Science in the cloud (SIC): A use case in MRI connectomics
Abstract Modern technologies are enabling scientists to collect extraordinary amounts of complex and sophisticated data across a huge range of scales like never before. With this onslaught of data, we can allow the focal point to shift from data collection to data analysis. Unfortunately, lack of st...
Gespeichert in:
Veröffentlicht in: | Gigascience 2017-05, Vol.6 (5), p.1-10 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | 5 |
container_start_page | 1 |
container_title | Gigascience |
container_volume | 6 |
creator | Kiar, Gregory Gorgolewski, Krzysztof J. Kleissas, Dean Roncal, William Gray Litt, Brian Wandell, Brian Poldrack, Russel A. Wiener, Martin Vogelstein, R. Jacob Burns, Randal Vogelstein, Joshua T. |
description | Abstract
Modern technologies are enabling scientists to collect extraordinary amounts of complex and sophisticated data across a huge range of scales like never before. With this onslaught of data, we can allow the focal point to shift from data collection to data analysis. Unfortunately, lack of standardized sharing mechanisms and practices often make reproducing or extending scientific results very difficult. With the creation of data organization structures and tools that drastically improve code portability, we now have the opportunity to design such a framework for communicating extensible scientific discoveries. Our proposed solution leverages these existing technologies and standards, and provides an accessible and extensible model for reproducible research, called ‘science in the cloud' (SIC). Exploiting scientific containers, cloud computing, and cloud data services, we show the capability to compute in the cloud and run a web service that enables intimate interaction with the tools and data presented. We hope this model will inspire the community to produce reproducible and, importantly, extensible results that will enable us to collectively accelerate the rate at which scientific breakthroughs are discovered, replicated, and extended. |
doi_str_mv | 10.1093/gigascience/gix013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5467033</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/gigascience/gix013</oup_id><sourcerecordid>1880087080</sourcerecordid><originalsourceid>FETCH-LOGICAL-c534t-377d071c4d3bc70ab37fa3bb4534539a6a31b9b4742042e144bc149eba6b6a703</originalsourceid><addsrcrecordid>eNqNUc1LwzAUD6K4MfcPeJCCl3moJk3a1-4gjOHHYCI4BW8hSbOto21m04r-92Z2junJd3mP_D7yHj-ETgm-JDihV4tsIazKdKm0mz8woQeoG2AGfkDg9XBv7qC-tSvsCiCOgR6jThDTABIadtFw1np4WenVS-2p3DSpN5hNxhdDb-Q11j0J-w0_PE08ZcpSq9oUmbIn6Ggucqv7295DL7c3z-N7f_p4NxmPpr4KKat9CpBiIIqlVCrAQlKYCyolc2hIExEJSmQiGTC3caAJY1IRlmgpIhkJwLSHrlvfdSMLnSpd1pXI-brKClF9ciMy_hspsyVfmHcessjJqTMYbA0q89ZoW_Mis0rnuSi1aSwncYxxDDje_HX-h7oyTVW683gABGgEFEeOFbQsVRlrKz3fLUMw36TD99LhbTpOdLZ_xk7yk4Uj-C3BNOv_GH4BlqWcYg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2717367306</pqid></control><display><type>article</type><title>Science in the cloud (SIC): A use case in MRI connectomics</title><source>MEDLINE</source><source>Oxford Journals Open Access Collection</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Kiar, Gregory ; Gorgolewski, Krzysztof J. ; Kleissas, Dean ; Roncal, William Gray ; Litt, Brian ; Wandell, Brian ; Poldrack, Russel A. ; Wiener, Martin ; Vogelstein, R. Jacob ; Burns, Randal ; Vogelstein, Joshua T.</creator><creatorcontrib>Kiar, Gregory ; Gorgolewski, Krzysztof J. ; Kleissas, Dean ; Roncal, William Gray ; Litt, Brian ; Wandell, Brian ; Poldrack, Russel A. ; Wiener, Martin ; Vogelstein, R. Jacob ; Burns, Randal ; Vogelstein, Joshua T.</creatorcontrib><description>Abstract
Modern technologies are enabling scientists to collect extraordinary amounts of complex and sophisticated data across a huge range of scales like never before. With this onslaught of data, we can allow the focal point to shift from data collection to data analysis. Unfortunately, lack of standardized sharing mechanisms and practices often make reproducing or extending scientific results very difficult. With the creation of data organization structures and tools that drastically improve code portability, we now have the opportunity to design such a framework for communicating extensible scientific discoveries. Our proposed solution leverages these existing technologies and standards, and provides an accessible and extensible model for reproducible research, called ‘science in the cloud' (SIC). Exploiting scientific containers, cloud computing, and cloud data services, we show the capability to compute in the cloud and run a web service that enables intimate interaction with the tools and data presented. We hope this model will inspire the community to produce reproducible and, importantly, extensible results that will enable us to collectively accelerate the rate at which scientific breakthroughs are discovered, replicated, and extended.</description><identifier>ISSN: 2047-217X</identifier><identifier>EISSN: 2047-217X</identifier><identifier>DOI: 10.1093/gigascience/gix013</identifier><identifier>PMID: 28327935</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Cloud Computing ; Communication ; Connectome ; Data analysis ; Data collection ; Extensibility ; Humans ; Image Processing, Computer-Assisted ; Internet ; Magnetic Resonance Imaging ; Reproducibility ; Science ; Software ; Web services</subject><ispartof>Gigascience, 2017-05, Vol.6 (5), p.1-10</ispartof><rights>The Author 2017. Published by Oxford University Press. 2017</rights><rights>The Author 2017. Published by Oxford University Press.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c534t-377d071c4d3bc70ab37fa3bb4534539a6a31b9b4742042e144bc149eba6b6a703</citedby><cites>FETCH-LOGICAL-c534t-377d071c4d3bc70ab37fa3bb4534539a6a31b9b4742042e144bc149eba6b6a703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5467033/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5467033/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,1604,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28327935$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kiar, Gregory</creatorcontrib><creatorcontrib>Gorgolewski, Krzysztof J.</creatorcontrib><creatorcontrib>Kleissas, Dean</creatorcontrib><creatorcontrib>Roncal, William Gray</creatorcontrib><creatorcontrib>Litt, Brian</creatorcontrib><creatorcontrib>Wandell, Brian</creatorcontrib><creatorcontrib>Poldrack, Russel A.</creatorcontrib><creatorcontrib>Wiener, Martin</creatorcontrib><creatorcontrib>Vogelstein, R. Jacob</creatorcontrib><creatorcontrib>Burns, Randal</creatorcontrib><creatorcontrib>Vogelstein, Joshua T.</creatorcontrib><title>Science in the cloud (SIC): A use case in MRI connectomics</title><title>Gigascience</title><addtitle>Gigascience</addtitle><description>Abstract
Modern technologies are enabling scientists to collect extraordinary amounts of complex and sophisticated data across a huge range of scales like never before. With this onslaught of data, we can allow the focal point to shift from data collection to data analysis. Unfortunately, lack of standardized sharing mechanisms and practices often make reproducing or extending scientific results very difficult. With the creation of data organization structures and tools that drastically improve code portability, we now have the opportunity to design such a framework for communicating extensible scientific discoveries. Our proposed solution leverages these existing technologies and standards, and provides an accessible and extensible model for reproducible research, called ‘science in the cloud' (SIC). Exploiting scientific containers, cloud computing, and cloud data services, we show the capability to compute in the cloud and run a web service that enables intimate interaction with the tools and data presented. We hope this model will inspire the community to produce reproducible and, importantly, extensible results that will enable us to collectively accelerate the rate at which scientific breakthroughs are discovered, replicated, and extended.</description><subject>Cloud Computing</subject><subject>Communication</subject><subject>Connectome</subject><subject>Data analysis</subject><subject>Data collection</subject><subject>Extensibility</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Internet</subject><subject>Magnetic Resonance Imaging</subject><subject>Reproducibility</subject><subject>Science</subject><subject>Software</subject><subject>Web services</subject><issn>2047-217X</issn><issn>2047-217X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNqNUc1LwzAUD6K4MfcPeJCCl3moJk3a1-4gjOHHYCI4BW8hSbOto21m04r-92Z2junJd3mP_D7yHj-ETgm-JDihV4tsIazKdKm0mz8woQeoG2AGfkDg9XBv7qC-tSvsCiCOgR6jThDTABIadtFw1np4WenVS-2p3DSpN5hNxhdDb-Q11j0J-w0_PE08ZcpSq9oUmbIn6Ggucqv7295DL7c3z-N7f_p4NxmPpr4KKat9CpBiIIqlVCrAQlKYCyolc2hIExEJSmQiGTC3caAJY1IRlmgpIhkJwLSHrlvfdSMLnSpd1pXI-brKClF9ciMy_hspsyVfmHcessjJqTMYbA0q89ZoW_Mis0rnuSi1aSwncYxxDDje_HX-h7oyTVW683gABGgEFEeOFbQsVRlrKz3fLUMw36TD99LhbTpOdLZ_xk7yk4Uj-C3BNOv_GH4BlqWcYg</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Kiar, Gregory</creator><creator>Gorgolewski, Krzysztof J.</creator><creator>Kleissas, Dean</creator><creator>Roncal, William Gray</creator><creator>Litt, Brian</creator><creator>Wandell, Brian</creator><creator>Poldrack, Russel A.</creator><creator>Wiener, Martin</creator><creator>Vogelstein, R. Jacob</creator><creator>Burns, Randal</creator><creator>Vogelstein, Joshua T.</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170501</creationdate><title>Science in the cloud (SIC): A use case in MRI connectomics</title><author>Kiar, Gregory ; Gorgolewski, Krzysztof J. ; Kleissas, Dean ; Roncal, William Gray ; Litt, Brian ; Wandell, Brian ; Poldrack, Russel A. ; Wiener, Martin ; Vogelstein, R. Jacob ; Burns, Randal ; Vogelstein, Joshua T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c534t-377d071c4d3bc70ab37fa3bb4534539a6a31b9b4742042e144bc149eba6b6a703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Cloud Computing</topic><topic>Communication</topic><topic>Connectome</topic><topic>Data analysis</topic><topic>Data collection</topic><topic>Extensibility</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Internet</topic><topic>Magnetic Resonance Imaging</topic><topic>Reproducibility</topic><topic>Science</topic><topic>Software</topic><topic>Web services</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kiar, Gregory</creatorcontrib><creatorcontrib>Gorgolewski, Krzysztof J.</creatorcontrib><creatorcontrib>Kleissas, Dean</creatorcontrib><creatorcontrib>Roncal, William Gray</creatorcontrib><creatorcontrib>Litt, Brian</creatorcontrib><creatorcontrib>Wandell, Brian</creatorcontrib><creatorcontrib>Poldrack, Russel A.</creatorcontrib><creatorcontrib>Wiener, Martin</creatorcontrib><creatorcontrib>Vogelstein, R. Jacob</creatorcontrib><creatorcontrib>Burns, Randal</creatorcontrib><creatorcontrib>Vogelstein, Joshua T.</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Gigascience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kiar, Gregory</au><au>Gorgolewski, Krzysztof J.</au><au>Kleissas, Dean</au><au>Roncal, William Gray</au><au>Litt, Brian</au><au>Wandell, Brian</au><au>Poldrack, Russel A.</au><au>Wiener, Martin</au><au>Vogelstein, R. Jacob</au><au>Burns, Randal</au><au>Vogelstein, Joshua T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Science in the cloud (SIC): A use case in MRI connectomics</atitle><jtitle>Gigascience</jtitle><addtitle>Gigascience</addtitle><date>2017-05-01</date><risdate>2017</risdate><volume>6</volume><issue>5</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>2047-217X</issn><eissn>2047-217X</eissn><abstract>Abstract
Modern technologies are enabling scientists to collect extraordinary amounts of complex and sophisticated data across a huge range of scales like never before. With this onslaught of data, we can allow the focal point to shift from data collection to data analysis. Unfortunately, lack of standardized sharing mechanisms and practices often make reproducing or extending scientific results very difficult. With the creation of data organization structures and tools that drastically improve code portability, we now have the opportunity to design such a framework for communicating extensible scientific discoveries. Our proposed solution leverages these existing technologies and standards, and provides an accessible and extensible model for reproducible research, called ‘science in the cloud' (SIC). Exploiting scientific containers, cloud computing, and cloud data services, we show the capability to compute in the cloud and run a web service that enables intimate interaction with the tools and data presented. We hope this model will inspire the community to produce reproducible and, importantly, extensible results that will enable us to collectively accelerate the rate at which scientific breakthroughs are discovered, replicated, and extended.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>28327935</pmid><doi>10.1093/gigascience/gix013</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2047-217X |
ispartof | Gigascience, 2017-05, Vol.6 (5), p.1-10 |
issn | 2047-217X 2047-217X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5467033 |
source | MEDLINE; Oxford Journals Open Access Collection; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Cloud Computing Communication Connectome Data analysis Data collection Extensibility Humans Image Processing, Computer-Assisted Internet Magnetic Resonance Imaging Reproducibility Science Software Web services |
title | Science in the cloud (SIC): A use case in MRI connectomics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T22%3A32%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Science%20in%20the%20cloud%20(SIC):%20A%20use%20case%20in%20MRI%20connectomics&rft.jtitle=Gigascience&rft.au=Kiar,%20Gregory&rft.date=2017-05-01&rft.volume=6&rft.issue=5&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=2047-217X&rft.eissn=2047-217X&rft_id=info:doi/10.1093/gigascience/gix013&rft_dat=%3Cproquest_pubme%3E1880087080%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2717367306&rft_id=info:pmid/28327935&rft_oup_id=10.1093/gigascience/gix013&rfr_iscdi=true |