Science in the cloud (SIC): A use case in MRI connectomics

Abstract Modern technologies are enabling scientists to collect extraordinary amounts of complex and sophisticated data across a huge range of scales like never before. With this onslaught of data, we can allow the focal point to shift from data collection to data analysis. Unfortunately, lack of st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Gigascience 2017-05, Vol.6 (5), p.1-10
Hauptverfasser: Kiar, Gregory, Gorgolewski, Krzysztof J., Kleissas, Dean, Roncal, William Gray, Litt, Brian, Wandell, Brian, Poldrack, Russel A., Wiener, Martin, Vogelstein, R. Jacob, Burns, Randal, Vogelstein, Joshua T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 5
container_start_page 1
container_title Gigascience
container_volume 6
creator Kiar, Gregory
Gorgolewski, Krzysztof J.
Kleissas, Dean
Roncal, William Gray
Litt, Brian
Wandell, Brian
Poldrack, Russel A.
Wiener, Martin
Vogelstein, R. Jacob
Burns, Randal
Vogelstein, Joshua T.
description Abstract Modern technologies are enabling scientists to collect extraordinary amounts of complex and sophisticated data across a huge range of scales like never before. With this onslaught of data, we can allow the focal point to shift from data collection to data analysis. Unfortunately, lack of standardized sharing mechanisms and practices often make reproducing or extending scientific results very difficult. With the creation of data organization structures and tools that drastically improve code portability, we now have the opportunity to design such a framework for communicating extensible scientific discoveries. Our proposed solution leverages these existing technologies and standards, and provides an accessible and extensible model for reproducible research, called ‘science in the cloud' (SIC). Exploiting scientific containers, cloud computing, and cloud data services, we show the capability to compute in the cloud and run a web service that enables intimate interaction with the tools and data presented. We hope this model will inspire the community to produce reproducible and, importantly, extensible results that will enable us to collectively accelerate the rate at which scientific breakthroughs are discovered, replicated, and extended.
doi_str_mv 10.1093/gigascience/gix013
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5467033</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/gigascience/gix013</oup_id><sourcerecordid>1880087080</sourcerecordid><originalsourceid>FETCH-LOGICAL-c534t-377d071c4d3bc70ab37fa3bb4534539a6a31b9b4742042e144bc149eba6b6a703</originalsourceid><addsrcrecordid>eNqNUc1LwzAUD6K4MfcPeJCCl3moJk3a1-4gjOHHYCI4BW8hSbOto21m04r-92Z2junJd3mP_D7yHj-ETgm-JDihV4tsIazKdKm0mz8woQeoG2AGfkDg9XBv7qC-tSvsCiCOgR6jThDTABIadtFw1np4WenVS-2p3DSpN5hNxhdDb-Q11j0J-w0_PE08ZcpSq9oUmbIn6Ggucqv7295DL7c3z-N7f_p4NxmPpr4KKat9CpBiIIqlVCrAQlKYCyolc2hIExEJSmQiGTC3caAJY1IRlmgpIhkJwLSHrlvfdSMLnSpd1pXI-brKClF9ciMy_hspsyVfmHcessjJqTMYbA0q89ZoW_Mis0rnuSi1aSwncYxxDDje_HX-h7oyTVW683gABGgEFEeOFbQsVRlrKz3fLUMw36TD99LhbTpOdLZ_xk7yk4Uj-C3BNOv_GH4BlqWcYg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2717367306</pqid></control><display><type>article</type><title>Science in the cloud (SIC): A use case in MRI connectomics</title><source>MEDLINE</source><source>Oxford Journals Open Access Collection</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Kiar, Gregory ; Gorgolewski, Krzysztof J. ; Kleissas, Dean ; Roncal, William Gray ; Litt, Brian ; Wandell, Brian ; Poldrack, Russel A. ; Wiener, Martin ; Vogelstein, R. Jacob ; Burns, Randal ; Vogelstein, Joshua T.</creator><creatorcontrib>Kiar, Gregory ; Gorgolewski, Krzysztof J. ; Kleissas, Dean ; Roncal, William Gray ; Litt, Brian ; Wandell, Brian ; Poldrack, Russel A. ; Wiener, Martin ; Vogelstein, R. Jacob ; Burns, Randal ; Vogelstein, Joshua T.</creatorcontrib><description>Abstract Modern technologies are enabling scientists to collect extraordinary amounts of complex and sophisticated data across a huge range of scales like never before. With this onslaught of data, we can allow the focal point to shift from data collection to data analysis. Unfortunately, lack of standardized sharing mechanisms and practices often make reproducing or extending scientific results very difficult. With the creation of data organization structures and tools that drastically improve code portability, we now have the opportunity to design such a framework for communicating extensible scientific discoveries. Our proposed solution leverages these existing technologies and standards, and provides an accessible and extensible model for reproducible research, called ‘science in the cloud' (SIC). Exploiting scientific containers, cloud computing, and cloud data services, we show the capability to compute in the cloud and run a web service that enables intimate interaction with the tools and data presented. We hope this model will inspire the community to produce reproducible and, importantly, extensible results that will enable us to collectively accelerate the rate at which scientific breakthroughs are discovered, replicated, and extended.</description><identifier>ISSN: 2047-217X</identifier><identifier>EISSN: 2047-217X</identifier><identifier>DOI: 10.1093/gigascience/gix013</identifier><identifier>PMID: 28327935</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Cloud Computing ; Communication ; Connectome ; Data analysis ; Data collection ; Extensibility ; Humans ; Image Processing, Computer-Assisted ; Internet ; Magnetic Resonance Imaging ; Reproducibility ; Science ; Software ; Web services</subject><ispartof>Gigascience, 2017-05, Vol.6 (5), p.1-10</ispartof><rights>The Author 2017. Published by Oxford University Press. 2017</rights><rights>The Author 2017. Published by Oxford University Press.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c534t-377d071c4d3bc70ab37fa3bb4534539a6a31b9b4742042e144bc149eba6b6a703</citedby><cites>FETCH-LOGICAL-c534t-377d071c4d3bc70ab37fa3bb4534539a6a31b9b4742042e144bc149eba6b6a703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5467033/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5467033/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,1604,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28327935$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kiar, Gregory</creatorcontrib><creatorcontrib>Gorgolewski, Krzysztof J.</creatorcontrib><creatorcontrib>Kleissas, Dean</creatorcontrib><creatorcontrib>Roncal, William Gray</creatorcontrib><creatorcontrib>Litt, Brian</creatorcontrib><creatorcontrib>Wandell, Brian</creatorcontrib><creatorcontrib>Poldrack, Russel A.</creatorcontrib><creatorcontrib>Wiener, Martin</creatorcontrib><creatorcontrib>Vogelstein, R. Jacob</creatorcontrib><creatorcontrib>Burns, Randal</creatorcontrib><creatorcontrib>Vogelstein, Joshua T.</creatorcontrib><title>Science in the cloud (SIC): A use case in MRI connectomics</title><title>Gigascience</title><addtitle>Gigascience</addtitle><description>Abstract Modern technologies are enabling scientists to collect extraordinary amounts of complex and sophisticated data across a huge range of scales like never before. With this onslaught of data, we can allow the focal point to shift from data collection to data analysis. Unfortunately, lack of standardized sharing mechanisms and practices often make reproducing or extending scientific results very difficult. With the creation of data organization structures and tools that drastically improve code portability, we now have the opportunity to design such a framework for communicating extensible scientific discoveries. Our proposed solution leverages these existing technologies and standards, and provides an accessible and extensible model for reproducible research, called ‘science in the cloud' (SIC). Exploiting scientific containers, cloud computing, and cloud data services, we show the capability to compute in the cloud and run a web service that enables intimate interaction with the tools and data presented. We hope this model will inspire the community to produce reproducible and, importantly, extensible results that will enable us to collectively accelerate the rate at which scientific breakthroughs are discovered, replicated, and extended.</description><subject>Cloud Computing</subject><subject>Communication</subject><subject>Connectome</subject><subject>Data analysis</subject><subject>Data collection</subject><subject>Extensibility</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Internet</subject><subject>Magnetic Resonance Imaging</subject><subject>Reproducibility</subject><subject>Science</subject><subject>Software</subject><subject>Web services</subject><issn>2047-217X</issn><issn>2047-217X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNqNUc1LwzAUD6K4MfcPeJCCl3moJk3a1-4gjOHHYCI4BW8hSbOto21m04r-92Z2junJd3mP_D7yHj-ETgm-JDihV4tsIazKdKm0mz8woQeoG2AGfkDg9XBv7qC-tSvsCiCOgR6jThDTABIadtFw1np4WenVS-2p3DSpN5hNxhdDb-Q11j0J-w0_PE08ZcpSq9oUmbIn6Ggucqv7295DL7c3z-N7f_p4NxmPpr4KKat9CpBiIIqlVCrAQlKYCyolc2hIExEJSmQiGTC3caAJY1IRlmgpIhkJwLSHrlvfdSMLnSpd1pXI-brKClF9ciMy_hspsyVfmHcessjJqTMYbA0q89ZoW_Mis0rnuSi1aSwncYxxDDje_HX-h7oyTVW683gABGgEFEeOFbQsVRlrKz3fLUMw36TD99LhbTpOdLZ_xk7yk4Uj-C3BNOv_GH4BlqWcYg</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Kiar, Gregory</creator><creator>Gorgolewski, Krzysztof J.</creator><creator>Kleissas, Dean</creator><creator>Roncal, William Gray</creator><creator>Litt, Brian</creator><creator>Wandell, Brian</creator><creator>Poldrack, Russel A.</creator><creator>Wiener, Martin</creator><creator>Vogelstein, R. Jacob</creator><creator>Burns, Randal</creator><creator>Vogelstein, Joshua T.</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170501</creationdate><title>Science in the cloud (SIC): A use case in MRI connectomics</title><author>Kiar, Gregory ; Gorgolewski, Krzysztof J. ; Kleissas, Dean ; Roncal, William Gray ; Litt, Brian ; Wandell, Brian ; Poldrack, Russel A. ; Wiener, Martin ; Vogelstein, R. Jacob ; Burns, Randal ; Vogelstein, Joshua T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c534t-377d071c4d3bc70ab37fa3bb4534539a6a31b9b4742042e144bc149eba6b6a703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Cloud Computing</topic><topic>Communication</topic><topic>Connectome</topic><topic>Data analysis</topic><topic>Data collection</topic><topic>Extensibility</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Internet</topic><topic>Magnetic Resonance Imaging</topic><topic>Reproducibility</topic><topic>Science</topic><topic>Software</topic><topic>Web services</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kiar, Gregory</creatorcontrib><creatorcontrib>Gorgolewski, Krzysztof J.</creatorcontrib><creatorcontrib>Kleissas, Dean</creatorcontrib><creatorcontrib>Roncal, William Gray</creatorcontrib><creatorcontrib>Litt, Brian</creatorcontrib><creatorcontrib>Wandell, Brian</creatorcontrib><creatorcontrib>Poldrack, Russel A.</creatorcontrib><creatorcontrib>Wiener, Martin</creatorcontrib><creatorcontrib>Vogelstein, R. Jacob</creatorcontrib><creatorcontrib>Burns, Randal</creatorcontrib><creatorcontrib>Vogelstein, Joshua T.</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Gigascience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kiar, Gregory</au><au>Gorgolewski, Krzysztof J.</au><au>Kleissas, Dean</au><au>Roncal, William Gray</au><au>Litt, Brian</au><au>Wandell, Brian</au><au>Poldrack, Russel A.</au><au>Wiener, Martin</au><au>Vogelstein, R. Jacob</au><au>Burns, Randal</au><au>Vogelstein, Joshua T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Science in the cloud (SIC): A use case in MRI connectomics</atitle><jtitle>Gigascience</jtitle><addtitle>Gigascience</addtitle><date>2017-05-01</date><risdate>2017</risdate><volume>6</volume><issue>5</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>2047-217X</issn><eissn>2047-217X</eissn><abstract>Abstract Modern technologies are enabling scientists to collect extraordinary amounts of complex and sophisticated data across a huge range of scales like never before. With this onslaught of data, we can allow the focal point to shift from data collection to data analysis. Unfortunately, lack of standardized sharing mechanisms and practices often make reproducing or extending scientific results very difficult. With the creation of data organization structures and tools that drastically improve code portability, we now have the opportunity to design such a framework for communicating extensible scientific discoveries. Our proposed solution leverages these existing technologies and standards, and provides an accessible and extensible model for reproducible research, called ‘science in the cloud' (SIC). Exploiting scientific containers, cloud computing, and cloud data services, we show the capability to compute in the cloud and run a web service that enables intimate interaction with the tools and data presented. We hope this model will inspire the community to produce reproducible and, importantly, extensible results that will enable us to collectively accelerate the rate at which scientific breakthroughs are discovered, replicated, and extended.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>28327935</pmid><doi>10.1093/gigascience/gix013</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2047-217X
ispartof Gigascience, 2017-05, Vol.6 (5), p.1-10
issn 2047-217X
2047-217X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5467033
source MEDLINE; Oxford Journals Open Access Collection; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Cloud Computing
Communication
Connectome
Data analysis
Data collection
Extensibility
Humans
Image Processing, Computer-Assisted
Internet
Magnetic Resonance Imaging
Reproducibility
Science
Software
Web services
title Science in the cloud (SIC): A use case in MRI connectomics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T22%3A32%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Science%20in%20the%20cloud%20(SIC):%20A%20use%20case%20in%20MRI%20connectomics&rft.jtitle=Gigascience&rft.au=Kiar,%20Gregory&rft.date=2017-05-01&rft.volume=6&rft.issue=5&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=2047-217X&rft.eissn=2047-217X&rft_id=info:doi/10.1093/gigascience/gix013&rft_dat=%3Cproquest_pubme%3E1880087080%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2717367306&rft_id=info:pmid/28327935&rft_oup_id=10.1093/gigascience/gix013&rfr_iscdi=true