Histone deacetylase inhibitors interrupt HSP90•RASGRP1 and HSP90•CRAF interactions to upregulate BIM and circumvent drug resistance in lymphoma cells
Histone deacetylase (HDAC) inhibitors, which are approved for the treatment of cutaneous T-cell lymphoma and multiple myeloma, are undergoing evaluation in other lymphoid neoplasms. How they kill susceptible cells is incompletely understood. Here, we show that trichostatin A, romidepsin and panobino...
Gespeichert in:
Veröffentlicht in: | Leukemia 2017-07, Vol.31 (7), p.1593-1602 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1602 |
---|---|
container_issue | 7 |
container_start_page | 1593 |
container_title | Leukemia |
container_volume | 31 |
creator | Ding, H Peterson, K L Correia, C Koh, B Schneider, P A Nowakowski, G S Kaufmann, S H |
description | Histone deacetylase (HDAC) inhibitors, which are approved for the treatment of cutaneous T-cell lymphoma and multiple myeloma, are undergoing evaluation in other lymphoid neoplasms. How they kill susceptible cells is incompletely understood. Here, we show that trichostatin A, romidepsin and panobinostat induce apoptosis across a panel of malignant B cell lines, including lines that are intrinsically resistant to bortezomib, etoposide, cytarabine and BH3 mimetics. Further analysis traces the pro-apoptotic effects of HDAC inhibitors to increased acetylation of the chaperone heat shock protein 90 (HSP90), causing release and degradation of the HSP90 client proteins RASGRP1 and CRAF, which in turn leads to downregulation of mitogen-activated protein kinase pathway signaling and upregulation of the pro-apoptotic BCL2 family member BIM
in vitro
and
in vivo
. Importantly, these pro-apoptotic effects are mimicked by RASGRP1 small interfering RNA (siRNA) or HSP90 inhibition and reversed by overexpression of constitutively active MEK1 or siRNA-mediated downregulation of BIM. Collectively, these observations not only identify a new HSP90 client protein, RASGRP1, but also delineate a complete signaling pathway from HSP90 acetylation through RASGRP1 and CRAF degradation to BIM upregulation that contributes to selective cytotoxicity of HDAC inhibitors in lymphoid malignancies. |
doi_str_mv | 10.1038/leu.2016.357 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5474223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1844353941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-8a2d3687a81c749b1ea0cc50e5a757be2f2891d73bbe87f501dd90f1bffff2ca3</originalsourceid><addsrcrecordid>eNp9ks1u1DAUhSMEokNhxxpZYsOCDP6JY2eDNIxop1IR1RTWluPczKRK4sE_lWbHa7Dl0XgSHKaMCkJ4Y8v30zn3SCfLnhM8J5jJNz3EOcWknDMuHmQzUogy55yTh9kMSynysqLFSfbE-xuMp2H5ODuhQla4YniWfVt1PtgRUAPaQNj32gPqxm1Xd8E6n54BnIu7gFbXVxX-8fX7enF9vr4iSI_N8W-5XpwdUG1CZ0ePgkVx52ATex0Avbv48Is3nTNxuIUxoMbFDXLgk70ezeSJ-v2w29pBIwN9759mj1rde3h2d59mn8_ef1qu8suP5xfLxWVuCiFDLjVtWCmFlsSIoqoJaGwMx8C14KIG2lJZkUawugYpWo5J01S4JXWbDjWanWZvD7q7WA_QmLSc073auW7Qbq-s7tSfk7Hbqo29VbwQBaUsCby6E3D2SwQf1ND5KYIewUaviCwKxllVkIS-_Au9sdGNKZ6iJeGcsRThfxSpCJeY0FIm6vWBMs5676A9rkywmpqhUjPU1AyVmpHwF_djHuHfVUhAfgB8Go0bcPdc_yX4E-Ccxz8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1915801268</pqid></control><display><type>article</type><title>Histone deacetylase inhibitors interrupt HSP90•RASGRP1 and HSP90•CRAF interactions to upregulate BIM and circumvent drug resistance in lymphoma cells</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Ding, H ; Peterson, K L ; Correia, C ; Koh, B ; Schneider, P A ; Nowakowski, G S ; Kaufmann, S H</creator><creatorcontrib>Ding, H ; Peterson, K L ; Correia, C ; Koh, B ; Schneider, P A ; Nowakowski, G S ; Kaufmann, S H</creatorcontrib><description>Histone deacetylase (HDAC) inhibitors, which are approved for the treatment of cutaneous T-cell lymphoma and multiple myeloma, are undergoing evaluation in other lymphoid neoplasms. How they kill susceptible cells is incompletely understood. Here, we show that trichostatin A, romidepsin and panobinostat induce apoptosis across a panel of malignant B cell lines, including lines that are intrinsically resistant to bortezomib, etoposide, cytarabine and BH3 mimetics. Further analysis traces the pro-apoptotic effects of HDAC inhibitors to increased acetylation of the chaperone heat shock protein 90 (HSP90), causing release and degradation of the HSP90 client proteins RASGRP1 and CRAF, which in turn leads to downregulation of mitogen-activated protein kinase pathway signaling and upregulation of the pro-apoptotic BCL2 family member BIM
in vitro
and
in vivo
. Importantly, these pro-apoptotic effects are mimicked by RASGRP1 small interfering RNA (siRNA) or HSP90 inhibition and reversed by overexpression of constitutively active MEK1 or siRNA-mediated downregulation of BIM. Collectively, these observations not only identify a new HSP90 client protein, RASGRP1, but also delineate a complete signaling pathway from HSP90 acetylation through RASGRP1 and CRAF degradation to BIM upregulation that contributes to selective cytotoxicity of HDAC inhibitors in lymphoid malignancies.</description><identifier>ISSN: 0887-6924</identifier><identifier>EISSN: 1476-5551</identifier><identifier>DOI: 10.1038/leu.2016.357</identifier><identifier>PMID: 27890930</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/337/458/1275 ; 631/80/86 ; 692/308/153 ; 692/308/2778 ; 692/699/67/1059/2326 ; 692/699/67/1990/291/1621/1916 ; 96 ; 96/2 ; 96/95 ; Acetylation ; Animals ; Apoptosis ; Bcl-2-Like Protein 11 - genetics ; BIM protein ; Biocompatibility ; Biotechnology ; Bortezomib ; Cancer Research ; Cells, Cultured ; Chromatin ; Critical Care Medicine ; Cytarabine ; Cytotoxicity ; Degradation ; DNA-Binding Proteins - physiology ; Drug resistance ; Drug Resistance, Neoplasm ; Etoposide ; Genes, bcl-2 ; Guanine Nucleotide Exchange Factors - physiology ; Heat shock proteins ; Hematology ; Histone deacetylase ; Histone Deacetylase Inhibitors - pharmacology ; Histones ; HSP90 Heat-Shock Proteins - physiology ; Hsp90 protein ; Humans ; In vitro methods and tests ; Inhibitors ; Intensive ; Internal Medicine ; Kinases ; Lymphocytes B ; Lymphocytes T ; Lymphoma ; Lymphoma, B-Cell - drug therapy ; Lymphoma, B-Cell - pathology ; MAP kinase ; Medicine ; Medicine & Public Health ; Mice ; Multiple myeloma ; Neoplasms ; Oncology ; original-article ; Protein kinase ; Proteins ; Proto-Oncogene Proteins c-raf - physiology ; Ribonucleic acid ; RNA ; Signal transduction ; Signaling ; siRNA ; T-cell lymphoma ; Toxicity ; Trichostatin A ; Up-Regulation</subject><ispartof>Leukemia, 2017-07, Vol.31 (7), p.1593-1602</ispartof><rights>Macmillan Publishers Limited, part of Springer Nature. 2017</rights><rights>Copyright Nature Publishing Group Jul 2017</rights><rights>Macmillan Publishers Limited, part of Springer Nature. 2017.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-8a2d3687a81c749b1ea0cc50e5a757be2f2891d73bbe87f501dd90f1bffff2ca3</citedby><cites>FETCH-LOGICAL-c478t-8a2d3687a81c749b1ea0cc50e5a757be2f2891d73bbe87f501dd90f1bffff2ca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/leu.2016.357$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/leu.2016.357$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27890930$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ding, H</creatorcontrib><creatorcontrib>Peterson, K L</creatorcontrib><creatorcontrib>Correia, C</creatorcontrib><creatorcontrib>Koh, B</creatorcontrib><creatorcontrib>Schneider, P A</creatorcontrib><creatorcontrib>Nowakowski, G S</creatorcontrib><creatorcontrib>Kaufmann, S H</creatorcontrib><title>Histone deacetylase inhibitors interrupt HSP90•RASGRP1 and HSP90•CRAF interactions to upregulate BIM and circumvent drug resistance in lymphoma cells</title><title>Leukemia</title><addtitle>Leukemia</addtitle><addtitle>Leukemia</addtitle><description>Histone deacetylase (HDAC) inhibitors, which are approved for the treatment of cutaneous T-cell lymphoma and multiple myeloma, are undergoing evaluation in other lymphoid neoplasms. How they kill susceptible cells is incompletely understood. Here, we show that trichostatin A, romidepsin and panobinostat induce apoptosis across a panel of malignant B cell lines, including lines that are intrinsically resistant to bortezomib, etoposide, cytarabine and BH3 mimetics. Further analysis traces the pro-apoptotic effects of HDAC inhibitors to increased acetylation of the chaperone heat shock protein 90 (HSP90), causing release and degradation of the HSP90 client proteins RASGRP1 and CRAF, which in turn leads to downregulation of mitogen-activated protein kinase pathway signaling and upregulation of the pro-apoptotic BCL2 family member BIM
in vitro
and
in vivo
. Importantly, these pro-apoptotic effects are mimicked by RASGRP1 small interfering RNA (siRNA) or HSP90 inhibition and reversed by overexpression of constitutively active MEK1 or siRNA-mediated downregulation of BIM. Collectively, these observations not only identify a new HSP90 client protein, RASGRP1, but also delineate a complete signaling pathway from HSP90 acetylation through RASGRP1 and CRAF degradation to BIM upregulation that contributes to selective cytotoxicity of HDAC inhibitors in lymphoid malignancies.</description><subject>631/337/458/1275</subject><subject>631/80/86</subject><subject>692/308/153</subject><subject>692/308/2778</subject><subject>692/699/67/1059/2326</subject><subject>692/699/67/1990/291/1621/1916</subject><subject>96</subject><subject>96/2</subject><subject>96/95</subject><subject>Acetylation</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Bcl-2-Like Protein 11 - genetics</subject><subject>BIM protein</subject><subject>Biocompatibility</subject><subject>Biotechnology</subject><subject>Bortezomib</subject><subject>Cancer Research</subject><subject>Cells, Cultured</subject><subject>Chromatin</subject><subject>Critical Care Medicine</subject><subject>Cytarabine</subject><subject>Cytotoxicity</subject><subject>Degradation</subject><subject>DNA-Binding Proteins - physiology</subject><subject>Drug resistance</subject><subject>Drug Resistance, Neoplasm</subject><subject>Etoposide</subject><subject>Genes, bcl-2</subject><subject>Guanine Nucleotide Exchange Factors - physiology</subject><subject>Heat shock proteins</subject><subject>Hematology</subject><subject>Histone deacetylase</subject><subject>Histone Deacetylase Inhibitors - pharmacology</subject><subject>Histones</subject><subject>HSP90 Heat-Shock Proteins - physiology</subject><subject>Hsp90 protein</subject><subject>Humans</subject><subject>In vitro methods and tests</subject><subject>Inhibitors</subject><subject>Intensive</subject><subject>Internal Medicine</subject><subject>Kinases</subject><subject>Lymphocytes B</subject><subject>Lymphocytes T</subject><subject>Lymphoma</subject><subject>Lymphoma, B-Cell - drug therapy</subject><subject>Lymphoma, B-Cell - pathology</subject><subject>MAP kinase</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Mice</subject><subject>Multiple myeloma</subject><subject>Neoplasms</subject><subject>Oncology</subject><subject>original-article</subject><subject>Protein kinase</subject><subject>Proteins</subject><subject>Proto-Oncogene Proteins c-raf - physiology</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Signal transduction</subject><subject>Signaling</subject><subject>siRNA</subject><subject>T-cell lymphoma</subject><subject>Toxicity</subject><subject>Trichostatin A</subject><subject>Up-Regulation</subject><issn>0887-6924</issn><issn>1476-5551</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9ks1u1DAUhSMEokNhxxpZYsOCDP6JY2eDNIxop1IR1RTWluPczKRK4sE_lWbHa7Dl0XgSHKaMCkJ4Y8v30zn3SCfLnhM8J5jJNz3EOcWknDMuHmQzUogy55yTh9kMSynysqLFSfbE-xuMp2H5ODuhQla4YniWfVt1PtgRUAPaQNj32gPqxm1Xd8E6n54BnIu7gFbXVxX-8fX7enF9vr4iSI_N8W-5XpwdUG1CZ0ePgkVx52ATex0Avbv48Is3nTNxuIUxoMbFDXLgk70ezeSJ-v2w29pBIwN9759mj1rde3h2d59mn8_ef1qu8suP5xfLxWVuCiFDLjVtWCmFlsSIoqoJaGwMx8C14KIG2lJZkUawugYpWo5J01S4JXWbDjWanWZvD7q7WA_QmLSc073auW7Qbq-s7tSfk7Hbqo29VbwQBaUsCby6E3D2SwQf1ND5KYIewUaviCwKxllVkIS-_Au9sdGNKZ6iJeGcsRThfxSpCJeY0FIm6vWBMs5676A9rkywmpqhUjPU1AyVmpHwF_djHuHfVUhAfgB8Go0bcPdc_yX4E-Ccxz8</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Ding, H</creator><creator>Peterson, K L</creator><creator>Correia, C</creator><creator>Koh, B</creator><creator>Schneider, P A</creator><creator>Nowakowski, G S</creator><creator>Kaufmann, S H</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7RV</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170701</creationdate><title>Histone deacetylase inhibitors interrupt HSP90•RASGRP1 and HSP90•CRAF interactions to upregulate BIM and circumvent drug resistance in lymphoma cells</title><author>Ding, H ; Peterson, K L ; Correia, C ; Koh, B ; Schneider, P A ; Nowakowski, G S ; Kaufmann, S H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-8a2d3687a81c749b1ea0cc50e5a757be2f2891d73bbe87f501dd90f1bffff2ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>631/337/458/1275</topic><topic>631/80/86</topic><topic>692/308/153</topic><topic>692/308/2778</topic><topic>692/699/67/1059/2326</topic><topic>692/699/67/1990/291/1621/1916</topic><topic>96</topic><topic>96/2</topic><topic>96/95</topic><topic>Acetylation</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Bcl-2-Like Protein 11 - genetics</topic><topic>BIM protein</topic><topic>Biocompatibility</topic><topic>Biotechnology</topic><topic>Bortezomib</topic><topic>Cancer Research</topic><topic>Cells, Cultured</topic><topic>Chromatin</topic><topic>Critical Care Medicine</topic><topic>Cytarabine</topic><topic>Cytotoxicity</topic><topic>Degradation</topic><topic>DNA-Binding Proteins - physiology</topic><topic>Drug resistance</topic><topic>Drug Resistance, Neoplasm</topic><topic>Etoposide</topic><topic>Genes, bcl-2</topic><topic>Guanine Nucleotide Exchange Factors - physiology</topic><topic>Heat shock proteins</topic><topic>Hematology</topic><topic>Histone deacetylase</topic><topic>Histone Deacetylase Inhibitors - pharmacology</topic><topic>Histones</topic><topic>HSP90 Heat-Shock Proteins - physiology</topic><topic>Hsp90 protein</topic><topic>Humans</topic><topic>In vitro methods and tests</topic><topic>Inhibitors</topic><topic>Intensive</topic><topic>Internal Medicine</topic><topic>Kinases</topic><topic>Lymphocytes B</topic><topic>Lymphocytes T</topic><topic>Lymphoma</topic><topic>Lymphoma, B-Cell - drug therapy</topic><topic>Lymphoma, B-Cell - pathology</topic><topic>MAP kinase</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Mice</topic><topic>Multiple myeloma</topic><topic>Neoplasms</topic><topic>Oncology</topic><topic>original-article</topic><topic>Protein kinase</topic><topic>Proteins</topic><topic>Proto-Oncogene Proteins c-raf - physiology</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Signal transduction</topic><topic>Signaling</topic><topic>siRNA</topic><topic>T-cell lymphoma</topic><topic>Toxicity</topic><topic>Trichostatin A</topic><topic>Up-Regulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, H</creatorcontrib><creatorcontrib>Peterson, K L</creatorcontrib><creatorcontrib>Correia, C</creatorcontrib><creatorcontrib>Koh, B</creatorcontrib><creatorcontrib>Schneider, P A</creatorcontrib><creatorcontrib>Nowakowski, G S</creatorcontrib><creatorcontrib>Kaufmann, S H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Leukemia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, H</au><au>Peterson, K L</au><au>Correia, C</au><au>Koh, B</au><au>Schneider, P A</au><au>Nowakowski, G S</au><au>Kaufmann, S H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Histone deacetylase inhibitors interrupt HSP90•RASGRP1 and HSP90•CRAF interactions to upregulate BIM and circumvent drug resistance in lymphoma cells</atitle><jtitle>Leukemia</jtitle><stitle>Leukemia</stitle><addtitle>Leukemia</addtitle><date>2017-07-01</date><risdate>2017</risdate><volume>31</volume><issue>7</issue><spage>1593</spage><epage>1602</epage><pages>1593-1602</pages><issn>0887-6924</issn><eissn>1476-5551</eissn><abstract>Histone deacetylase (HDAC) inhibitors, which are approved for the treatment of cutaneous T-cell lymphoma and multiple myeloma, are undergoing evaluation in other lymphoid neoplasms. How they kill susceptible cells is incompletely understood. Here, we show that trichostatin A, romidepsin and panobinostat induce apoptosis across a panel of malignant B cell lines, including lines that are intrinsically resistant to bortezomib, etoposide, cytarabine and BH3 mimetics. Further analysis traces the pro-apoptotic effects of HDAC inhibitors to increased acetylation of the chaperone heat shock protein 90 (HSP90), causing release and degradation of the HSP90 client proteins RASGRP1 and CRAF, which in turn leads to downregulation of mitogen-activated protein kinase pathway signaling and upregulation of the pro-apoptotic BCL2 family member BIM
in vitro
and
in vivo
. Importantly, these pro-apoptotic effects are mimicked by RASGRP1 small interfering RNA (siRNA) or HSP90 inhibition and reversed by overexpression of constitutively active MEK1 or siRNA-mediated downregulation of BIM. Collectively, these observations not only identify a new HSP90 client protein, RASGRP1, but also delineate a complete signaling pathway from HSP90 acetylation through RASGRP1 and CRAF degradation to BIM upregulation that contributes to selective cytotoxicity of HDAC inhibitors in lymphoid malignancies.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27890930</pmid><doi>10.1038/leu.2016.357</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0887-6924 |
ispartof | Leukemia, 2017-07, Vol.31 (7), p.1593-1602 |
issn | 0887-6924 1476-5551 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5474223 |
source | MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | 631/337/458/1275 631/80/86 692/308/153 692/308/2778 692/699/67/1059/2326 692/699/67/1990/291/1621/1916 96 96/2 96/95 Acetylation Animals Apoptosis Bcl-2-Like Protein 11 - genetics BIM protein Biocompatibility Biotechnology Bortezomib Cancer Research Cells, Cultured Chromatin Critical Care Medicine Cytarabine Cytotoxicity Degradation DNA-Binding Proteins - physiology Drug resistance Drug Resistance, Neoplasm Etoposide Genes, bcl-2 Guanine Nucleotide Exchange Factors - physiology Heat shock proteins Hematology Histone deacetylase Histone Deacetylase Inhibitors - pharmacology Histones HSP90 Heat-Shock Proteins - physiology Hsp90 protein Humans In vitro methods and tests Inhibitors Intensive Internal Medicine Kinases Lymphocytes B Lymphocytes T Lymphoma Lymphoma, B-Cell - drug therapy Lymphoma, B-Cell - pathology MAP kinase Medicine Medicine & Public Health Mice Multiple myeloma Neoplasms Oncology original-article Protein kinase Proteins Proto-Oncogene Proteins c-raf - physiology Ribonucleic acid RNA Signal transduction Signaling siRNA T-cell lymphoma Toxicity Trichostatin A Up-Regulation |
title | Histone deacetylase inhibitors interrupt HSP90•RASGRP1 and HSP90•CRAF interactions to upregulate BIM and circumvent drug resistance in lymphoma cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T21%3A26%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Histone%20deacetylase%20inhibitors%20interrupt%20HSP90%E2%80%A2RASGRP1%20and%20HSP90%E2%80%A2CRAF%20interactions%20to%20upregulate%20BIM%20and%20circumvent%20drug%20resistance%20in%20lymphoma%20cells&rft.jtitle=Leukemia&rft.au=Ding,%20H&rft.date=2017-07-01&rft.volume=31&rft.issue=7&rft.spage=1593&rft.epage=1602&rft.pages=1593-1602&rft.issn=0887-6924&rft.eissn=1476-5551&rft_id=info:doi/10.1038/leu.2016.357&rft_dat=%3Cproquest_pubme%3E1844353941%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1915801268&rft_id=info:pmid/27890930&rfr_iscdi=true |