Poly(C)-binding protein 1 (Pcbp1) regulates skeletal muscle differentiation by modulating microRNA processing in myoblasts

Regulation of gene expression during muscle development and disease remains incompletely understood. microRNAs are a class of small non-coding RNAs that regulate gene expression and function post-transcriptionally. The poly(C)-binding protein1 (Pcbp1, hnRNP-E1, or αCP-1) is an RNA-binding protein th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2017-06, Vol.292 (23), p.9540-9550
Hauptverfasser: Espinoza-Lewis, Ramón A., Yang, Qiumei, Liu, Jianming, Huang, Zhan-Peng, Hu, Xiaoyun, Chen, Daiwen, Wang, Da-Zhi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9550
container_issue 23
container_start_page 9540
container_title The Journal of biological chemistry
container_volume 292
creator Espinoza-Lewis, Ramón A.
Yang, Qiumei
Liu, Jianming
Huang, Zhan-Peng
Hu, Xiaoyun
Chen, Daiwen
Wang, Da-Zhi
description Regulation of gene expression during muscle development and disease remains incompletely understood. microRNAs are a class of small non-coding RNAs that regulate gene expression and function post-transcriptionally. The poly(C)-binding protein1 (Pcbp1, hnRNP-E1, or αCP-1) is an RNA-binding protein that has been reported to bind the 3′-UTRs of target genes to regulate mRNA stability and protein translation. However, Pcbp1's biological function and the general mechanism of action remain largely undetermined. Here, we report that Pcbp1 is a component of the miRNA-processing pathway that regulates miRNA biogenesis. siRNA-based inhibition of Pcbp1 in mouse skeletal muscle myoblasts led to dysregulated cellular proliferation and differentiation. We also found that Pcbp1 null mutant mice exhibit early embryonic lethality, indicating that Pcbp1 is indispensable for embryonic development. Interestingly, hypomorphic Pcbp1 mutant mice displayed defects in muscle growth due to defects in the proliferation and differentiation of myoblasts and muscle satellite cells, in addition to a slow to fast myofibril switch. Moreover, Pcbp1 modulated the processing of muscle-enriched miR-1, miR-133, and miR-206 by physically interacting with argonaute 2 (AGO2) and other miRNA pathway components. Our study, therefore, uncovers the important function of Pcbp1 in skeletal muscle and the microRNA pathway, signifying its potential as a therapeutic target for muscle disease.
doi_str_mv 10.1074/jbc.M116.773671
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5465481</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820321438</els_id><sourcerecordid>1884882680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-c9b8ce46c90534c95dd724ed0e4b1e571bb5e47a1a4630e426c08801d42cee0b3</originalsourceid><addsrcrecordid>eNp1kU1v1DAQhi0EotvCmRvKcXvI1pPYiXNBqlbQVipQIZC4Wf6YXVyceGsnlba_HkfbVnDAF0vjx8-M_RLyDugKaMvObrVZfQZoVm1bNy28IAugoi5rDj9fkgWlFZRdxcUROU7plubFOnhNjipRC-C8WZCHm-D3y_Vpqd1g3bAtdjGM6IYCiuWN0Ts4LSJuJ69GTEX6jR5H5Yt-SsZjYd1mgxGH0anRhaHQ-6IPdoZnU-9MDN--nM9KgynNtSzu90F7lcb0hrzaKJ_w7eN-Qn58-vh9fVlef724Wp9fl4axeixNp4VB1piO8pqZjlvbVgwtRaYBeQtac2StAsWaOherxlAhKFhWGUSq6xPy4eDdTbpHa_K8UXm5i65XcS-DcvLfk8H9kttwLzlrOBOQBctHQQx3E6ZR9i4Z9F4NGKYkQQgmRNUImtGzA5qfnlLEzXMboHJOTObE5JyYPCSWb7z_e7pn_imiDHQHAPMf3TuMMhmHg0HrIppR2uD-K_8DW_ioDA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1884882680</pqid></control><display><type>article</type><title>Poly(C)-binding protein 1 (Pcbp1) regulates skeletal muscle differentiation by modulating microRNA processing in myoblasts</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Espinoza-Lewis, Ramón A. ; Yang, Qiumei ; Liu, Jianming ; Huang, Zhan-Peng ; Hu, Xiaoyun ; Chen, Daiwen ; Wang, Da-Zhi</creator><creatorcontrib>Espinoza-Lewis, Ramón A. ; Yang, Qiumei ; Liu, Jianming ; Huang, Zhan-Peng ; Hu, Xiaoyun ; Chen, Daiwen ; Wang, Da-Zhi</creatorcontrib><description>Regulation of gene expression during muscle development and disease remains incompletely understood. microRNAs are a class of small non-coding RNAs that regulate gene expression and function post-transcriptionally. The poly(C)-binding protein1 (Pcbp1, hnRNP-E1, or αCP-1) is an RNA-binding protein that has been reported to bind the 3′-UTRs of target genes to regulate mRNA stability and protein translation. However, Pcbp1's biological function and the general mechanism of action remain largely undetermined. Here, we report that Pcbp1 is a component of the miRNA-processing pathway that regulates miRNA biogenesis. siRNA-based inhibition of Pcbp1 in mouse skeletal muscle myoblasts led to dysregulated cellular proliferation and differentiation. We also found that Pcbp1 null mutant mice exhibit early embryonic lethality, indicating that Pcbp1 is indispensable for embryonic development. Interestingly, hypomorphic Pcbp1 mutant mice displayed defects in muscle growth due to defects in the proliferation and differentiation of myoblasts and muscle satellite cells, in addition to a slow to fast myofibril switch. Moreover, Pcbp1 modulated the processing of muscle-enriched miR-1, miR-133, and miR-206 by physically interacting with argonaute 2 (AGO2) and other miRNA pathway components. Our study, therefore, uncovers the important function of Pcbp1 in skeletal muscle and the microRNA pathway, signifying its potential as a therapeutic target for muscle disease.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M116.773671</identifier><identifier>PMID: 28381556</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Argonaute Proteins - genetics ; Argonaute Proteins - metabolism ; Carrier Proteins - genetics ; Carrier Proteins - metabolism ; Cell Differentiation - physiology ; Cell Line ; Cell Proliferation - physiology ; Dicer ; DNA-Binding Proteins ; Gene Regulation ; Mice ; microRNA (miRNA) ; MicroRNAs - genetics ; MicroRNAs - metabolism ; Muscle, Skeletal - metabolism ; Myoblasts, Skeletal - metabolism ; Pcbp ; poly(C)-binding proteins ; RNA ; RNA Processing, Post-Transcriptional - physiology ; RNA Stability - physiology ; RNA-binding protein ; RNA-Binding Proteins ; Signal Transduction - physiology ; skeletal muscle</subject><ispartof>The Journal of biological chemistry, 2017-06, Vol.292 (23), p.9540-9550</ispartof><rights>2017 © 2017 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2017 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><rights>2017 by The American Society for Biochemistry and Molecular Biology, Inc. 2017 The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-c9b8ce46c90534c95dd724ed0e4b1e571bb5e47a1a4630e426c08801d42cee0b3</citedby><cites>FETCH-LOGICAL-c443t-c9b8ce46c90534c95dd724ed0e4b1e571bb5e47a1a4630e426c08801d42cee0b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5465481/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5465481/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,728,781,785,886,27928,27929,53795,53797</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28381556$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Espinoza-Lewis, Ramón A.</creatorcontrib><creatorcontrib>Yang, Qiumei</creatorcontrib><creatorcontrib>Liu, Jianming</creatorcontrib><creatorcontrib>Huang, Zhan-Peng</creatorcontrib><creatorcontrib>Hu, Xiaoyun</creatorcontrib><creatorcontrib>Chen, Daiwen</creatorcontrib><creatorcontrib>Wang, Da-Zhi</creatorcontrib><title>Poly(C)-binding protein 1 (Pcbp1) regulates skeletal muscle differentiation by modulating microRNA processing in myoblasts</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Regulation of gene expression during muscle development and disease remains incompletely understood. microRNAs are a class of small non-coding RNAs that regulate gene expression and function post-transcriptionally. The poly(C)-binding protein1 (Pcbp1, hnRNP-E1, or αCP-1) is an RNA-binding protein that has been reported to bind the 3′-UTRs of target genes to regulate mRNA stability and protein translation. However, Pcbp1's biological function and the general mechanism of action remain largely undetermined. Here, we report that Pcbp1 is a component of the miRNA-processing pathway that regulates miRNA biogenesis. siRNA-based inhibition of Pcbp1 in mouse skeletal muscle myoblasts led to dysregulated cellular proliferation and differentiation. We also found that Pcbp1 null mutant mice exhibit early embryonic lethality, indicating that Pcbp1 is indispensable for embryonic development. Interestingly, hypomorphic Pcbp1 mutant mice displayed defects in muscle growth due to defects in the proliferation and differentiation of myoblasts and muscle satellite cells, in addition to a slow to fast myofibril switch. Moreover, Pcbp1 modulated the processing of muscle-enriched miR-1, miR-133, and miR-206 by physically interacting with argonaute 2 (AGO2) and other miRNA pathway components. Our study, therefore, uncovers the important function of Pcbp1 in skeletal muscle and the microRNA pathway, signifying its potential as a therapeutic target for muscle disease.</description><subject>Animals</subject><subject>Argonaute Proteins - genetics</subject><subject>Argonaute Proteins - metabolism</subject><subject>Carrier Proteins - genetics</subject><subject>Carrier Proteins - metabolism</subject><subject>Cell Differentiation - physiology</subject><subject>Cell Line</subject><subject>Cell Proliferation - physiology</subject><subject>Dicer</subject><subject>DNA-Binding Proteins</subject><subject>Gene Regulation</subject><subject>Mice</subject><subject>microRNA (miRNA)</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - metabolism</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Myoblasts, Skeletal - metabolism</subject><subject>Pcbp</subject><subject>poly(C)-binding proteins</subject><subject>RNA</subject><subject>RNA Processing, Post-Transcriptional - physiology</subject><subject>RNA Stability - physiology</subject><subject>RNA-binding protein</subject><subject>RNA-Binding Proteins</subject><subject>Signal Transduction - physiology</subject><subject>skeletal muscle</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU1v1DAQhi0EotvCmRvKcXvI1pPYiXNBqlbQVipQIZC4Wf6YXVyceGsnlba_HkfbVnDAF0vjx8-M_RLyDugKaMvObrVZfQZoVm1bNy28IAugoi5rDj9fkgWlFZRdxcUROU7plubFOnhNjipRC-C8WZCHm-D3y_Vpqd1g3bAtdjGM6IYCiuWN0Ts4LSJuJ69GTEX6jR5H5Yt-SsZjYd1mgxGH0anRhaHQ-6IPdoZnU-9MDN--nM9KgynNtSzu90F7lcb0hrzaKJ_w7eN-Qn58-vh9fVlef724Wp9fl4axeixNp4VB1piO8pqZjlvbVgwtRaYBeQtac2StAsWaOherxlAhKFhWGUSq6xPy4eDdTbpHa_K8UXm5i65XcS-DcvLfk8H9kttwLzlrOBOQBctHQQx3E6ZR9i4Z9F4NGKYkQQgmRNUImtGzA5qfnlLEzXMboHJOTObE5JyYPCSWb7z_e7pn_imiDHQHAPMf3TuMMhmHg0HrIppR2uD-K_8DW_ioDA</recordid><startdate>20170609</startdate><enddate>20170609</enddate><creator>Espinoza-Lewis, Ramón A.</creator><creator>Yang, Qiumei</creator><creator>Liu, Jianming</creator><creator>Huang, Zhan-Peng</creator><creator>Hu, Xiaoyun</creator><creator>Chen, Daiwen</creator><creator>Wang, Da-Zhi</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170609</creationdate><title>Poly(C)-binding protein 1 (Pcbp1) regulates skeletal muscle differentiation by modulating microRNA processing in myoblasts</title><author>Espinoza-Lewis, Ramón A. ; Yang, Qiumei ; Liu, Jianming ; Huang, Zhan-Peng ; Hu, Xiaoyun ; Chen, Daiwen ; Wang, Da-Zhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-c9b8ce46c90534c95dd724ed0e4b1e571bb5e47a1a4630e426c08801d42cee0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Argonaute Proteins - genetics</topic><topic>Argonaute Proteins - metabolism</topic><topic>Carrier Proteins - genetics</topic><topic>Carrier Proteins - metabolism</topic><topic>Cell Differentiation - physiology</topic><topic>Cell Line</topic><topic>Cell Proliferation - physiology</topic><topic>Dicer</topic><topic>DNA-Binding Proteins</topic><topic>Gene Regulation</topic><topic>Mice</topic><topic>microRNA (miRNA)</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - metabolism</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Myoblasts, Skeletal - metabolism</topic><topic>Pcbp</topic><topic>poly(C)-binding proteins</topic><topic>RNA</topic><topic>RNA Processing, Post-Transcriptional - physiology</topic><topic>RNA Stability - physiology</topic><topic>RNA-binding protein</topic><topic>RNA-Binding Proteins</topic><topic>Signal Transduction - physiology</topic><topic>skeletal muscle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Espinoza-Lewis, Ramón A.</creatorcontrib><creatorcontrib>Yang, Qiumei</creatorcontrib><creatorcontrib>Liu, Jianming</creatorcontrib><creatorcontrib>Huang, Zhan-Peng</creatorcontrib><creatorcontrib>Hu, Xiaoyun</creatorcontrib><creatorcontrib>Chen, Daiwen</creatorcontrib><creatorcontrib>Wang, Da-Zhi</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Espinoza-Lewis, Ramón A.</au><au>Yang, Qiumei</au><au>Liu, Jianming</au><au>Huang, Zhan-Peng</au><au>Hu, Xiaoyun</au><au>Chen, Daiwen</au><au>Wang, Da-Zhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Poly(C)-binding protein 1 (Pcbp1) regulates skeletal muscle differentiation by modulating microRNA processing in myoblasts</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2017-06-09</date><risdate>2017</risdate><volume>292</volume><issue>23</issue><spage>9540</spage><epage>9550</epage><pages>9540-9550</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Regulation of gene expression during muscle development and disease remains incompletely understood. microRNAs are a class of small non-coding RNAs that regulate gene expression and function post-transcriptionally. The poly(C)-binding protein1 (Pcbp1, hnRNP-E1, or αCP-1) is an RNA-binding protein that has been reported to bind the 3′-UTRs of target genes to regulate mRNA stability and protein translation. However, Pcbp1's biological function and the general mechanism of action remain largely undetermined. Here, we report that Pcbp1 is a component of the miRNA-processing pathway that regulates miRNA biogenesis. siRNA-based inhibition of Pcbp1 in mouse skeletal muscle myoblasts led to dysregulated cellular proliferation and differentiation. We also found that Pcbp1 null mutant mice exhibit early embryonic lethality, indicating that Pcbp1 is indispensable for embryonic development. Interestingly, hypomorphic Pcbp1 mutant mice displayed defects in muscle growth due to defects in the proliferation and differentiation of myoblasts and muscle satellite cells, in addition to a slow to fast myofibril switch. Moreover, Pcbp1 modulated the processing of muscle-enriched miR-1, miR-133, and miR-206 by physically interacting with argonaute 2 (AGO2) and other miRNA pathway components. Our study, therefore, uncovers the important function of Pcbp1 in skeletal muscle and the microRNA pathway, signifying its potential as a therapeutic target for muscle disease.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>28381556</pmid><doi>10.1074/jbc.M116.773671</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2017-06, Vol.292 (23), p.9540-9550
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5465481
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Animals
Argonaute Proteins - genetics
Argonaute Proteins - metabolism
Carrier Proteins - genetics
Carrier Proteins - metabolism
Cell Differentiation - physiology
Cell Line
Cell Proliferation - physiology
Dicer
DNA-Binding Proteins
Gene Regulation
Mice
microRNA (miRNA)
MicroRNAs - genetics
MicroRNAs - metabolism
Muscle, Skeletal - metabolism
Myoblasts, Skeletal - metabolism
Pcbp
poly(C)-binding proteins
RNA
RNA Processing, Post-Transcriptional - physiology
RNA Stability - physiology
RNA-binding protein
RNA-Binding Proteins
Signal Transduction - physiology
skeletal muscle
title Poly(C)-binding protein 1 (Pcbp1) regulates skeletal muscle differentiation by modulating microRNA processing in myoblasts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T02%3A53%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Poly(C)-binding%20protein%201%20(Pcbp1)%20regulates%20skeletal%20muscle%20differentiation%20by%20modulating%20microRNA%20processing%20in%20myoblasts&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Espinoza-Lewis,%20Ram%C3%B3n%20A.&rft.date=2017-06-09&rft.volume=292&rft.issue=23&rft.spage=9540&rft.epage=9550&rft.pages=9540-9550&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M116.773671&rft_dat=%3Cproquest_pubme%3E1884882680%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1884882680&rft_id=info:pmid/28381556&rft_els_id=S0021925820321438&rfr_iscdi=true