Patient-Specific Classification of ICU Sedation Levels From Heart Rate Variability

OBJECTIVE:To develop a personalizable algorithm to discriminate between sedation levels in ICU patients based on heart rate variability. DESIGN:Multicenter, pilot study. SETTING:Several ICUs at Massachusetts General Hospital, Boston, MA. PATIENTS:We gathered 21,912 hours of routine electrocardiogram...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Critical care medicine 2017-07, Vol.45 (7), p.e683-e690
Hauptverfasser: Nagaraj, Sunil B., Biswal, Siddharth, Boyle, Emily J., Zhou, David W., McClain, Lauren M., Bajwa, Ednan K., Quraishi, Sadeq A., Akeju, Oluwaseun, Barbieri, Riccardo, Purdon, Patrick L., Westover, M. Brandon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e690
container_issue 7
container_start_page e683
container_title Critical care medicine
container_volume 45
creator Nagaraj, Sunil B.
Biswal, Siddharth
Boyle, Emily J.
Zhou, David W.
McClain, Lauren M.
Bajwa, Ednan K.
Quraishi, Sadeq A.
Akeju, Oluwaseun
Barbieri, Riccardo
Purdon, Patrick L.
Westover, M. Brandon
description OBJECTIVE:To develop a personalizable algorithm to discriminate between sedation levels in ICU patients based on heart rate variability. DESIGN:Multicenter, pilot study. SETTING:Several ICUs at Massachusetts General Hospital, Boston, MA. PATIENTS:We gathered 21,912 hours of routine electrocardiogram recordings from a heterogenous group of 70 adult ICU patients. All patients included in the study were mechanically ventilated and were receiving sedatives. MEASUREMENTS AND MAIN RESULTS:As “ground truth” for developing our method, we used Richmond Agitation Sedation Scale scores grouped into four levels denoted “comatose” (–5), “deeply sedated” (–4 to –3), “lightly sedated” (–2 to 0), and “agitated” (+1 to +4). We trained a support vector machine learning algorithm to calculate the probability of each sedation level from heart rate variability measures derived from the electrocardiogram. To estimate algorithm performance, we calculated leave-one-subject out cross-validated accuracy. The patient-independent version of the proposed system discriminated between the four sedation levels with an overall accuracy of 59%. Upon personalizing the system supplementing the training data with patient-specific calibration data, consisting of an individual’s labeled heart rate variability epochs from the preceding 24 hours, accuracy improved to 67%. The personalized system discriminated between light- and deep-sedation states with an average accuracy of 75%. CONCLUSIONS:With further refinement, the methodology reported herein could lead to a fully automated system for depth of sedation monitoring. By enabling monitoring to be continuous, such technology may help clinical staff to monitor sedation levels more effectively and to reduce complications related to over- and under sedation.
doi_str_mv 10.1097/CCM.0000000000002364
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5474145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1892333065</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5684-8cc9d938d92330d2200708261b90bcc44c5beb36c13d74f3e9b14ec1c1811d043</originalsourceid><addsrcrecordid>eNqFUstO3DAUtRAVDJQ_qKos2YReP5LYm0pVxEuaqhWUbi3Huem49YwHOwPi73E0gGgX1Bs_7jnH1-eYkA8UTiio5lPbfj2BV4PxWuyQGa04lMAU3yUzAAUlF4rvk4OUfgNQUTV8j-wzKQRlnM7I1XczOlyN5fUarRucLVpvUppWuRBWRRiKy_amuMZ-u5_jHfpUnMWwLC7QxLG4MiMWP010pnPejQ_vybvB-IRHT_MhuTk7_dFelPNv55ftl3lpq1qKUlqresVlrxjn0DMG0IBkNe0UdNYKYasOO15byvtGDBxVRwVaaqmktAfBD8nnre560y2xt_kV0Xi9jm5p4oMOxum_Kyu30L_Cna5EI7ITWeD4SSCG2w2mUS9dsui9WWHYJE3l1BqHeoKKLdTGkFLE4eUaCnqKQ-c49L9xZNrH1y2-kJ79zwC5BdwHP2JMf_zmHqNeoPHj4n_a4g3qBONM1CUD2mRjIX-KfCL5I7_lpec</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1892333065</pqid></control><display><type>article</type><title>Patient-Specific Classification of ICU Sedation Levels From Heart Rate Variability</title><source>MEDLINE</source><source>Journals@Ovid Complete</source><creator>Nagaraj, Sunil B. ; Biswal, Siddharth ; Boyle, Emily J. ; Zhou, David W. ; McClain, Lauren M. ; Bajwa, Ednan K. ; Quraishi, Sadeq A. ; Akeju, Oluwaseun ; Barbieri, Riccardo ; Purdon, Patrick L. ; Westover, M. Brandon</creator><creatorcontrib>Nagaraj, Sunil B. ; Biswal, Siddharth ; Boyle, Emily J. ; Zhou, David W. ; McClain, Lauren M. ; Bajwa, Ednan K. ; Quraishi, Sadeq A. ; Akeju, Oluwaseun ; Barbieri, Riccardo ; Purdon, Patrick L. ; Westover, M. Brandon</creatorcontrib><description>OBJECTIVE:To develop a personalizable algorithm to discriminate between sedation levels in ICU patients based on heart rate variability. DESIGN:Multicenter, pilot study. SETTING:Several ICUs at Massachusetts General Hospital, Boston, MA. PATIENTS:We gathered 21,912 hours of routine electrocardiogram recordings from a heterogenous group of 70 adult ICU patients. All patients included in the study were mechanically ventilated and were receiving sedatives. MEASUREMENTS AND MAIN RESULTS:As “ground truth” for developing our method, we used Richmond Agitation Sedation Scale scores grouped into four levels denoted “comatose” (–5), “deeply sedated” (–4 to –3), “lightly sedated” (–2 to 0), and “agitated” (+1 to +4). We trained a support vector machine learning algorithm to calculate the probability of each sedation level from heart rate variability measures derived from the electrocardiogram. To estimate algorithm performance, we calculated leave-one-subject out cross-validated accuracy. The patient-independent version of the proposed system discriminated between the four sedation levels with an overall accuracy of 59%. Upon personalizing the system supplementing the training data with patient-specific calibration data, consisting of an individual’s labeled heart rate variability epochs from the preceding 24 hours, accuracy improved to 67%. The personalized system discriminated between light- and deep-sedation states with an average accuracy of 75%. CONCLUSIONS:With further refinement, the methodology reported herein could lead to a fully automated system for depth of sedation monitoring. By enabling monitoring to be continuous, such technology may help clinical staff to monitor sedation levels more effectively and to reduce complications related to over- and under sedation.</description><identifier>ISSN: 0090-3493</identifier><identifier>EISSN: 1530-0293</identifier><identifier>DOI: 10.1097/CCM.0000000000002364</identifier><identifier>PMID: 28441231</identifier><language>eng</language><publisher>United States: by the Society of Critical Care Medicine and Wolters Kluwer Health, Inc</publisher><subject>Aged ; Algorithms ; Anesthesia - methods ; Boston ; Electrocardiography ; Female ; Heart Rate - physiology ; Humans ; Intensive Care Units ; Male ; Middle Aged ; Pilot Projects ; Respiration, Artificial - methods ; Support Vector Machine</subject><ispartof>Critical care medicine, 2017-07, Vol.45 (7), p.e683-e690</ispartof><rights>by the Society of Critical Care Medicine and Wolters Kluwer Health, Inc. All Rights Reserved.</rights><rights>Copyright © by 2017 by the Society of Critical Care Medicine and Wolters Kluwer Health, Inc. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5684-8cc9d938d92330d2200708261b90bcc44c5beb36c13d74f3e9b14ec1c1811d043</citedby><cites>FETCH-LOGICAL-c5684-8cc9d938d92330d2200708261b90bcc44c5beb36c13d74f3e9b14ec1c1811d043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28441231$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nagaraj, Sunil B.</creatorcontrib><creatorcontrib>Biswal, Siddharth</creatorcontrib><creatorcontrib>Boyle, Emily J.</creatorcontrib><creatorcontrib>Zhou, David W.</creatorcontrib><creatorcontrib>McClain, Lauren M.</creatorcontrib><creatorcontrib>Bajwa, Ednan K.</creatorcontrib><creatorcontrib>Quraishi, Sadeq A.</creatorcontrib><creatorcontrib>Akeju, Oluwaseun</creatorcontrib><creatorcontrib>Barbieri, Riccardo</creatorcontrib><creatorcontrib>Purdon, Patrick L.</creatorcontrib><creatorcontrib>Westover, M. Brandon</creatorcontrib><title>Patient-Specific Classification of ICU Sedation Levels From Heart Rate Variability</title><title>Critical care medicine</title><addtitle>Crit Care Med</addtitle><description>OBJECTIVE:To develop a personalizable algorithm to discriminate between sedation levels in ICU patients based on heart rate variability. DESIGN:Multicenter, pilot study. SETTING:Several ICUs at Massachusetts General Hospital, Boston, MA. PATIENTS:We gathered 21,912 hours of routine electrocardiogram recordings from a heterogenous group of 70 adult ICU patients. All patients included in the study were mechanically ventilated and were receiving sedatives. MEASUREMENTS AND MAIN RESULTS:As “ground truth” for developing our method, we used Richmond Agitation Sedation Scale scores grouped into four levels denoted “comatose” (–5), “deeply sedated” (–4 to –3), “lightly sedated” (–2 to 0), and “agitated” (+1 to +4). We trained a support vector machine learning algorithm to calculate the probability of each sedation level from heart rate variability measures derived from the electrocardiogram. To estimate algorithm performance, we calculated leave-one-subject out cross-validated accuracy. The patient-independent version of the proposed system discriminated between the four sedation levels with an overall accuracy of 59%. Upon personalizing the system supplementing the training data with patient-specific calibration data, consisting of an individual’s labeled heart rate variability epochs from the preceding 24 hours, accuracy improved to 67%. The personalized system discriminated between light- and deep-sedation states with an average accuracy of 75%. CONCLUSIONS:With further refinement, the methodology reported herein could lead to a fully automated system for depth of sedation monitoring. By enabling monitoring to be continuous, such technology may help clinical staff to monitor sedation levels more effectively and to reduce complications related to over- and under sedation.</description><subject>Aged</subject><subject>Algorithms</subject><subject>Anesthesia - methods</subject><subject>Boston</subject><subject>Electrocardiography</subject><subject>Female</subject><subject>Heart Rate - physiology</subject><subject>Humans</subject><subject>Intensive Care Units</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Pilot Projects</subject><subject>Respiration, Artificial - methods</subject><subject>Support Vector Machine</subject><issn>0090-3493</issn><issn>1530-0293</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUstO3DAUtRAVDJQ_qKos2YReP5LYm0pVxEuaqhWUbi3Huem49YwHOwPi73E0gGgX1Bs_7jnH1-eYkA8UTiio5lPbfj2BV4PxWuyQGa04lMAU3yUzAAUlF4rvk4OUfgNQUTV8j-wzKQRlnM7I1XczOlyN5fUarRucLVpvUppWuRBWRRiKy_amuMZ-u5_jHfpUnMWwLC7QxLG4MiMWP010pnPejQ_vybvB-IRHT_MhuTk7_dFelPNv55ftl3lpq1qKUlqresVlrxjn0DMG0IBkNe0UdNYKYasOO15byvtGDBxVRwVaaqmktAfBD8nnre560y2xt_kV0Xi9jm5p4oMOxum_Kyu30L_Cna5EI7ITWeD4SSCG2w2mUS9dsui9WWHYJE3l1BqHeoKKLdTGkFLE4eUaCnqKQ-c49L9xZNrH1y2-kJ79zwC5BdwHP2JMf_zmHqNeoPHj4n_a4g3qBONM1CUD2mRjIX-KfCL5I7_lpec</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Nagaraj, Sunil B.</creator><creator>Biswal, Siddharth</creator><creator>Boyle, Emily J.</creator><creator>Zhou, David W.</creator><creator>McClain, Lauren M.</creator><creator>Bajwa, Ednan K.</creator><creator>Quraishi, Sadeq A.</creator><creator>Akeju, Oluwaseun</creator><creator>Barbieri, Riccardo</creator><creator>Purdon, Patrick L.</creator><creator>Westover, M. Brandon</creator><general>by the Society of Critical Care Medicine and Wolters Kluwer Health, Inc</general><general>Copyright by by the Society of Critical Care Medicine and Wolters Kluwer Health, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170701</creationdate><title>Patient-Specific Classification of ICU Sedation Levels From Heart Rate Variability</title><author>Nagaraj, Sunil B. ; Biswal, Siddharth ; Boyle, Emily J. ; Zhou, David W. ; McClain, Lauren M. ; Bajwa, Ednan K. ; Quraishi, Sadeq A. ; Akeju, Oluwaseun ; Barbieri, Riccardo ; Purdon, Patrick L. ; Westover, M. Brandon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5684-8cc9d938d92330d2200708261b90bcc44c5beb36c13d74f3e9b14ec1c1811d043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aged</topic><topic>Algorithms</topic><topic>Anesthesia - methods</topic><topic>Boston</topic><topic>Electrocardiography</topic><topic>Female</topic><topic>Heart Rate - physiology</topic><topic>Humans</topic><topic>Intensive Care Units</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Pilot Projects</topic><topic>Respiration, Artificial - methods</topic><topic>Support Vector Machine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nagaraj, Sunil B.</creatorcontrib><creatorcontrib>Biswal, Siddharth</creatorcontrib><creatorcontrib>Boyle, Emily J.</creatorcontrib><creatorcontrib>Zhou, David W.</creatorcontrib><creatorcontrib>McClain, Lauren M.</creatorcontrib><creatorcontrib>Bajwa, Ednan K.</creatorcontrib><creatorcontrib>Quraishi, Sadeq A.</creatorcontrib><creatorcontrib>Akeju, Oluwaseun</creatorcontrib><creatorcontrib>Barbieri, Riccardo</creatorcontrib><creatorcontrib>Purdon, Patrick L.</creatorcontrib><creatorcontrib>Westover, M. Brandon</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Critical care medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nagaraj, Sunil B.</au><au>Biswal, Siddharth</au><au>Boyle, Emily J.</au><au>Zhou, David W.</au><au>McClain, Lauren M.</au><au>Bajwa, Ednan K.</au><au>Quraishi, Sadeq A.</au><au>Akeju, Oluwaseun</au><au>Barbieri, Riccardo</au><au>Purdon, Patrick L.</au><au>Westover, M. Brandon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Patient-Specific Classification of ICU Sedation Levels From Heart Rate Variability</atitle><jtitle>Critical care medicine</jtitle><addtitle>Crit Care Med</addtitle><date>2017-07-01</date><risdate>2017</risdate><volume>45</volume><issue>7</issue><spage>e683</spage><epage>e690</epage><pages>e683-e690</pages><issn>0090-3493</issn><eissn>1530-0293</eissn><abstract>OBJECTIVE:To develop a personalizable algorithm to discriminate between sedation levels in ICU patients based on heart rate variability. DESIGN:Multicenter, pilot study. SETTING:Several ICUs at Massachusetts General Hospital, Boston, MA. PATIENTS:We gathered 21,912 hours of routine electrocardiogram recordings from a heterogenous group of 70 adult ICU patients. All patients included in the study were mechanically ventilated and were receiving sedatives. MEASUREMENTS AND MAIN RESULTS:As “ground truth” for developing our method, we used Richmond Agitation Sedation Scale scores grouped into four levels denoted “comatose” (–5), “deeply sedated” (–4 to –3), “lightly sedated” (–2 to 0), and “agitated” (+1 to +4). We trained a support vector machine learning algorithm to calculate the probability of each sedation level from heart rate variability measures derived from the electrocardiogram. To estimate algorithm performance, we calculated leave-one-subject out cross-validated accuracy. The patient-independent version of the proposed system discriminated between the four sedation levels with an overall accuracy of 59%. Upon personalizing the system supplementing the training data with patient-specific calibration data, consisting of an individual’s labeled heart rate variability epochs from the preceding 24 hours, accuracy improved to 67%. The personalized system discriminated between light- and deep-sedation states with an average accuracy of 75%. CONCLUSIONS:With further refinement, the methodology reported herein could lead to a fully automated system for depth of sedation monitoring. By enabling monitoring to be continuous, such technology may help clinical staff to monitor sedation levels more effectively and to reduce complications related to over- and under sedation.</abstract><cop>United States</cop><pub>by the Society of Critical Care Medicine and Wolters Kluwer Health, Inc</pub><pmid>28441231</pmid><doi>10.1097/CCM.0000000000002364</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0090-3493
ispartof Critical care medicine, 2017-07, Vol.45 (7), p.e683-e690
issn 0090-3493
1530-0293
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5474145
source MEDLINE; Journals@Ovid Complete
subjects Aged
Algorithms
Anesthesia - methods
Boston
Electrocardiography
Female
Heart Rate - physiology
Humans
Intensive Care Units
Male
Middle Aged
Pilot Projects
Respiration, Artificial - methods
Support Vector Machine
title Patient-Specific Classification of ICU Sedation Levels From Heart Rate Variability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T05%3A47%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Patient-Specific%20Classification%20of%20ICU%20Sedation%20Levels%20From%20Heart%20Rate%20Variability&rft.jtitle=Critical%20care%20medicine&rft.au=Nagaraj,%20Sunil%20B.&rft.date=2017-07-01&rft.volume=45&rft.issue=7&rft.spage=e683&rft.epage=e690&rft.pages=e683-e690&rft.issn=0090-3493&rft.eissn=1530-0293&rft_id=info:doi/10.1097/CCM.0000000000002364&rft_dat=%3Cproquest_pubme%3E1892333065%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1892333065&rft_id=info:pmid/28441231&rfr_iscdi=true