Using Dynamic Covalent Chemistry To Drive Morphological Transitions: Controlled Release of Encapsulated Nanoparticles from Block Copolymer Vesicles
Dynamic covalent chemistry is exploited to drive morphological order–order transitions to achieve the controlled release of a model payload (e.g., silica nanoparticles) encapsulated within block copolymer vesicles. More specifically, poly(glycerol monomethacrylate)–poly(2-hydroxypropyl methacrylat...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2017-06, Vol.139 (22), p.7616-7623 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7623 |
---|---|
container_issue | 22 |
container_start_page | 7616 |
container_title | Journal of the American Chemical Society |
container_volume | 139 |
creator | Deng, Renhua Derry, Matthew J Mable, Charlotte J Ning, Yin Armes, Steven P |
description | Dynamic covalent chemistry is exploited to drive morphological order–order transitions to achieve the controlled release of a model payload (e.g., silica nanoparticles) encapsulated within block copolymer vesicles. More specifically, poly(glycerol monomethacrylate)–poly(2-hydroxypropyl methacrylate) (PGMA–PHPMA) diblock copolymer vesicles were prepared via aqueous polymerization-induced self-assembly in either the presence or absence of silica nanoparticles. Addition of 3-aminophenylboronic acid (APBA) to such vesicles results in specific binding of this reagent to some of the pendent cis-diol groups on the hydrophilic PGMA chains to form phenylboronate ester bonds in mildly alkaline aqueous solution (pH ∼ 10). This leads to a subtle increase in the effective volume fraction of this stabilizer block, which in turn causes a reduction in the packing parameter and hence induces a vesicle-to-worm (or vesicle-to-sphere) morphological transition. The evolution in copolymer morphology (and the associated sol–gel transitions) was monitored using dynamic light scattering, transmission electron microscopy, oscillatory rheology, and small-angle X-ray scattering. In contrast to the literature, in situ release of encapsulated silica nanoparticles is achieved via vesicle dissociation at room temperature; moreover, the rate of release can be fine-tuned by varying the solution pH and/or the APBA concentration. Furthermore, this strategy also works (i) for relatively thick-walled vesicles that do not normally exhibit stimulus-responsive behavior and (ii) in the presence of added salt. This novel molecular recognition strategy to trigger morphological transitions via dynamic covalent chemistry offers considerable scope for the design of new stimulus-responsive copolymer vesicles (and hydrogels) for targeted delivery and controlled release of cargoes. In particular, the conditions used in this new approach are relevant to liquid laundry formulations, whereby enzymes require protection to prevent their deactivation by bleach. |
doi_str_mv | 10.1021/jacs.7b02642 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5465507</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2000352745</sourcerecordid><originalsourceid>FETCH-LOGICAL-a516t-f913bae7f8682bde2870c730a653ccc7131ad285617c660de3a8ef2cca349c273</originalsourceid><addsrcrecordid>eNqFUU1v1DAQtRCILoUbZ-QjB1JsJ_4IByTYtoBUQEJbrtas4-x6cexgJyvt7-APN6FLAQmJ08gz773xvIfQU0rOKGH05Q5MPpNrwkTF7qEF5YwUnDJxHy0IIayQSpQn6FHOu-lZMUUfohOmqlrWgizQj-vswgafHwJ0zuBl3IO3YcDLre1cHtIBryI-T25v8ceY-m30ceMMeLxKELIbXAz51UQLQ4re2wZ_sd5Ctji2-CIY6PPoYZj6nyDEHtLgjLcZtyl2-K2P5tvE7aM_dDbhrzb_nD5GD1rw2T451lN0fXmxWr4vrj6_-7B8c1UAp2Io2pqWa7CyVUKxdWOZksTIkoDgpTFG0pJCwxQXVBohSGNLULZlxkBZ1YbJ8hS9vtXtx3VnGzPdncDrPrkO0kFHcPrvSXBbvYl7zSvBOZkFnh8FUvw-2jzoyTNjvYdg45g1mxwvOZMV_y-UqrqmpFZiVn1xCzUp5pxse_cjSvQcuZ4j18fIJ_izP6-4A__K-PfqmbWLYwqTqf_WugHPLrjP</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899109867</pqid></control><display><type>article</type><title>Using Dynamic Covalent Chemistry To Drive Morphological Transitions: Controlled Release of Encapsulated Nanoparticles from Block Copolymer Vesicles</title><source>ACS Publications</source><creator>Deng, Renhua ; Derry, Matthew J ; Mable, Charlotte J ; Ning, Yin ; Armes, Steven P</creator><creatorcontrib>Deng, Renhua ; Derry, Matthew J ; Mable, Charlotte J ; Ning, Yin ; Armes, Steven P</creatorcontrib><description>Dynamic covalent chemistry is exploited to drive morphological order–order transitions to achieve the controlled release of a model payload (e.g., silica nanoparticles) encapsulated within block copolymer vesicles. More specifically, poly(glycerol monomethacrylate)–poly(2-hydroxypropyl methacrylate) (PGMA–PHPMA) diblock copolymer vesicles were prepared via aqueous polymerization-induced self-assembly in either the presence or absence of silica nanoparticles. Addition of 3-aminophenylboronic acid (APBA) to such vesicles results in specific binding of this reagent to some of the pendent cis-diol groups on the hydrophilic PGMA chains to form phenylboronate ester bonds in mildly alkaline aqueous solution (pH ∼ 10). This leads to a subtle increase in the effective volume fraction of this stabilizer block, which in turn causes a reduction in the packing parameter and hence induces a vesicle-to-worm (or vesicle-to-sphere) morphological transition. The evolution in copolymer morphology (and the associated sol–gel transitions) was monitored using dynamic light scattering, transmission electron microscopy, oscillatory rheology, and small-angle X-ray scattering. In contrast to the literature, in situ release of encapsulated silica nanoparticles is achieved via vesicle dissociation at room temperature; moreover, the rate of release can be fine-tuned by varying the solution pH and/or the APBA concentration. Furthermore, this strategy also works (i) for relatively thick-walled vesicles that do not normally exhibit stimulus-responsive behavior and (ii) in the presence of added salt. This novel molecular recognition strategy to trigger morphological transitions via dynamic covalent chemistry offers considerable scope for the design of new stimulus-responsive copolymer vesicles (and hydrogels) for targeted delivery and controlled release of cargoes. In particular, the conditions used in this new approach are relevant to liquid laundry formulations, whereby enzymes require protection to prevent their deactivation by bleach.</description><identifier>ISSN: 0002-7863</identifier><identifier>ISSN: 1520-5126</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.7b02642</identifier><identifier>PMID: 28497960</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>ambient temperature ; aqueous solutions ; bleaching agents ; composite polymers ; dissociation ; encapsulation ; enzymes ; glycerol ; hydrogels ; hydrophilicity ; laundry ; light scattering ; nanoparticles ; rheology ; silica ; transmission electron microscopy ; X-radiation</subject><ispartof>Journal of the American Chemical Society, 2017-06, Vol.139 (22), p.7616-7623</ispartof><rights>Copyright © 2017 American Chemical Society</rights><rights>Copyright © 2017 American Chemical Society 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a516t-f913bae7f8682bde2870c730a653ccc7131ad285617c660de3a8ef2cca349c273</citedby><cites>FETCH-LOGICAL-a516t-f913bae7f8682bde2870c730a653ccc7131ad285617c660de3a8ef2cca349c273</cites><orcidid>0000-0002-8289-6351 ; 0000-0001-5010-6725 ; 0000-0001-7217-5772</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.7b02642$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.7b02642$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28497960$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Deng, Renhua</creatorcontrib><creatorcontrib>Derry, Matthew J</creatorcontrib><creatorcontrib>Mable, Charlotte J</creatorcontrib><creatorcontrib>Ning, Yin</creatorcontrib><creatorcontrib>Armes, Steven P</creatorcontrib><title>Using Dynamic Covalent Chemistry To Drive Morphological Transitions: Controlled Release of Encapsulated Nanoparticles from Block Copolymer Vesicles</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Dynamic covalent chemistry is exploited to drive morphological order–order transitions to achieve the controlled release of a model payload (e.g., silica nanoparticles) encapsulated within block copolymer vesicles. More specifically, poly(glycerol monomethacrylate)–poly(2-hydroxypropyl methacrylate) (PGMA–PHPMA) diblock copolymer vesicles were prepared via aqueous polymerization-induced self-assembly in either the presence or absence of silica nanoparticles. Addition of 3-aminophenylboronic acid (APBA) to such vesicles results in specific binding of this reagent to some of the pendent cis-diol groups on the hydrophilic PGMA chains to form phenylboronate ester bonds in mildly alkaline aqueous solution (pH ∼ 10). This leads to a subtle increase in the effective volume fraction of this stabilizer block, which in turn causes a reduction in the packing parameter and hence induces a vesicle-to-worm (or vesicle-to-sphere) morphological transition. The evolution in copolymer morphology (and the associated sol–gel transitions) was monitored using dynamic light scattering, transmission electron microscopy, oscillatory rheology, and small-angle X-ray scattering. In contrast to the literature, in situ release of encapsulated silica nanoparticles is achieved via vesicle dissociation at room temperature; moreover, the rate of release can be fine-tuned by varying the solution pH and/or the APBA concentration. Furthermore, this strategy also works (i) for relatively thick-walled vesicles that do not normally exhibit stimulus-responsive behavior and (ii) in the presence of added salt. This novel molecular recognition strategy to trigger morphological transitions via dynamic covalent chemistry offers considerable scope for the design of new stimulus-responsive copolymer vesicles (and hydrogels) for targeted delivery and controlled release of cargoes. In particular, the conditions used in this new approach are relevant to liquid laundry formulations, whereby enzymes require protection to prevent their deactivation by bleach.</description><subject>ambient temperature</subject><subject>aqueous solutions</subject><subject>bleaching agents</subject><subject>composite polymers</subject><subject>dissociation</subject><subject>encapsulation</subject><subject>enzymes</subject><subject>glycerol</subject><subject>hydrogels</subject><subject>hydrophilicity</subject><subject>laundry</subject><subject>light scattering</subject><subject>nanoparticles</subject><subject>rheology</subject><subject>silica</subject><subject>transmission electron microscopy</subject><subject>X-radiation</subject><issn>0002-7863</issn><issn>1520-5126</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFUU1v1DAQtRCILoUbZ-QjB1JsJ_4IByTYtoBUQEJbrtas4-x6cexgJyvt7-APN6FLAQmJ08gz773xvIfQU0rOKGH05Q5MPpNrwkTF7qEF5YwUnDJxHy0IIayQSpQn6FHOu-lZMUUfohOmqlrWgizQj-vswgafHwJ0zuBl3IO3YcDLre1cHtIBryI-T25v8ceY-m30ceMMeLxKELIbXAz51UQLQ4re2wZ_sd5Ctji2-CIY6PPoYZj6nyDEHtLgjLcZtyl2-K2P5tvE7aM_dDbhrzb_nD5GD1rw2T451lN0fXmxWr4vrj6_-7B8c1UAp2Io2pqWa7CyVUKxdWOZksTIkoDgpTFG0pJCwxQXVBohSGNLULZlxkBZ1YbJ8hS9vtXtx3VnGzPdncDrPrkO0kFHcPrvSXBbvYl7zSvBOZkFnh8FUvw-2jzoyTNjvYdg45g1mxwvOZMV_y-UqrqmpFZiVn1xCzUp5pxse_cjSvQcuZ4j18fIJ_izP6-4A__K-PfqmbWLYwqTqf_WugHPLrjP</recordid><startdate>20170607</startdate><enddate>20170607</enddate><creator>Deng, Renhua</creator><creator>Derry, Matthew J</creator><creator>Mable, Charlotte J</creator><creator>Ning, Yin</creator><creator>Armes, Steven P</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8289-6351</orcidid><orcidid>https://orcid.org/0000-0001-5010-6725</orcidid><orcidid>https://orcid.org/0000-0001-7217-5772</orcidid></search><sort><creationdate>20170607</creationdate><title>Using Dynamic Covalent Chemistry To Drive Morphological Transitions: Controlled Release of Encapsulated Nanoparticles from Block Copolymer Vesicles</title><author>Deng, Renhua ; Derry, Matthew J ; Mable, Charlotte J ; Ning, Yin ; Armes, Steven P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a516t-f913bae7f8682bde2870c730a653ccc7131ad285617c660de3a8ef2cca349c273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>ambient temperature</topic><topic>aqueous solutions</topic><topic>bleaching agents</topic><topic>composite polymers</topic><topic>dissociation</topic><topic>encapsulation</topic><topic>enzymes</topic><topic>glycerol</topic><topic>hydrogels</topic><topic>hydrophilicity</topic><topic>laundry</topic><topic>light scattering</topic><topic>nanoparticles</topic><topic>rheology</topic><topic>silica</topic><topic>transmission electron microscopy</topic><topic>X-radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Renhua</creatorcontrib><creatorcontrib>Derry, Matthew J</creatorcontrib><creatorcontrib>Mable, Charlotte J</creatorcontrib><creatorcontrib>Ning, Yin</creatorcontrib><creatorcontrib>Armes, Steven P</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Renhua</au><au>Derry, Matthew J</au><au>Mable, Charlotte J</au><au>Ning, Yin</au><au>Armes, Steven P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using Dynamic Covalent Chemistry To Drive Morphological Transitions: Controlled Release of Encapsulated Nanoparticles from Block Copolymer Vesicles</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2017-06-07</date><risdate>2017</risdate><volume>139</volume><issue>22</issue><spage>7616</spage><epage>7623</epage><pages>7616-7623</pages><issn>0002-7863</issn><issn>1520-5126</issn><eissn>1520-5126</eissn><abstract>Dynamic covalent chemistry is exploited to drive morphological order–order transitions to achieve the controlled release of a model payload (e.g., silica nanoparticles) encapsulated within block copolymer vesicles. More specifically, poly(glycerol monomethacrylate)–poly(2-hydroxypropyl methacrylate) (PGMA–PHPMA) diblock copolymer vesicles were prepared via aqueous polymerization-induced self-assembly in either the presence or absence of silica nanoparticles. Addition of 3-aminophenylboronic acid (APBA) to such vesicles results in specific binding of this reagent to some of the pendent cis-diol groups on the hydrophilic PGMA chains to form phenylboronate ester bonds in mildly alkaline aqueous solution (pH ∼ 10). This leads to a subtle increase in the effective volume fraction of this stabilizer block, which in turn causes a reduction in the packing parameter and hence induces a vesicle-to-worm (or vesicle-to-sphere) morphological transition. The evolution in copolymer morphology (and the associated sol–gel transitions) was monitored using dynamic light scattering, transmission electron microscopy, oscillatory rheology, and small-angle X-ray scattering. In contrast to the literature, in situ release of encapsulated silica nanoparticles is achieved via vesicle dissociation at room temperature; moreover, the rate of release can be fine-tuned by varying the solution pH and/or the APBA concentration. Furthermore, this strategy also works (i) for relatively thick-walled vesicles that do not normally exhibit stimulus-responsive behavior and (ii) in the presence of added salt. This novel molecular recognition strategy to trigger morphological transitions via dynamic covalent chemistry offers considerable scope for the design of new stimulus-responsive copolymer vesicles (and hydrogels) for targeted delivery and controlled release of cargoes. In particular, the conditions used in this new approach are relevant to liquid laundry formulations, whereby enzymes require protection to prevent their deactivation by bleach.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28497960</pmid><doi>10.1021/jacs.7b02642</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8289-6351</orcidid><orcidid>https://orcid.org/0000-0001-5010-6725</orcidid><orcidid>https://orcid.org/0000-0001-7217-5772</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2017-06, Vol.139 (22), p.7616-7623 |
issn | 0002-7863 1520-5126 1520-5126 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5465507 |
source | ACS Publications |
subjects | ambient temperature aqueous solutions bleaching agents composite polymers dissociation encapsulation enzymes glycerol hydrogels hydrophilicity laundry light scattering nanoparticles rheology silica transmission electron microscopy X-radiation |
title | Using Dynamic Covalent Chemistry To Drive Morphological Transitions: Controlled Release of Encapsulated Nanoparticles from Block Copolymer Vesicles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T08%3A05%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20Dynamic%20Covalent%20Chemistry%20To%20Drive%20Morphological%20Transitions:%20Controlled%20Release%20of%20Encapsulated%20Nanoparticles%20from%20Block%20Copolymer%20Vesicles&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Deng,%20Renhua&rft.date=2017-06-07&rft.volume=139&rft.issue=22&rft.spage=7616&rft.epage=7623&rft.pages=7616-7623&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.7b02642&rft_dat=%3Cproquest_pubme%3E2000352745%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899109867&rft_id=info:pmid/28497960&rfr_iscdi=true |