Poly(C)-binding protein 1 (Pcbp1) regulates skeletal muscle differentiation by modulating microRNA processing in myoblasts
Regulation of gene expression during muscle development and disease remains incompletely understood. microRNAs are a class of small non-coding RNAs that regulate gene expression and function post-transcriptionally. The poly(C)-binding protein1 (Pcbp1, hnRNP-E1, or αCP-1) is an RNA-binding protein th...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2017-06, Vol.292 (23), p.9540-9550 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9550 |
---|---|
container_issue | 23 |
container_start_page | 9540 |
container_title | The Journal of biological chemistry |
container_volume | 292 |
creator | Espinoza-Lewis, Ramón A. Yang, Qiumei Liu, Jianming Huang, Zhan-Peng Hu, Xiaoyun Chen, Daiwen Wang, Da-Zhi |
description | Regulation of gene expression during muscle development and disease remains incompletely understood. microRNAs are a class of small non-coding RNAs that regulate gene expression and function post-transcriptionally. The poly(C)-binding protein1 (Pcbp1, hnRNP-E1, or αCP-1) is an RNA-binding protein that has been reported to bind the 3′-UTRs of target genes to regulate mRNA stability and protein translation. However, Pcbp1's biological function and the general mechanism of action remain largely undetermined. Here, we report that Pcbp1 is a component of the miRNA-processing pathway that regulates miRNA biogenesis. siRNA-based inhibition of Pcbp1 in mouse skeletal muscle myoblasts led to dysregulated cellular proliferation and differentiation. We also found that Pcbp1 null mutant mice exhibit early embryonic lethality, indicating that Pcbp1 is indispensable for embryonic development. Interestingly, hypomorphic Pcbp1 mutant mice displayed defects in muscle growth due to defects in the proliferation and differentiation of myoblasts and muscle satellite cells, in addition to a slow to fast myofibril switch. Moreover, Pcbp1 modulated the processing of muscle-enriched miR-1, miR-133, and miR-206 by physically interacting with argonaute 2 (AGO2) and other miRNA pathway components. Our study, therefore, uncovers the important function of Pcbp1 in skeletal muscle and the microRNA pathway, signifying its potential as a therapeutic target for muscle disease. |
doi_str_mv | 10.1074/jbc.M116.773671 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5465481</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820321438</els_id><sourcerecordid>1884882680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-c9b8ce46c90534c95dd724ed0e4b1e571bb5e47a1a4630e426c08801d42cee0b3</originalsourceid><addsrcrecordid>eNp1kU1v1DAQhi0EotvCmRvKcXvI1pPYiXNBqlbQVipQIZC4Wf6YXVyceGsnlba_HkfbVnDAF0vjx8-M_RLyDugKaMvObrVZfQZoVm1bNy28IAugoi5rDj9fkgWlFZRdxcUROU7plubFOnhNjipRC-C8WZCHm-D3y_Vpqd1g3bAtdjGM6IYCiuWN0Ts4LSJuJ69GTEX6jR5H5Yt-SsZjYd1mgxGH0anRhaHQ-6IPdoZnU-9MDN--nM9KgynNtSzu90F7lcb0hrzaKJ_w7eN-Qn58-vh9fVlef724Wp9fl4axeixNp4VB1piO8pqZjlvbVgwtRaYBeQtac2StAsWaOherxlAhKFhWGUSq6xPy4eDdTbpHa_K8UXm5i65XcS-DcvLfk8H9kttwLzlrOBOQBctHQQx3E6ZR9i4Z9F4NGKYkQQgmRNUImtGzA5qfnlLEzXMboHJOTObE5JyYPCSWb7z_e7pn_imiDHQHAPMf3TuMMhmHg0HrIppR2uD-K_8DW_ioDA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1884882680</pqid></control><display><type>article</type><title>Poly(C)-binding protein 1 (Pcbp1) regulates skeletal muscle differentiation by modulating microRNA processing in myoblasts</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Espinoza-Lewis, Ramón A. ; Yang, Qiumei ; Liu, Jianming ; Huang, Zhan-Peng ; Hu, Xiaoyun ; Chen, Daiwen ; Wang, Da-Zhi</creator><creatorcontrib>Espinoza-Lewis, Ramón A. ; Yang, Qiumei ; Liu, Jianming ; Huang, Zhan-Peng ; Hu, Xiaoyun ; Chen, Daiwen ; Wang, Da-Zhi</creatorcontrib><description>Regulation of gene expression during muscle development and disease remains incompletely understood. microRNAs are a class of small non-coding RNAs that regulate gene expression and function post-transcriptionally. The poly(C)-binding protein1 (Pcbp1, hnRNP-E1, or αCP-1) is an RNA-binding protein that has been reported to bind the 3′-UTRs of target genes to regulate mRNA stability and protein translation. However, Pcbp1's biological function and the general mechanism of action remain largely undetermined. Here, we report that Pcbp1 is a component of the miRNA-processing pathway that regulates miRNA biogenesis. siRNA-based inhibition of Pcbp1 in mouse skeletal muscle myoblasts led to dysregulated cellular proliferation and differentiation. We also found that Pcbp1 null mutant mice exhibit early embryonic lethality, indicating that Pcbp1 is indispensable for embryonic development. Interestingly, hypomorphic Pcbp1 mutant mice displayed defects in muscle growth due to defects in the proliferation and differentiation of myoblasts and muscle satellite cells, in addition to a slow to fast myofibril switch. Moreover, Pcbp1 modulated the processing of muscle-enriched miR-1, miR-133, and miR-206 by physically interacting with argonaute 2 (AGO2) and other miRNA pathway components. Our study, therefore, uncovers the important function of Pcbp1 in skeletal muscle and the microRNA pathway, signifying its potential as a therapeutic target for muscle disease.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M116.773671</identifier><identifier>PMID: 28381556</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Argonaute Proteins - genetics ; Argonaute Proteins - metabolism ; Carrier Proteins - genetics ; Carrier Proteins - metabolism ; Cell Differentiation - physiology ; Cell Line ; Cell Proliferation - physiology ; Dicer ; DNA-Binding Proteins ; Gene Regulation ; Mice ; microRNA (miRNA) ; MicroRNAs - genetics ; MicroRNAs - metabolism ; Muscle, Skeletal - metabolism ; Myoblasts, Skeletal - metabolism ; Pcbp ; poly(C)-binding proteins ; RNA ; RNA Processing, Post-Transcriptional - physiology ; RNA Stability - physiology ; RNA-binding protein ; RNA-Binding Proteins ; Signal Transduction - physiology ; skeletal muscle</subject><ispartof>The Journal of biological chemistry, 2017-06, Vol.292 (23), p.9540-9550</ispartof><rights>2017 © 2017 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2017 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><rights>2017 by The American Society for Biochemistry and Molecular Biology, Inc. 2017 The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-c9b8ce46c90534c95dd724ed0e4b1e571bb5e47a1a4630e426c08801d42cee0b3</citedby><cites>FETCH-LOGICAL-c443t-c9b8ce46c90534c95dd724ed0e4b1e571bb5e47a1a4630e426c08801d42cee0b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5465481/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5465481/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,728,781,785,886,27928,27929,53795,53797</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28381556$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Espinoza-Lewis, Ramón A.</creatorcontrib><creatorcontrib>Yang, Qiumei</creatorcontrib><creatorcontrib>Liu, Jianming</creatorcontrib><creatorcontrib>Huang, Zhan-Peng</creatorcontrib><creatorcontrib>Hu, Xiaoyun</creatorcontrib><creatorcontrib>Chen, Daiwen</creatorcontrib><creatorcontrib>Wang, Da-Zhi</creatorcontrib><title>Poly(C)-binding protein 1 (Pcbp1) regulates skeletal muscle differentiation by modulating microRNA processing in myoblasts</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Regulation of gene expression during muscle development and disease remains incompletely understood. microRNAs are a class of small non-coding RNAs that regulate gene expression and function post-transcriptionally. The poly(C)-binding protein1 (Pcbp1, hnRNP-E1, or αCP-1) is an RNA-binding protein that has been reported to bind the 3′-UTRs of target genes to regulate mRNA stability and protein translation. However, Pcbp1's biological function and the general mechanism of action remain largely undetermined. Here, we report that Pcbp1 is a component of the miRNA-processing pathway that regulates miRNA biogenesis. siRNA-based inhibition of Pcbp1 in mouse skeletal muscle myoblasts led to dysregulated cellular proliferation and differentiation. We also found that Pcbp1 null mutant mice exhibit early embryonic lethality, indicating that Pcbp1 is indispensable for embryonic development. Interestingly, hypomorphic Pcbp1 mutant mice displayed defects in muscle growth due to defects in the proliferation and differentiation of myoblasts and muscle satellite cells, in addition to a slow to fast myofibril switch. Moreover, Pcbp1 modulated the processing of muscle-enriched miR-1, miR-133, and miR-206 by physically interacting with argonaute 2 (AGO2) and other miRNA pathway components. Our study, therefore, uncovers the important function of Pcbp1 in skeletal muscle and the microRNA pathway, signifying its potential as a therapeutic target for muscle disease.</description><subject>Animals</subject><subject>Argonaute Proteins - genetics</subject><subject>Argonaute Proteins - metabolism</subject><subject>Carrier Proteins - genetics</subject><subject>Carrier Proteins - metabolism</subject><subject>Cell Differentiation - physiology</subject><subject>Cell Line</subject><subject>Cell Proliferation - physiology</subject><subject>Dicer</subject><subject>DNA-Binding Proteins</subject><subject>Gene Regulation</subject><subject>Mice</subject><subject>microRNA (miRNA)</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - metabolism</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Myoblasts, Skeletal - metabolism</subject><subject>Pcbp</subject><subject>poly(C)-binding proteins</subject><subject>RNA</subject><subject>RNA Processing, Post-Transcriptional - physiology</subject><subject>RNA Stability - physiology</subject><subject>RNA-binding protein</subject><subject>RNA-Binding Proteins</subject><subject>Signal Transduction - physiology</subject><subject>skeletal muscle</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU1v1DAQhi0EotvCmRvKcXvI1pPYiXNBqlbQVipQIZC4Wf6YXVyceGsnlba_HkfbVnDAF0vjx8-M_RLyDugKaMvObrVZfQZoVm1bNy28IAugoi5rDj9fkgWlFZRdxcUROU7plubFOnhNjipRC-C8WZCHm-D3y_Vpqd1g3bAtdjGM6IYCiuWN0Ts4LSJuJ69GTEX6jR5H5Yt-SsZjYd1mgxGH0anRhaHQ-6IPdoZnU-9MDN--nM9KgynNtSzu90F7lcb0hrzaKJ_w7eN-Qn58-vh9fVlef724Wp9fl4axeixNp4VB1piO8pqZjlvbVgwtRaYBeQtac2StAsWaOherxlAhKFhWGUSq6xPy4eDdTbpHa_K8UXm5i65XcS-DcvLfk8H9kttwLzlrOBOQBctHQQx3E6ZR9i4Z9F4NGKYkQQgmRNUImtGzA5qfnlLEzXMboHJOTObE5JyYPCSWb7z_e7pn_imiDHQHAPMf3TuMMhmHg0HrIppR2uD-K_8DW_ioDA</recordid><startdate>20170609</startdate><enddate>20170609</enddate><creator>Espinoza-Lewis, Ramón A.</creator><creator>Yang, Qiumei</creator><creator>Liu, Jianming</creator><creator>Huang, Zhan-Peng</creator><creator>Hu, Xiaoyun</creator><creator>Chen, Daiwen</creator><creator>Wang, Da-Zhi</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170609</creationdate><title>Poly(C)-binding protein 1 (Pcbp1) regulates skeletal muscle differentiation by modulating microRNA processing in myoblasts</title><author>Espinoza-Lewis, Ramón A. ; Yang, Qiumei ; Liu, Jianming ; Huang, Zhan-Peng ; Hu, Xiaoyun ; Chen, Daiwen ; Wang, Da-Zhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-c9b8ce46c90534c95dd724ed0e4b1e571bb5e47a1a4630e426c08801d42cee0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Argonaute Proteins - genetics</topic><topic>Argonaute Proteins - metabolism</topic><topic>Carrier Proteins - genetics</topic><topic>Carrier Proteins - metabolism</topic><topic>Cell Differentiation - physiology</topic><topic>Cell Line</topic><topic>Cell Proliferation - physiology</topic><topic>Dicer</topic><topic>DNA-Binding Proteins</topic><topic>Gene Regulation</topic><topic>Mice</topic><topic>microRNA (miRNA)</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - metabolism</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Myoblasts, Skeletal - metabolism</topic><topic>Pcbp</topic><topic>poly(C)-binding proteins</topic><topic>RNA</topic><topic>RNA Processing, Post-Transcriptional - physiology</topic><topic>RNA Stability - physiology</topic><topic>RNA-binding protein</topic><topic>RNA-Binding Proteins</topic><topic>Signal Transduction - physiology</topic><topic>skeletal muscle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Espinoza-Lewis, Ramón A.</creatorcontrib><creatorcontrib>Yang, Qiumei</creatorcontrib><creatorcontrib>Liu, Jianming</creatorcontrib><creatorcontrib>Huang, Zhan-Peng</creatorcontrib><creatorcontrib>Hu, Xiaoyun</creatorcontrib><creatorcontrib>Chen, Daiwen</creatorcontrib><creatorcontrib>Wang, Da-Zhi</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Espinoza-Lewis, Ramón A.</au><au>Yang, Qiumei</au><au>Liu, Jianming</au><au>Huang, Zhan-Peng</au><au>Hu, Xiaoyun</au><au>Chen, Daiwen</au><au>Wang, Da-Zhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Poly(C)-binding protein 1 (Pcbp1) regulates skeletal muscle differentiation by modulating microRNA processing in myoblasts</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2017-06-09</date><risdate>2017</risdate><volume>292</volume><issue>23</issue><spage>9540</spage><epage>9550</epage><pages>9540-9550</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Regulation of gene expression during muscle development and disease remains incompletely understood. microRNAs are a class of small non-coding RNAs that regulate gene expression and function post-transcriptionally. The poly(C)-binding protein1 (Pcbp1, hnRNP-E1, or αCP-1) is an RNA-binding protein that has been reported to bind the 3′-UTRs of target genes to regulate mRNA stability and protein translation. However, Pcbp1's biological function and the general mechanism of action remain largely undetermined. Here, we report that Pcbp1 is a component of the miRNA-processing pathway that regulates miRNA biogenesis. siRNA-based inhibition of Pcbp1 in mouse skeletal muscle myoblasts led to dysregulated cellular proliferation and differentiation. We also found that Pcbp1 null mutant mice exhibit early embryonic lethality, indicating that Pcbp1 is indispensable for embryonic development. Interestingly, hypomorphic Pcbp1 mutant mice displayed defects in muscle growth due to defects in the proliferation and differentiation of myoblasts and muscle satellite cells, in addition to a slow to fast myofibril switch. Moreover, Pcbp1 modulated the processing of muscle-enriched miR-1, miR-133, and miR-206 by physically interacting with argonaute 2 (AGO2) and other miRNA pathway components. Our study, therefore, uncovers the important function of Pcbp1 in skeletal muscle and the microRNA pathway, signifying its potential as a therapeutic target for muscle disease.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>28381556</pmid><doi>10.1074/jbc.M116.773671</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2017-06, Vol.292 (23), p.9540-9550 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5465481 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | Animals Argonaute Proteins - genetics Argonaute Proteins - metabolism Carrier Proteins - genetics Carrier Proteins - metabolism Cell Differentiation - physiology Cell Line Cell Proliferation - physiology Dicer DNA-Binding Proteins Gene Regulation Mice microRNA (miRNA) MicroRNAs - genetics MicroRNAs - metabolism Muscle, Skeletal - metabolism Myoblasts, Skeletal - metabolism Pcbp poly(C)-binding proteins RNA RNA Processing, Post-Transcriptional - physiology RNA Stability - physiology RNA-binding protein RNA-Binding Proteins Signal Transduction - physiology skeletal muscle |
title | Poly(C)-binding protein 1 (Pcbp1) regulates skeletal muscle differentiation by modulating microRNA processing in myoblasts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T02%3A53%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Poly(C)-binding%20protein%201%20(Pcbp1)%20regulates%20skeletal%20muscle%20differentiation%20by%20modulating%20microRNA%20processing%20in%20myoblasts&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Espinoza-Lewis,%20Ram%C3%B3n%20A.&rft.date=2017-06-09&rft.volume=292&rft.issue=23&rft.spage=9540&rft.epage=9550&rft.pages=9540-9550&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M116.773671&rft_dat=%3Cproquest_pubme%3E1884882680%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1884882680&rft_id=info:pmid/28381556&rft_els_id=S0021925820321438&rfr_iscdi=true |