nowakowski, G S</creatorcontrib><creatorcontrib>Kaufmann, S H</creatorcontrib><title>Histone deacetylase inhibitors interrupt HSP90•RASGRP1 and HSP90•CRAF interactions to upregulate BIM and circumvent drug resistance in lymphoma cells</title><title>Leukemia</title><addtitle>Leukemia</addtitle><addtitle>Leukemia</addtitle><description>Histone deacetylase (HDAC) inhibitors, which are approved for the treatment of cutaneous T-cell lymphoma and multiple myeloma, are undergoing evaluation in other lymphoid neoplasms. How they kill susceptible cells is incompletely understood. Here, we show that trichostatin A, romidepsin and panobinostat induce apoptosis across a panel of malignant B cell lines, including lines that are intrinsically resistant to bortezomib, etoposide, cytarabine and BH3 mimetics. Further analysis traces the pro-apoptotic effects of HDAC inhibitors to increased acetylation of the chaperone heat shock protein 90 (HSP90), causing release and degradation of the HSP90 client proteins RASGRP1 and CRAF, which in turn leads to downregulation of mitogen-activated protein kinase pathway signaling and upregulation of the pro-apoptotic BCL2 family member BIM in vitro and in vivo . Importantly, these pro-apoptotic effects are mimicked by RASGRP1 small interfering RNA (siRNA) or HSP90 inhibition and reversed by overexpression of constitutively active MEK1 or siRNA-mediated downregulation of BIM. Collectively, these observations not only identify a new HSP90 client protein, RASGRP1, but also delineate a complete signaling pathway from HSP90 acetylation through RASGRP1 and CRAF degradation to BIM upregulation that contributes to selective cytotoxicity of HDAC inhibitors in lymphoid malignancies.</description><subject>631/337/458/1275</subject><subject>631/80/86</subject><subject>692/308/153</subject><subject>692/308/2778</subject><subject>692/699/67/1059/2326</subject><subject>692/699/67/1990/291/1621/1916</subject><subject>96</subject><subject>96/2</subject><subject>96/95</subject><subject>Acetylation</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Bcl-2-Like Protein 11 - genetics</subject><subject>BIM protein</subject><subject>Biocompatibility</subject><subject>Biotechnology</subject><subject>Bortezomib</subject><subject>Cancer Research</subject><subject>Cells, Cultured</subject><subject>Chromatin</subject><subject>Critical Care Medicine</subject><subject>Cytarabine</subject><subject>Cytotoxicity</subject><subject>Degradation</subject><subject>DNA-Binding Proteins - physiology</subject><subject>Drug resistance</subject><subject>Drug Resistance, Neoplasm</subject><subject>Etoposide</subject><subject>Genes, bcl-2</subject><subject>Guanine Nucleotide Exchange Factors - physiology</subject><subject>Heat shock proteins</subject><subject>Hematology</subject><subject>Histone deacetylase</subject><subject>Histone Deacetylase Inhibitors - pharmacology</subject><subject>Histones</subject><subject>HSP90 Heat-Shock Proteins - physiology</subject><subject>Hsp90 protein</subject><subject>Humans</subject><subject>In vitro methods and tests</subject><subject>Inhibitors</subject><subject>Intensive</subject><subject>Internal Medicine</subject><subject>Kinases</subject><subject>Lymphocytes B</subject><subject>Lymphocytes T</subject><subject>Lymphoma</subject><subject>Lymphoma, B-Cell - drug therapy</subject><subject>Lymphoma, B-Cell - pathology</subject><subject>MAP kinase</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Mice</subject><subject>Multiple myeloma</subject><subject>Neoplasms</subject><subject>Oncology</subject><subject>original-article</subject><subject>Protein kinase</subject><subject>Proteins</subject><subject>Proto-Oncogene Proteins c-raf - physiology</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Signal transduction</subject><subject>Signaling</subject><subject>siRNA</subject><subject>T-cell lymphoma</subject><subject>Toxicity</subject><subject>Trichostatin A</subject><subject>Up-Regulation</subject><issn>0887-6924</issn><issn>1476-5551</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9ks1u1DAUhSMEokNhxxpZYsOCDP6JY2eDNIxop1IR1RTWluPczKRK4sE_lWbHa7Dl0XgSHKaMCkJ4Y8v30zn3SCfLnhM8J5jJNz3EOcWknDMuHmQzUogy55yTh9kMSynysqLFSfbE-xuMp2H5ODuhQla4YniWfVt1PtgRUAPaQNj32gPqxm1Xd8E6n54BnIu7gFbXVxX-8fX7enF9vr4iSI_N8W-5XpwdUG1CZ0ePgkVx52ATex0Avbv48Is3nTNxuIUxoMbFDXLgk70ezeSJ-v2w29pBIwN9759mj1rde3h2d59mn8_ef1qu8suP5xfLxWVuCiFDLjVtWCmFlsSIoqoJaGwMx8C14KIG2lJZkUawugYpWo5J01S4JXWbDjWanWZvD7q7WA_QmLSc073auW7Qbq-s7tSfk7Hbqo29VbwQBaUsCby6E3D2SwQf1ND5KYIewUaviCwKxllVkIS-_Au9sdGNKZ6iJeGcsRThfxSpCJeY0FIm6vWBMs5676A9rkywmpqhUjPU1AyVmpHwF_djHuHfVUhAfgB8Go0bcPdc_yX4E-Ccxz8</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Ding, H</creator><creator>Peterson, K L</creator><creator>Correia, C</creator><creator>Koh, B</creator><creator>Schneider, P A</creator><creator>Nowakowski, G S</creator><creator>Kaufmann, S H</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7RV</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170701</creationdate><title>Histone deacetylase inhibitors interrupt HSP90•RASGRP1 and HSP90•CRAF interactions to upregulate BIM and circumvent drug resistance in lymphoma cells</title><author>Ding, H ; Peterson, K L ; Correia, C ; Koh, B ; Schneider, P A ; Nowakowski, G S ; Kaufmann, S H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-8a2d3687a81c749b1ea0cc50e5a757be2f2891d73bbe87f501dd90f1bffff2ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>631/337/458/1275</topic><topic>631/80/86</topic><topic>692/308/153</topic><topic>692/308/2778</topic><topic>692/699/67/1059/2326</topic><topic>692/699/67/1990/291/1621/1916</topic><topic>96</topic><topic>96/2</topic><topic>96/95</topic><topic>Acetylation</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Bcl-2-Like Protein 11 - genetics</topic><topic>BIM protein</topic><topic>Biocompatibility</topic><topic>Biotechnology</topic><topic>Bortezomib</topic><topic>Cancer Research</topic><topic>Cells, Cultured</topic><topic>Chromatin</topic><topic>Critical Care Medicine</topic><topic>Cytarabine</topic><topic>Cytotoxicity</topic><topic>Degradation</topic><topic>DNA-Binding Proteins - physiology</topic><topic>Drug resistance</topic><topic>Drug Resistance, Neoplasm</topic><topic>Etoposide</topic><topic>Genes, bcl-2</topic><topic>Guanine Nucleotide Exchange Factors - physiology</topic><topic>Heat shock proteins</topic><topic>Hematology</topic><topic>Histone deacetylase</topic><topic>Histone Deacetylase Inhibitors - pharmacology</topic><topic>Histones</topic><topic>HSP90 Heat-Shock Proteins - physiology</topic><topic>Hsp90 protein</topic><topic>Humans</topic><topic>In vitro methods and tests</topic><topic>Inhibitors</topic><topic>Intensive</topic><topic>Internal Medicine</topic><topic>Kinases</topic><topic>Lymphocytes B</topic><topic>Lymphocytes T</topic><topic>Lymphoma</topic><topic>Lymphoma, B-Cell - drug therapy</topic><topic>Lymphoma, B-Cell - pathology</topic><topic>MAP kinase</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Mice</topic><topic>Multiple myeloma</topic><topic>Neoplasms</topic><topic>Oncology</topic><topic>original-article</topic><topic>Protein kinase</topic><topic>Proteins</topic><topic>Proto-Oncogene Proteins c-raf - physiology</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Signal transduction</topic><topic>Signaling</topic><topic>siRNA</topic><topic>T-cell lymphoma</topic><topic>Toxicity</topic><topic>Trichostatin A</topic><topic>Up-Regulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, H</creatorcontrib><creatorcontrib>Peterson, K L</creatorcontrib><creatorcontrib>Correia, C</creatorcontrib><creatorcontrib>Koh, B</creatorcontrib><creatorcontrib>Schneider, P A</creatorcontrib><creatorcontrib>Nowakowski, G S</creatorcontrib><creatorcontrib>Kaufmann, S H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Leukemia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, H</au><au>Peterson, K L</au><au>Correia, C</au><au>Koh, B</au><au>Schneider, P A</au><au>Nowakowski, G S</au><au>Kaufmann, S H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Histone deacetylase inhibitors interrupt HSP90•RASGRP1 and HSP90•CRAF interactions to upregulate BIM and circumvent drug resistance in lymphoma cells</atitle><jtitle>Leukemia</jtitle><stitle>Leukemia</stitle><addtitle>Leukemia</addtitle><date>2017-07-01</date><risdate>2017</risdate><volume>31</volume><issue>7</issue><spage>1593</spage><epage>1602</epage><pages>1593-1602</pages><issn>0887-6924</issn><eissn>1476-5551</eissn><abstract>Histone deacetylase (HDAC) inhibitors, which are approved for the treatment of cutaneous T-cell lymphoma and multiple myeloma, are undergoing evaluation in other lymphoid neoplasms. How they kill susceptible cells is incompletely understood. Here, we show that trichostatin A, romidepsin and panobinostat induce apoptosis across a panel of malignant B cell lines, including lines that are intrinsically resistant to bortezomib, etoposide, cytarabine and BH3 mimetics. Further analysis traces the pro-apoptotic effects of HDAC inhibitors to increased acetylation of the chaperone heat shock protein 90 (HSP90), causing release and degradation of the HSP90 client proteins RASGRP1 and CRAF, which in turn leads to downregulation of mitogen-activated protein kinase pathway signaling and upregulation of the pro-apoptotic BCL2 family member BIM in vitro and in vivo . Importantly, these pro-apoptotic effects are mimicked by RASGRP1 small interfering RNA (siRNA) or HSP90 inhibition and reversed by overexpression of constitutively active MEK1 or siRNA-mediated downregulation of BIM. Collectively, these observations not only identify a new HSP90 client protein, RASGRP1, but also delineate a complete signaling pathway from HSP90 acetylation through RASGRP1 and CRAF degradation to BIM upregulation that contributes to selective cytotoxicity of HDAC inhibitors in lymphoid malignancies.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27890930</pmid><doi>10.1038/leu.2016.357</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0887-6924
ispartof Leukemia, 2017-07, Vol.31 (7), p.1593-1602
issn 0887-6924
1476-5551
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5474223
source MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online
subjects 631/337/458/1275
631/80/86
692/308/153
692/308/2778
692/699/67/1059/2326
692/699/67/1990/291/1621/1916
96
96/2
96/95
Acetylation
Animals
Apoptosis
Bcl-2-Like Protein 11 - genetics
BIM protein
Biocompatibility
Biotechnology
Bortezomib
Cancer Research
Cells, Cultured
Chromatin
Critical Care Medicine
Cytarabine
Cytotoxicity
Degradation
DNA-Binding Proteins - physiology
Drug resistance
Drug Resistance, Neoplasm
Etoposide
Genes, bcl-2
Guanine Nucleotide Exchange Factors - physiology
Heat shock proteins
Hematology
Histone deacetylase
Histone Deacetylase Inhibitors - pharmacology
Histones
HSP90 Heat-Shock Proteins - physiology
Hsp90 protein
Humans
In vitro methods and tests
Inhibitors
Intensive
Internal Medicine
Kinases
Lymphocytes B
Lymphocytes T
Lymphoma
Lymphoma, B-Cell - drug therapy
Lymphoma, B-Cell - pathology
MAP kinase
Medicine
Medicine & Public Health
Mice
Multiple myeloma
Neoplasms
Oncology
original-article
Protein kinase
Proteins
Proto-Oncogene Proteins c-raf - physiology
Ribonucleic acid
RNA
Signal transduction
Signaling
siRNA
T-cell lymphoma
Toxicity
Trichostatin A
Up-Regulation
title Histone deacetylase inhibitors interrupt HSP90•RASGRP1 and HSP90•CRAF interactions to upregulate BIM and circumvent drug resistance in lymphoma cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T21%3A26%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Histone%20deacetylase%20inhibitors%20interrupt%20HSP90%E2%80%A2RASGRP1%20and%20HSP90%E2%80%A2CRAF%20interactions%20to%20upregulate%20BIM%20and%20circumvent%20drug%20resistance%20in%20lymphoma%20cells&rft.jtitle=Leukemia&rft.au=Ding,%20H&rft.date=2017-07-01&rft.volume=31&rft.issue=7&rft.spage=1593&rft.epage=1602&rft.pages=1593-1602&rft.issn=0887-6924&rft.eissn=1476-5551&rft_id=info:doi/10.1038/leu.2016.357&rft_dat=%3Cproquest_pubme%3E1844353941%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1915801268&rft_id=info:pmid/27890930&rfr_iscdi=true