Cellular Microbiaxial Stretching to Measure a Single-Cell Strain Energy Density Function
The stress in a cell due to extracellular mechanical stimulus is determined by its mechanical properties, and the structural organization of many adherent cells suggests that their properties are anisotropic. This anisotropy may significantly influence the cells' mechanotransductive response to...
Gespeichert in:
Veröffentlicht in: | Journal of biomechanical engineering 2017-07, Vol.139 (7), p.0710061-07100610 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 07100610 |
---|---|
container_issue | 7 |
container_start_page | 0710061 |
container_title | Journal of biomechanical engineering |
container_volume | 139 |
creator | Win, Zaw Buksa, Justin M Steucke, Kerianne E Gant Luxton, G. W Barocas, Victor H Alford, Patrick W |
description | The stress in a cell due to extracellular mechanical stimulus is determined by its mechanical properties, and the structural organization of many adherent cells suggests that their properties are anisotropic. This anisotropy may significantly influence the cells' mechanotransductive response to complex loads, and has important implications for development of accurate models of tissue biomechanics. Standard methods for measuring cellular mechanics report linear moduli that cannot capture large-deformation anisotropic properties, which in a continuum mechanics framework are best described by a strain energy density function (SED). In tissues, the SED is most robustly measured using biaxial testing. Here, we describe a cellular microbiaxial stretching (CμBS) method that modifies this tissue-scale approach to measure the anisotropic elastic behavior of individual vascular smooth muscle cells (VSMCs) with nativelike cytoarchitecture. Using CμBS, we reveal that VSMCs are highly anisotropic under large deformations. We then characterize a Holzapfel–Gasser–Ogden type SED for individual VSMCs and find that architecture-dependent properties of the cells can be robustly described using a formulation solely based on the organization of their actin cytoskeleton. These results suggest that cellular anisotropy should be considered when developing biomechanical models, and could play an important role in cellular mechano-adaptation. |
doi_str_mv | 10.1115/1.4036440 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5467040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1886752261</sourcerecordid><originalsourceid>FETCH-LOGICAL-a432t-994ff6af5c9ff62f7f7cb9a5bad4074e896c7b1264d4cdfc4314b28e4164715b3</originalsourceid><addsrcrecordid>eNpVkUFrGzEQhUVJiB03h5wDRcf2sKlmJa2kS6A4dhqw6cEt9Ca0stZWWGtTaTfU_74ydkNyGpj5ZubNG4SugdwCAP8Kt4zQijHyAY2Bl7KQisMZGhNgsiCCwghdpvRECIBk5AKNSkmVUFyM0e-pa9uhNREvvY1d7c1fb1q86qPr7daHDe47vHQmDdFhg1c507ri0HRgjA94Flzc7PG9C8n3ezwfgu19Fz6i88a0yV2d4gT9ms9-Tr8Xix8Pj9Nvi8IwWvaFUqxpKtNwq3IsG9EIWyvDa7NmRDAnVWVFDWXF1syuG8sosLqUjkHFBPCaTtDdce7zUO_c2rqQZbX6OfqdiXvdGa_fV4Lf6k33ojmrBMm-TdDn04DY_Rlc6vXOJ5sPNMF1Q9IgZSV4WVaQ0S9HNDuVUnTN6xog-vAJDfr0icx-eqvrlfxvfQZujoBJO6efuiGG7JOmAqgC-g95Xo2K</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1886752261</pqid></control><display><type>article</type><title>Cellular Microbiaxial Stretching to Measure a Single-Cell Strain Energy Density Function</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><source>ASME Transactions Journals (Current)</source><creator>Win, Zaw ; Buksa, Justin M ; Steucke, Kerianne E ; Gant Luxton, G. W ; Barocas, Victor H ; Alford, Patrick W</creator><creatorcontrib>Win, Zaw ; Buksa, Justin M ; Steucke, Kerianne E ; Gant Luxton, G. W ; Barocas, Victor H ; Alford, Patrick W</creatorcontrib><description>The stress in a cell due to extracellular mechanical stimulus is determined by its mechanical properties, and the structural organization of many adherent cells suggests that their properties are anisotropic. This anisotropy may significantly influence the cells' mechanotransductive response to complex loads, and has important implications for development of accurate models of tissue biomechanics. Standard methods for measuring cellular mechanics report linear moduli that cannot capture large-deformation anisotropic properties, which in a continuum mechanics framework are best described by a strain energy density function (SED). In tissues, the SED is most robustly measured using biaxial testing. Here, we describe a cellular microbiaxial stretching (CμBS) method that modifies this tissue-scale approach to measure the anisotropic elastic behavior of individual vascular smooth muscle cells (VSMCs) with nativelike cytoarchitecture. Using CμBS, we reveal that VSMCs are highly anisotropic under large deformations. We then characterize a Holzapfel–Gasser–Ogden type SED for individual VSMCs and find that architecture-dependent properties of the cells can be robustly described using a formulation solely based on the organization of their actin cytoskeleton. These results suggest that cellular anisotropy should be considered when developing biomechanical models, and could play an important role in cellular mechano-adaptation.</description><identifier>ISSN: 0148-0731</identifier><identifier>EISSN: 1528-8951</identifier><identifier>DOI: 10.1115/1.4036440</identifier><identifier>PMID: 28397957</identifier><language>eng</language><publisher>United States: ASME</publisher><subject>Actin Cytoskeleton - metabolism ; Anisotropy ; Biomechanical Phenomena ; Humans ; Mechanotransduction, Cellular ; Muscle, Smooth, Vascular - cytology ; Research Papers ; Single-Cell Analysis ; Stress, Mechanical ; Thermodynamics</subject><ispartof>Journal of biomechanical engineering, 2017-07, Vol.139 (7), p.0710061-07100610</ispartof><rights>Copyright © 2017 by ASME 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a432t-994ff6af5c9ff62f7f7cb9a5bad4074e896c7b1264d4cdfc4314b28e4164715b3</citedby><cites>FETCH-LOGICAL-a432t-994ff6af5c9ff62f7f7cb9a5bad4074e896c7b1264d4cdfc4314b28e4164715b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902,38497</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28397957$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Win, Zaw</creatorcontrib><creatorcontrib>Buksa, Justin M</creatorcontrib><creatorcontrib>Steucke, Kerianne E</creatorcontrib><creatorcontrib>Gant Luxton, G. W</creatorcontrib><creatorcontrib>Barocas, Victor H</creatorcontrib><creatorcontrib>Alford, Patrick W</creatorcontrib><title>Cellular Microbiaxial Stretching to Measure a Single-Cell Strain Energy Density Function</title><title>Journal of biomechanical engineering</title><addtitle>J Biomech Eng</addtitle><addtitle>J Biomech Eng</addtitle><description>The stress in a cell due to extracellular mechanical stimulus is determined by its mechanical properties, and the structural organization of many adherent cells suggests that their properties are anisotropic. This anisotropy may significantly influence the cells' mechanotransductive response to complex loads, and has important implications for development of accurate models of tissue biomechanics. Standard methods for measuring cellular mechanics report linear moduli that cannot capture large-deformation anisotropic properties, which in a continuum mechanics framework are best described by a strain energy density function (SED). In tissues, the SED is most robustly measured using biaxial testing. Here, we describe a cellular microbiaxial stretching (CμBS) method that modifies this tissue-scale approach to measure the anisotropic elastic behavior of individual vascular smooth muscle cells (VSMCs) with nativelike cytoarchitecture. Using CμBS, we reveal that VSMCs are highly anisotropic under large deformations. We then characterize a Holzapfel–Gasser–Ogden type SED for individual VSMCs and find that architecture-dependent properties of the cells can be robustly described using a formulation solely based on the organization of their actin cytoskeleton. These results suggest that cellular anisotropy should be considered when developing biomechanical models, and could play an important role in cellular mechano-adaptation.</description><subject>Actin Cytoskeleton - metabolism</subject><subject>Anisotropy</subject><subject>Biomechanical Phenomena</subject><subject>Humans</subject><subject>Mechanotransduction, Cellular</subject><subject>Muscle, Smooth, Vascular - cytology</subject><subject>Research Papers</subject><subject>Single-Cell Analysis</subject><subject>Stress, Mechanical</subject><subject>Thermodynamics</subject><issn>0148-0731</issn><issn>1528-8951</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkUFrGzEQhUVJiB03h5wDRcf2sKlmJa2kS6A4dhqw6cEt9Ca0stZWWGtTaTfU_74ydkNyGpj5ZubNG4SugdwCAP8Kt4zQijHyAY2Bl7KQisMZGhNgsiCCwghdpvRECIBk5AKNSkmVUFyM0e-pa9uhNREvvY1d7c1fb1q86qPr7daHDe47vHQmDdFhg1c507ri0HRgjA94Flzc7PG9C8n3ezwfgu19Fz6i88a0yV2d4gT9ms9-Tr8Xix8Pj9Nvi8IwWvaFUqxpKtNwq3IsG9EIWyvDa7NmRDAnVWVFDWXF1syuG8sosLqUjkHFBPCaTtDdce7zUO_c2rqQZbX6OfqdiXvdGa_fV4Lf6k33ojmrBMm-TdDn04DY_Rlc6vXOJ5sPNMF1Q9IgZSV4WVaQ0S9HNDuVUnTN6xog-vAJDfr0icx-eqvrlfxvfQZujoBJO6efuiGG7JOmAqgC-g95Xo2K</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Win, Zaw</creator><creator>Buksa, Justin M</creator><creator>Steucke, Kerianne E</creator><creator>Gant Luxton, G. W</creator><creator>Barocas, Victor H</creator><creator>Alford, Patrick W</creator><general>ASME</general><general>American Society of Mechanical Engineers</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170701</creationdate><title>Cellular Microbiaxial Stretching to Measure a Single-Cell Strain Energy Density Function</title><author>Win, Zaw ; Buksa, Justin M ; Steucke, Kerianne E ; Gant Luxton, G. W ; Barocas, Victor H ; Alford, Patrick W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a432t-994ff6af5c9ff62f7f7cb9a5bad4074e896c7b1264d4cdfc4314b28e4164715b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Actin Cytoskeleton - metabolism</topic><topic>Anisotropy</topic><topic>Biomechanical Phenomena</topic><topic>Humans</topic><topic>Mechanotransduction, Cellular</topic><topic>Muscle, Smooth, Vascular - cytology</topic><topic>Research Papers</topic><topic>Single-Cell Analysis</topic><topic>Stress, Mechanical</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Win, Zaw</creatorcontrib><creatorcontrib>Buksa, Justin M</creatorcontrib><creatorcontrib>Steucke, Kerianne E</creatorcontrib><creatorcontrib>Gant Luxton, G. W</creatorcontrib><creatorcontrib>Barocas, Victor H</creatorcontrib><creatorcontrib>Alford, Patrick W</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of biomechanical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Win, Zaw</au><au>Buksa, Justin M</au><au>Steucke, Kerianne E</au><au>Gant Luxton, G. W</au><au>Barocas, Victor H</au><au>Alford, Patrick W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cellular Microbiaxial Stretching to Measure a Single-Cell Strain Energy Density Function</atitle><jtitle>Journal of biomechanical engineering</jtitle><stitle>J Biomech Eng</stitle><addtitle>J Biomech Eng</addtitle><date>2017-07-01</date><risdate>2017</risdate><volume>139</volume><issue>7</issue><spage>0710061</spage><epage>07100610</epage><pages>0710061-07100610</pages><issn>0148-0731</issn><eissn>1528-8951</eissn><abstract>The stress in a cell due to extracellular mechanical stimulus is determined by its mechanical properties, and the structural organization of many adherent cells suggests that their properties are anisotropic. This anisotropy may significantly influence the cells' mechanotransductive response to complex loads, and has important implications for development of accurate models of tissue biomechanics. Standard methods for measuring cellular mechanics report linear moduli that cannot capture large-deformation anisotropic properties, which in a continuum mechanics framework are best described by a strain energy density function (SED). In tissues, the SED is most robustly measured using biaxial testing. Here, we describe a cellular microbiaxial stretching (CμBS) method that modifies this tissue-scale approach to measure the anisotropic elastic behavior of individual vascular smooth muscle cells (VSMCs) with nativelike cytoarchitecture. Using CμBS, we reveal that VSMCs are highly anisotropic under large deformations. We then characterize a Holzapfel–Gasser–Ogden type SED for individual VSMCs and find that architecture-dependent properties of the cells can be robustly described using a formulation solely based on the organization of their actin cytoskeleton. These results suggest that cellular anisotropy should be considered when developing biomechanical models, and could play an important role in cellular mechano-adaptation.</abstract><cop>United States</cop><pub>ASME</pub><pmid>28397957</pmid><doi>10.1115/1.4036440</doi><tpages>6390550</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0148-0731 |
ispartof | Journal of biomechanical engineering, 2017-07, Vol.139 (7), p.0710061-07100610 |
issn | 0148-0731 1528-8951 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5467040 |
source | MEDLINE; Alma/SFX Local Collection; ASME Transactions Journals (Current) |
subjects | Actin Cytoskeleton - metabolism Anisotropy Biomechanical Phenomena Humans Mechanotransduction, Cellular Muscle, Smooth, Vascular - cytology Research Papers Single-Cell Analysis Stress, Mechanical Thermodynamics |
title | Cellular Microbiaxial Stretching to Measure a Single-Cell Strain Energy Density Function |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T21%3A40%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cellular%20Microbiaxial%20Stretching%20to%20Measure%20a%20Single-Cell%20Strain%20Energy%20Density%20Function&rft.jtitle=Journal%20of%20biomechanical%20engineering&rft.au=Win,%20Zaw&rft.date=2017-07-01&rft.volume=139&rft.issue=7&rft.spage=0710061&rft.epage=07100610&rft.pages=0710061-07100610&rft.issn=0148-0731&rft.eissn=1528-8951&rft_id=info:doi/10.1115/1.4036440&rft_dat=%3Cproquest_pubme%3E1886752261%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1886752261&rft_id=info:pmid/28397957&rfr_iscdi=true |