Long Single-Molecule Reads Can Resolve the Complexity of the Influenza Virus Composed of Rare, Closely Related Mutant Variants
As a result of a high rate of mutations and recombination events, an RNA-virus exists as a heterogeneous "swarm" of mutant variants. The long read length offered by single-molecule sequencing technologies allows each mutant variant to be sequenced in a single pass. However, high error rate...
Gespeichert in:
Veröffentlicht in: | Journal of computational biology 2017-06, Vol.24 (6), p.558-570 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 570 |
---|---|
container_issue | 6 |
container_start_page | 558 |
container_title | Journal of computational biology |
container_volume | 24 |
creator | Artyomenko, Alexander Wu, Nicholas C Mangul, Serghei Eskin, Eleazar Sun, Ren Zelikovsky, Alex |
description | As a result of a high rate of mutations and recombination events, an RNA-virus exists as a heterogeneous "swarm" of mutant variants. The long read length offered by single-molecule sequencing technologies allows each mutant variant to be sequenced in a single pass. However, high error rate limits the ability to reconstruct heterogeneous viral population composed of rare, related mutant variants. In this article, we present two single-nucleotide variants (2SNV), a method able to tolerate the high error rate of the single-molecule protocol and reconstruct mutant variants. 2SNV uses linkage between single-nucleotide variations to efficiently distinguish them from read errors. To benchmark the sensitivity of 2SNV, we performed a single-molecule sequencing experiment on a sample containing a titrated level of known viral mutant variants. Our method is able to accurately reconstruct clone with frequency of 0.2% and distinguish clones that differed in only two nucleotides distantly located on the genome. 2SNV outperforms existing methods for full-length viral mutant reconstruction. |
doi_str_mv | 10.1089/cmb.2016.0146 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5467126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1845253468</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-55b6b575fa3d0fc27acbe5527074119553cd56929ab7660fddac5c13a6773c9a3</originalsourceid><addsrcrecordid>eNpVkU1v1DAURS1ERT9gyRZ5yYIMdhzbyQYJRVAqTYVUoFvrxXmZBjn2YCcV00V_O562VO3qPfseXVs6hLzlbMVZ3Xy0U7cqGVcrxiv1ghxxKXVRK6VePtkPyXFKvxnjQjH9ihyWumFc1uqI3K6D39Afo984LM6DQ7s4pBcIfaIt-Lyl4K6RzldI2zBtHf4d5x0Nw93NmR_cgv4G6OUYl3RHhIT9Pr-AiB9o6_LZ7XKPgzkH58sMfqaXEMc802tyMIBL-OZhnpBfX7_8bL8V6--nZ-3ndWFFredCyk51UssBRM8GW2qwHUpZaqYrzhsphe2lasoGOq0UG_oerLRcgNJa2AbECfl037tdugl7i36O4Mw2jhPEnQkwmueJH6_MJlwbWSnNS5UL3j8UxPBnwTSbaUwWnQOPYUmG15UspahUndHiHrUxpBRxeHyGM7N3ZrIzs3dm9s4y_-7p3x7p_5LEP7QYlJE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1845253468</pqid></control><display><type>article</type><title>Long Single-Molecule Reads Can Resolve the Complexity of the Influenza Virus Composed of Rare, Closely Related Mutant Variants</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Artyomenko, Alexander ; Wu, Nicholas C ; Mangul, Serghei ; Eskin, Eleazar ; Sun, Ren ; Zelikovsky, Alex</creator><creatorcontrib>Artyomenko, Alexander ; Wu, Nicholas C ; Mangul, Serghei ; Eskin, Eleazar ; Sun, Ren ; Zelikovsky, Alex</creatorcontrib><description>As a result of a high rate of mutations and recombination events, an RNA-virus exists as a heterogeneous "swarm" of mutant variants. The long read length offered by single-molecule sequencing technologies allows each mutant variant to be sequenced in a single pass. However, high error rate limits the ability to reconstruct heterogeneous viral population composed of rare, related mutant variants. In this article, we present two single-nucleotide variants (2SNV), a method able to tolerate the high error rate of the single-molecule protocol and reconstruct mutant variants. 2SNV uses linkage between single-nucleotide variations to efficiently distinguish them from read errors. To benchmark the sensitivity of 2SNV, we performed a single-molecule sequencing experiment on a sample containing a titrated level of known viral mutant variants. Our method is able to accurately reconstruct clone with frequency of 0.2% and distinguish clones that differed in only two nucleotides distantly located on the genome. 2SNV outperforms existing methods for full-length viral mutant reconstruction.</description><identifier>ISSN: 1557-8666</identifier><identifier>ISSN: 1066-5277</identifier><identifier>EISSN: 1557-8666</identifier><identifier>DOI: 10.1089/cmb.2016.0146</identifier><identifier>PMID: 27901586</identifier><language>eng</language><publisher>United States: Mary Ann Liebert, Inc</publisher><subject>Algorithms ; Cluster Analysis ; Computational Biology - methods ; Genome, Viral ; High-Throughput Nucleotide Sequencing - methods ; Humans ; Mutation ; Orthomyxoviridae - genetics ; Sequence Analysis, DNA - methods</subject><ispartof>Journal of computational biology, 2017-06, Vol.24 (6), p.558-570</ispartof><rights>Copyright 2017, Mary Ann Liebert, Inc. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-55b6b575fa3d0fc27acbe5527074119553cd56929ab7660fddac5c13a6773c9a3</citedby><cites>FETCH-LOGICAL-c387t-55b6b575fa3d0fc27acbe5527074119553cd56929ab7660fddac5c13a6773c9a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27901586$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Artyomenko, Alexander</creatorcontrib><creatorcontrib>Wu, Nicholas C</creatorcontrib><creatorcontrib>Mangul, Serghei</creatorcontrib><creatorcontrib>Eskin, Eleazar</creatorcontrib><creatorcontrib>Sun, Ren</creatorcontrib><creatorcontrib>Zelikovsky, Alex</creatorcontrib><title>Long Single-Molecule Reads Can Resolve the Complexity of the Influenza Virus Composed of Rare, Closely Related Mutant Variants</title><title>Journal of computational biology</title><addtitle>J Comput Biol</addtitle><description>As a result of a high rate of mutations and recombination events, an RNA-virus exists as a heterogeneous "swarm" of mutant variants. The long read length offered by single-molecule sequencing technologies allows each mutant variant to be sequenced in a single pass. However, high error rate limits the ability to reconstruct heterogeneous viral population composed of rare, related mutant variants. In this article, we present two single-nucleotide variants (2SNV), a method able to tolerate the high error rate of the single-molecule protocol and reconstruct mutant variants. 2SNV uses linkage between single-nucleotide variations to efficiently distinguish them from read errors. To benchmark the sensitivity of 2SNV, we performed a single-molecule sequencing experiment on a sample containing a titrated level of known viral mutant variants. Our method is able to accurately reconstruct clone with frequency of 0.2% and distinguish clones that differed in only two nucleotides distantly located on the genome. 2SNV outperforms existing methods for full-length viral mutant reconstruction.</description><subject>Algorithms</subject><subject>Cluster Analysis</subject><subject>Computational Biology - methods</subject><subject>Genome, Viral</subject><subject>High-Throughput Nucleotide Sequencing - methods</subject><subject>Humans</subject><subject>Mutation</subject><subject>Orthomyxoviridae - genetics</subject><subject>Sequence Analysis, DNA - methods</subject><issn>1557-8666</issn><issn>1066-5277</issn><issn>1557-8666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkU1v1DAURS1ERT9gyRZ5yYIMdhzbyQYJRVAqTYVUoFvrxXmZBjn2YCcV00V_O562VO3qPfseXVs6hLzlbMVZ3Xy0U7cqGVcrxiv1ghxxKXVRK6VePtkPyXFKvxnjQjH9ihyWumFc1uqI3K6D39Afo984LM6DQ7s4pBcIfaIt-Lyl4K6RzldI2zBtHf4d5x0Nw93NmR_cgv4G6OUYl3RHhIT9Pr-AiB9o6_LZ7XKPgzkH58sMfqaXEMc802tyMIBL-OZhnpBfX7_8bL8V6--nZ-3ndWFFredCyk51UssBRM8GW2qwHUpZaqYrzhsphe2lasoGOq0UG_oerLRcgNJa2AbECfl037tdugl7i36O4Mw2jhPEnQkwmueJH6_MJlwbWSnNS5UL3j8UxPBnwTSbaUwWnQOPYUmG15UspahUndHiHrUxpBRxeHyGM7N3ZrIzs3dm9s4y_-7p3x7p_5LEP7QYlJE</recordid><startdate>201706</startdate><enddate>201706</enddate><creator>Artyomenko, Alexander</creator><creator>Wu, Nicholas C</creator><creator>Mangul, Serghei</creator><creator>Eskin, Eleazar</creator><creator>Sun, Ren</creator><creator>Zelikovsky, Alex</creator><general>Mary Ann Liebert, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201706</creationdate><title>Long Single-Molecule Reads Can Resolve the Complexity of the Influenza Virus Composed of Rare, Closely Related Mutant Variants</title><author>Artyomenko, Alexander ; Wu, Nicholas C ; Mangul, Serghei ; Eskin, Eleazar ; Sun, Ren ; Zelikovsky, Alex</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-55b6b575fa3d0fc27acbe5527074119553cd56929ab7660fddac5c13a6773c9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Cluster Analysis</topic><topic>Computational Biology - methods</topic><topic>Genome, Viral</topic><topic>High-Throughput Nucleotide Sequencing - methods</topic><topic>Humans</topic><topic>Mutation</topic><topic>Orthomyxoviridae - genetics</topic><topic>Sequence Analysis, DNA - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Artyomenko, Alexander</creatorcontrib><creatorcontrib>Wu, Nicholas C</creatorcontrib><creatorcontrib>Mangul, Serghei</creatorcontrib><creatorcontrib>Eskin, Eleazar</creatorcontrib><creatorcontrib>Sun, Ren</creatorcontrib><creatorcontrib>Zelikovsky, Alex</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Artyomenko, Alexander</au><au>Wu, Nicholas C</au><au>Mangul, Serghei</au><au>Eskin, Eleazar</au><au>Sun, Ren</au><au>Zelikovsky, Alex</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Long Single-Molecule Reads Can Resolve the Complexity of the Influenza Virus Composed of Rare, Closely Related Mutant Variants</atitle><jtitle>Journal of computational biology</jtitle><addtitle>J Comput Biol</addtitle><date>2017-06</date><risdate>2017</risdate><volume>24</volume><issue>6</issue><spage>558</spage><epage>570</epage><pages>558-570</pages><issn>1557-8666</issn><issn>1066-5277</issn><eissn>1557-8666</eissn><abstract>As a result of a high rate of mutations and recombination events, an RNA-virus exists as a heterogeneous "swarm" of mutant variants. The long read length offered by single-molecule sequencing technologies allows each mutant variant to be sequenced in a single pass. However, high error rate limits the ability to reconstruct heterogeneous viral population composed of rare, related mutant variants. In this article, we present two single-nucleotide variants (2SNV), a method able to tolerate the high error rate of the single-molecule protocol and reconstruct mutant variants. 2SNV uses linkage between single-nucleotide variations to efficiently distinguish them from read errors. To benchmark the sensitivity of 2SNV, we performed a single-molecule sequencing experiment on a sample containing a titrated level of known viral mutant variants. Our method is able to accurately reconstruct clone with frequency of 0.2% and distinguish clones that differed in only two nucleotides distantly located on the genome. 2SNV outperforms existing methods for full-length viral mutant reconstruction.</abstract><cop>United States</cop><pub>Mary Ann Liebert, Inc</pub><pmid>27901586</pmid><doi>10.1089/cmb.2016.0146</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1557-8666 |
ispartof | Journal of computational biology, 2017-06, Vol.24 (6), p.558-570 |
issn | 1557-8666 1066-5277 1557-8666 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5467126 |
source | MEDLINE; Alma/SFX Local Collection |
subjects | Algorithms Cluster Analysis Computational Biology - methods Genome, Viral High-Throughput Nucleotide Sequencing - methods Humans Mutation Orthomyxoviridae - genetics Sequence Analysis, DNA - methods |
title | Long Single-Molecule Reads Can Resolve the Complexity of the Influenza Virus Composed of Rare, Closely Related Mutant Variants |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T04%3A10%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Long%20Single-Molecule%20Reads%20Can%20Resolve%20the%20Complexity%20of%20the%20Influenza%20Virus%20Composed%20of%20Rare,%20Closely%20Related%20Mutant%20Variants&rft.jtitle=Journal%20of%20computational%20biology&rft.au=Artyomenko,%20Alexander&rft.date=2017-06&rft.volume=24&rft.issue=6&rft.spage=558&rft.epage=570&rft.pages=558-570&rft.issn=1557-8666&rft.eissn=1557-8666&rft_id=info:doi/10.1089/cmb.2016.0146&rft_dat=%3Cproquest_pubme%3E1845253468%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1845253468&rft_id=info:pmid/27901586&rfr_iscdi=true |