Using Dynamic Covalent Chemistry To Drive Morphological Transitions: Controlled Release of Encapsulated Nanoparticles from Block Copolymer Vesicles

Dynamic covalent chemistry is exploited to drive morphological order–order transitions to achieve the controlled release of a model payload (e.g., silica nanoparticles) encapsulated within block copolymer vesicles. More specifically, poly­(glycerol monomethacrylate)–poly­(2-hydroxypropyl methacrylat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2017-06, Vol.139 (22), p.7616-7623
Hauptverfasser: Deng, Renhua, Derry, Matthew J, Mable, Charlotte J, Ning, Yin, Armes, Steven P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7623
container_issue 22
container_start_page 7616
container_title Journal of the American Chemical Society
container_volume 139
creator Deng, Renhua
Derry, Matthew J
Mable, Charlotte J
Ning, Yin
Armes, Steven P
description Dynamic covalent chemistry is exploited to drive morphological order–order transitions to achieve the controlled release of a model payload (e.g., silica nanoparticles) encapsulated within block copolymer vesicles. More specifically, poly­(glycerol monomethacrylate)–poly­(2-hydroxypropyl methacrylate) (PGMA–PHPMA) diblock copolymer vesicles were prepared via aqueous polymerization-induced self-assembly in either the presence or absence of silica nanoparticles. Addition of 3-aminophenylboronic acid (APBA) to such vesicles results in specific binding of this reagent to some of the pendent cis-diol groups on the hydrophilic PGMA chains to form phenylboronate ester bonds in mildly alkaline aqueous solution (pH ∼ 10). This leads to a subtle increase in the effective volume fraction of this stabilizer block, which in turn causes a reduction in the packing parameter and hence induces a vesicle-to-worm (or vesicle-to-sphere) morphological transition. The evolution in copolymer morphology (and the associated sol–gel transitions) was monitored using dynamic light scattering, transmission electron microscopy, oscillatory rheology, and small-angle X-ray scattering. In contrast to the literature, in situ release of encapsulated silica nanoparticles is achieved via vesicle dissociation at room temperature; moreover, the rate of release can be fine-tuned by varying the solution pH and/or the APBA concentration. Furthermore, this strategy also works (i) for relatively thick-walled vesicles that do not normally exhibit stimulus-responsive behavior and (ii) in the presence of added salt. This novel molecular recognition strategy to trigger morphological transitions via dynamic covalent chemistry offers considerable scope for the design of new stimulus-responsive copolymer vesicles (and hydrogels) for targeted delivery and controlled release of cargoes. In particular, the conditions used in this new approach are relevant to liquid laundry formulations, whereby enzymes require protection to prevent their deactivation by bleach.
doi_str_mv 10.1021/jacs.7b02642
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5465507</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2000352745</sourcerecordid><originalsourceid>FETCH-LOGICAL-a516t-f913bae7f8682bde2870c730a653ccc7131ad285617c660de3a8ef2cca349c273</originalsourceid><addsrcrecordid>eNqFUU1v1DAQtRCILoUbZ-QjB1JsJ_4IByTYtoBUQEJbrtas4-x6cexgJyvt7-APN6FLAQmJ08gz773xvIfQU0rOKGH05Q5MPpNrwkTF7qEF5YwUnDJxHy0IIayQSpQn6FHOu-lZMUUfohOmqlrWgizQj-vswgafHwJ0zuBl3IO3YcDLre1cHtIBryI-T25v8ceY-m30ceMMeLxKELIbXAz51UQLQ4re2wZ_sd5Ctji2-CIY6PPoYZj6nyDEHtLgjLcZtyl2-K2P5tvE7aM_dDbhrzb_nD5GD1rw2T451lN0fXmxWr4vrj6_-7B8c1UAp2Io2pqWa7CyVUKxdWOZksTIkoDgpTFG0pJCwxQXVBohSGNLULZlxkBZ1YbJ8hS9vtXtx3VnGzPdncDrPrkO0kFHcPrvSXBbvYl7zSvBOZkFnh8FUvw-2jzoyTNjvYdg45g1mxwvOZMV_y-UqrqmpFZiVn1xCzUp5pxse_cjSvQcuZ4j18fIJ_izP6-4A__K-PfqmbWLYwqTqf_WugHPLrjP</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899109867</pqid></control><display><type>article</type><title>Using Dynamic Covalent Chemistry To Drive Morphological Transitions: Controlled Release of Encapsulated Nanoparticles from Block Copolymer Vesicles</title><source>ACS Publications</source><creator>Deng, Renhua ; Derry, Matthew J ; Mable, Charlotte J ; Ning, Yin ; Armes, Steven P</creator><creatorcontrib>Deng, Renhua ; Derry, Matthew J ; Mable, Charlotte J ; Ning, Yin ; Armes, Steven P</creatorcontrib><description>Dynamic covalent chemistry is exploited to drive morphological order–order transitions to achieve the controlled release of a model payload (e.g., silica nanoparticles) encapsulated within block copolymer vesicles. More specifically, poly­(glycerol monomethacrylate)–poly­(2-hydroxypropyl methacrylate) (PGMA–PHPMA) diblock copolymer vesicles were prepared via aqueous polymerization-induced self-assembly in either the presence or absence of silica nanoparticles. Addition of 3-aminophenylboronic acid (APBA) to such vesicles results in specific binding of this reagent to some of the pendent cis-diol groups on the hydrophilic PGMA chains to form phenylboronate ester bonds in mildly alkaline aqueous solution (pH ∼ 10). This leads to a subtle increase in the effective volume fraction of this stabilizer block, which in turn causes a reduction in the packing parameter and hence induces a vesicle-to-worm (or vesicle-to-sphere) morphological transition. The evolution in copolymer morphology (and the associated sol–gel transitions) was monitored using dynamic light scattering, transmission electron microscopy, oscillatory rheology, and small-angle X-ray scattering. In contrast to the literature, in situ release of encapsulated silica nanoparticles is achieved via vesicle dissociation at room temperature; moreover, the rate of release can be fine-tuned by varying the solution pH and/or the APBA concentration. Furthermore, this strategy also works (i) for relatively thick-walled vesicles that do not normally exhibit stimulus-responsive behavior and (ii) in the presence of added salt. This novel molecular recognition strategy to trigger morphological transitions via dynamic covalent chemistry offers considerable scope for the design of new stimulus-responsive copolymer vesicles (and hydrogels) for targeted delivery and controlled release of cargoes. In particular, the conditions used in this new approach are relevant to liquid laundry formulations, whereby enzymes require protection to prevent their deactivation by bleach.</description><identifier>ISSN: 0002-7863</identifier><identifier>ISSN: 1520-5126</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.7b02642</identifier><identifier>PMID: 28497960</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>ambient temperature ; aqueous solutions ; bleaching agents ; composite polymers ; dissociation ; encapsulation ; enzymes ; glycerol ; hydrogels ; hydrophilicity ; laundry ; light scattering ; nanoparticles ; rheology ; silica ; transmission electron microscopy ; X-radiation</subject><ispartof>Journal of the American Chemical Society, 2017-06, Vol.139 (22), p.7616-7623</ispartof><rights>Copyright © 2017 American Chemical Society</rights><rights>Copyright © 2017 American Chemical Society 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a516t-f913bae7f8682bde2870c730a653ccc7131ad285617c660de3a8ef2cca349c273</citedby><cites>FETCH-LOGICAL-a516t-f913bae7f8682bde2870c730a653ccc7131ad285617c660de3a8ef2cca349c273</cites><orcidid>0000-0002-8289-6351 ; 0000-0001-5010-6725 ; 0000-0001-7217-5772</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.7b02642$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.7b02642$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28497960$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Deng, Renhua</creatorcontrib><creatorcontrib>Derry, Matthew J</creatorcontrib><creatorcontrib>Mable, Charlotte J</creatorcontrib><creatorcontrib>Ning, Yin</creatorcontrib><creatorcontrib>Armes, Steven P</creatorcontrib><title>Using Dynamic Covalent Chemistry To Drive Morphological Transitions: Controlled Release of Encapsulated Nanoparticles from Block Copolymer Vesicles</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Dynamic covalent chemistry is exploited to drive morphological order–order transitions to achieve the controlled release of a model payload (e.g., silica nanoparticles) encapsulated within block copolymer vesicles. More specifically, poly­(glycerol monomethacrylate)–poly­(2-hydroxypropyl methacrylate) (PGMA–PHPMA) diblock copolymer vesicles were prepared via aqueous polymerization-induced self-assembly in either the presence or absence of silica nanoparticles. Addition of 3-aminophenylboronic acid (APBA) to such vesicles results in specific binding of this reagent to some of the pendent cis-diol groups on the hydrophilic PGMA chains to form phenylboronate ester bonds in mildly alkaline aqueous solution (pH ∼ 10). This leads to a subtle increase in the effective volume fraction of this stabilizer block, which in turn causes a reduction in the packing parameter and hence induces a vesicle-to-worm (or vesicle-to-sphere) morphological transition. The evolution in copolymer morphology (and the associated sol–gel transitions) was monitored using dynamic light scattering, transmission electron microscopy, oscillatory rheology, and small-angle X-ray scattering. In contrast to the literature, in situ release of encapsulated silica nanoparticles is achieved via vesicle dissociation at room temperature; moreover, the rate of release can be fine-tuned by varying the solution pH and/or the APBA concentration. Furthermore, this strategy also works (i) for relatively thick-walled vesicles that do not normally exhibit stimulus-responsive behavior and (ii) in the presence of added salt. This novel molecular recognition strategy to trigger morphological transitions via dynamic covalent chemistry offers considerable scope for the design of new stimulus-responsive copolymer vesicles (and hydrogels) for targeted delivery and controlled release of cargoes. In particular, the conditions used in this new approach are relevant to liquid laundry formulations, whereby enzymes require protection to prevent their deactivation by bleach.</description><subject>ambient temperature</subject><subject>aqueous solutions</subject><subject>bleaching agents</subject><subject>composite polymers</subject><subject>dissociation</subject><subject>encapsulation</subject><subject>enzymes</subject><subject>glycerol</subject><subject>hydrogels</subject><subject>hydrophilicity</subject><subject>laundry</subject><subject>light scattering</subject><subject>nanoparticles</subject><subject>rheology</subject><subject>silica</subject><subject>transmission electron microscopy</subject><subject>X-radiation</subject><issn>0002-7863</issn><issn>1520-5126</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFUU1v1DAQtRCILoUbZ-QjB1JsJ_4IByTYtoBUQEJbrtas4-x6cexgJyvt7-APN6FLAQmJ08gz773xvIfQU0rOKGH05Q5MPpNrwkTF7qEF5YwUnDJxHy0IIayQSpQn6FHOu-lZMUUfohOmqlrWgizQj-vswgafHwJ0zuBl3IO3YcDLre1cHtIBryI-T25v8ceY-m30ceMMeLxKELIbXAz51UQLQ4re2wZ_sd5Ctji2-CIY6PPoYZj6nyDEHtLgjLcZtyl2-K2P5tvE7aM_dDbhrzb_nD5GD1rw2T451lN0fXmxWr4vrj6_-7B8c1UAp2Io2pqWa7CyVUKxdWOZksTIkoDgpTFG0pJCwxQXVBohSGNLULZlxkBZ1YbJ8hS9vtXtx3VnGzPdncDrPrkO0kFHcPrvSXBbvYl7zSvBOZkFnh8FUvw-2jzoyTNjvYdg45g1mxwvOZMV_y-UqrqmpFZiVn1xCzUp5pxse_cjSvQcuZ4j18fIJ_izP6-4A__K-PfqmbWLYwqTqf_WugHPLrjP</recordid><startdate>20170607</startdate><enddate>20170607</enddate><creator>Deng, Renhua</creator><creator>Derry, Matthew J</creator><creator>Mable, Charlotte J</creator><creator>Ning, Yin</creator><creator>Armes, Steven P</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8289-6351</orcidid><orcidid>https://orcid.org/0000-0001-5010-6725</orcidid><orcidid>https://orcid.org/0000-0001-7217-5772</orcidid></search><sort><creationdate>20170607</creationdate><title>Using Dynamic Covalent Chemistry To Drive Morphological Transitions: Controlled Release of Encapsulated Nanoparticles from Block Copolymer Vesicles</title><author>Deng, Renhua ; Derry, Matthew J ; Mable, Charlotte J ; Ning, Yin ; Armes, Steven P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a516t-f913bae7f8682bde2870c730a653ccc7131ad285617c660de3a8ef2cca349c273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>ambient temperature</topic><topic>aqueous solutions</topic><topic>bleaching agents</topic><topic>composite polymers</topic><topic>dissociation</topic><topic>encapsulation</topic><topic>enzymes</topic><topic>glycerol</topic><topic>hydrogels</topic><topic>hydrophilicity</topic><topic>laundry</topic><topic>light scattering</topic><topic>nanoparticles</topic><topic>rheology</topic><topic>silica</topic><topic>transmission electron microscopy</topic><topic>X-radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Renhua</creatorcontrib><creatorcontrib>Derry, Matthew J</creatorcontrib><creatorcontrib>Mable, Charlotte J</creatorcontrib><creatorcontrib>Ning, Yin</creatorcontrib><creatorcontrib>Armes, Steven P</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Renhua</au><au>Derry, Matthew J</au><au>Mable, Charlotte J</au><au>Ning, Yin</au><au>Armes, Steven P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using Dynamic Covalent Chemistry To Drive Morphological Transitions: Controlled Release of Encapsulated Nanoparticles from Block Copolymer Vesicles</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2017-06-07</date><risdate>2017</risdate><volume>139</volume><issue>22</issue><spage>7616</spage><epage>7623</epage><pages>7616-7623</pages><issn>0002-7863</issn><issn>1520-5126</issn><eissn>1520-5126</eissn><abstract>Dynamic covalent chemistry is exploited to drive morphological order–order transitions to achieve the controlled release of a model payload (e.g., silica nanoparticles) encapsulated within block copolymer vesicles. More specifically, poly­(glycerol monomethacrylate)–poly­(2-hydroxypropyl methacrylate) (PGMA–PHPMA) diblock copolymer vesicles were prepared via aqueous polymerization-induced self-assembly in either the presence or absence of silica nanoparticles. Addition of 3-aminophenylboronic acid (APBA) to such vesicles results in specific binding of this reagent to some of the pendent cis-diol groups on the hydrophilic PGMA chains to form phenylboronate ester bonds in mildly alkaline aqueous solution (pH ∼ 10). This leads to a subtle increase in the effective volume fraction of this stabilizer block, which in turn causes a reduction in the packing parameter and hence induces a vesicle-to-worm (or vesicle-to-sphere) morphological transition. The evolution in copolymer morphology (and the associated sol–gel transitions) was monitored using dynamic light scattering, transmission electron microscopy, oscillatory rheology, and small-angle X-ray scattering. In contrast to the literature, in situ release of encapsulated silica nanoparticles is achieved via vesicle dissociation at room temperature; moreover, the rate of release can be fine-tuned by varying the solution pH and/or the APBA concentration. Furthermore, this strategy also works (i) for relatively thick-walled vesicles that do not normally exhibit stimulus-responsive behavior and (ii) in the presence of added salt. This novel molecular recognition strategy to trigger morphological transitions via dynamic covalent chemistry offers considerable scope for the design of new stimulus-responsive copolymer vesicles (and hydrogels) for targeted delivery and controlled release of cargoes. In particular, the conditions used in this new approach are relevant to liquid laundry formulations, whereby enzymes require protection to prevent their deactivation by bleach.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28497960</pmid><doi>10.1021/jacs.7b02642</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8289-6351</orcidid><orcidid>https://orcid.org/0000-0001-5010-6725</orcidid><orcidid>https://orcid.org/0000-0001-7217-5772</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2017-06, Vol.139 (22), p.7616-7623
issn 0002-7863
1520-5126
1520-5126
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5465507
source ACS Publications
subjects ambient temperature
aqueous solutions
bleaching agents
composite polymers
dissociation
encapsulation
enzymes
glycerol
hydrogels
hydrophilicity
laundry
light scattering
nanoparticles
rheology
silica
transmission electron microscopy
X-radiation
title Using Dynamic Covalent Chemistry To Drive Morphological Transitions: Controlled Release of Encapsulated Nanoparticles from Block Copolymer Vesicles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T08%3A05%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20Dynamic%20Covalent%20Chemistry%20To%20Drive%20Morphological%20Transitions:%20Controlled%20Release%20of%20Encapsulated%20Nanoparticles%20from%20Block%20Copolymer%20Vesicles&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Deng,%20Renhua&rft.date=2017-06-07&rft.volume=139&rft.issue=22&rft.spage=7616&rft.epage=7623&rft.pages=7616-7623&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.7b02642&rft_dat=%3Cproquest_pubme%3E2000352745%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899109867&rft_id=info:pmid/28497960&rfr_iscdi=true