Exhaustive Conformational Sampling of Complex Fused Ring Macrocycles Using Inverse Kinematics

Natural product and synthetic macrocycles are chemically and topologically diverse. An efficient, accurate, and general method for generating macrocycle conformations would enable structure-based design of macrocycle drugs or host–guest complexes. Computational sampling also provides insight into tr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical theory and computation 2016-09, Vol.12 (9), p.4674-4687
Hauptverfasser: Coutsias, Evangelos A, Lexa, Katrina W, Wester, Michael J, Pollock, Sara N, Jacobson, Matthew P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4687
container_issue 9
container_start_page 4674
container_title Journal of chemical theory and computation
container_volume 12
creator Coutsias, Evangelos A
Lexa, Katrina W
Wester, Michael J
Pollock, Sara N
Jacobson, Matthew P
description Natural product and synthetic macrocycles are chemically and topologically diverse. An efficient, accurate, and general method for generating macrocycle conformations would enable structure-based design of macrocycle drugs or host–guest complexes. Computational sampling also provides insight into transiently populated states, complementing crystallographic and NMR data. Here, we report a new algorithm, BRIKARD, that addresses this challenge through computational algebraic geometry and inverse kinematics together with local energy minimization. BRIKARD is demonstrated on 67 diverse macrocycles with structural data, encompassing various ring topologies. We find this approach enumerates diverse structures with macrocyclic RMSD < 1.0 Å to the experimental conformation for 85% of our data set in contrast to success rates of 67–75% with other approaches, while for the subset of 21 more challenging compounds in the data set, these rates are 57% and 10–29%, respectively. Because the algorithm can be efficiently run in parallel on many processors, exhaustive conformational sampling of complex cycles can be obtained in minutes rather than hours: with a 40 processor implementation protocol, BRIKARD samples the conformational diversity of a potential energy landscape in a median of 1.3 minutes of wallclock time, much faster than 3.1–10.3 hours necessary with current programs. By rigorously testing BRIKARD on a broad range of scaffolds with highly complex ring systems, we push the frontiers of macrocycle sampling to encompass multiring compounds, including those with more than 50 ring atoms and up to seven interlaced flexible rings.
doi_str_mv 10.1021/acs.jctc.6b00250
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5465426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1819432176</sourcerecordid><originalsourceid>FETCH-LOGICAL-a466t-6ca3d35fbff75ccc7c10dd62144d7aa2867595421198aaab10e53be89ccca2cb3</originalsourceid><addsrcrecordid>eNqNkctLxDAQh4Movu-epEcP7ppJ0rS9CLL4QkXwcZQwTVOttM2atIv-96buuuhB8JRh5jcfST5C9oCOgTI4Qu3Hr7rTY5lTymK6QjYhFtkok0yuLmtIN8iW96-Uci4YXycbLBEigYxvkqfT9xfsfVfNTDSxbWldg11lW6yje2ymddU-R7YMo1Cb9-is96aI7obuDWpn9YeujY8e_dC5bGfGeRNdVa0ZKNrvkLUSa292F-c2eTw7fZhcjK5vzy8nJ9cjFFJ2I6mRFzwu87JMYq11ooEWhWQgRJEgslQmcRYLBpCliJgDNTHPTZqFLDKd821yPOdO-7wxhTZt57BWU1c16D6UxUr9nrTVi3q2MxULGbgyAA4WAGffeuM71VRem7rG1tjeK0hTSkEA0H9EIROcQTJQ6Twafsp7Z8rljYCqQaAKAtUgUC0EhpX9ny9ZLnwbC4HDeeBr1fYuqPJ_8z4ByempuA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1819432176</pqid></control><display><type>article</type><title>Exhaustive Conformational Sampling of Complex Fused Ring Macrocycles Using Inverse Kinematics</title><source>ACS Publications</source><creator>Coutsias, Evangelos A ; Lexa, Katrina W ; Wester, Michael J ; Pollock, Sara N ; Jacobson, Matthew P</creator><creatorcontrib>Coutsias, Evangelos A ; Lexa, Katrina W ; Wester, Michael J ; Pollock, Sara N ; Jacobson, Matthew P</creatorcontrib><description>Natural product and synthetic macrocycles are chemically and topologically diverse. An efficient, accurate, and general method for generating macrocycle conformations would enable structure-based design of macrocycle drugs or host–guest complexes. Computational sampling also provides insight into transiently populated states, complementing crystallographic and NMR data. Here, we report a new algorithm, BRIKARD, that addresses this challenge through computational algebraic geometry and inverse kinematics together with local energy minimization. BRIKARD is demonstrated on 67 diverse macrocycles with structural data, encompassing various ring topologies. We find this approach enumerates diverse structures with macrocyclic RMSD &lt; 1.0 Å to the experimental conformation for 85% of our data set in contrast to success rates of 67–75% with other approaches, while for the subset of 21 more challenging compounds in the data set, these rates are 57% and 10–29%, respectively. Because the algorithm can be efficiently run in parallel on many processors, exhaustive conformational sampling of complex cycles can be obtained in minutes rather than hours: with a 40 processor implementation protocol, BRIKARD samples the conformational diversity of a potential energy landscape in a median of 1.3 minutes of wallclock time, much faster than 3.1–10.3 hours necessary with current programs. By rigorously testing BRIKARD on a broad range of scaffolds with highly complex ring systems, we push the frontiers of macrocycle sampling to encompass multiring compounds, including those with more than 50 ring atoms and up to seven interlaced flexible rings.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.6b00250</identifier><identifier>PMID: 27447193</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Algebra ; Algorithms ; Computation ; Controller area network ; Inverse kinematics ; Macrocyclic compounds ; Processors ; Rings (mathematics) ; Sampling</subject><ispartof>Journal of chemical theory and computation, 2016-09, Vol.12 (9), p.4674-4687</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a466t-6ca3d35fbff75ccc7c10dd62144d7aa2867595421198aaab10e53be89ccca2cb3</citedby><cites>FETCH-LOGICAL-a466t-6ca3d35fbff75ccc7c10dd62144d7aa2867595421198aaab10e53be89ccca2cb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jctc.6b00250$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jctc.6b00250$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,778,782,883,2754,27063,27911,27912,56725,56775</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27447193$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Coutsias, Evangelos A</creatorcontrib><creatorcontrib>Lexa, Katrina W</creatorcontrib><creatorcontrib>Wester, Michael J</creatorcontrib><creatorcontrib>Pollock, Sara N</creatorcontrib><creatorcontrib>Jacobson, Matthew P</creatorcontrib><title>Exhaustive Conformational Sampling of Complex Fused Ring Macrocycles Using Inverse Kinematics</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>Natural product and synthetic macrocycles are chemically and topologically diverse. An efficient, accurate, and general method for generating macrocycle conformations would enable structure-based design of macrocycle drugs or host–guest complexes. Computational sampling also provides insight into transiently populated states, complementing crystallographic and NMR data. Here, we report a new algorithm, BRIKARD, that addresses this challenge through computational algebraic geometry and inverse kinematics together with local energy minimization. BRIKARD is demonstrated on 67 diverse macrocycles with structural data, encompassing various ring topologies. We find this approach enumerates diverse structures with macrocyclic RMSD &lt; 1.0 Å to the experimental conformation for 85% of our data set in contrast to success rates of 67–75% with other approaches, while for the subset of 21 more challenging compounds in the data set, these rates are 57% and 10–29%, respectively. Because the algorithm can be efficiently run in parallel on many processors, exhaustive conformational sampling of complex cycles can be obtained in minutes rather than hours: with a 40 processor implementation protocol, BRIKARD samples the conformational diversity of a potential energy landscape in a median of 1.3 minutes of wallclock time, much faster than 3.1–10.3 hours necessary with current programs. By rigorously testing BRIKARD on a broad range of scaffolds with highly complex ring systems, we push the frontiers of macrocycle sampling to encompass multiring compounds, including those with more than 50 ring atoms and up to seven interlaced flexible rings.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Computation</subject><subject>Controller area network</subject><subject>Inverse kinematics</subject><subject>Macrocyclic compounds</subject><subject>Processors</subject><subject>Rings (mathematics)</subject><subject>Sampling</subject><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkctLxDAQh4Movu-epEcP7ppJ0rS9CLL4QkXwcZQwTVOttM2atIv-96buuuhB8JRh5jcfST5C9oCOgTI4Qu3Hr7rTY5lTymK6QjYhFtkok0yuLmtIN8iW96-Uci4YXycbLBEigYxvkqfT9xfsfVfNTDSxbWldg11lW6yje2ymddU-R7YMo1Cb9-is96aI7obuDWpn9YeujY8e_dC5bGfGeRNdVa0ZKNrvkLUSa292F-c2eTw7fZhcjK5vzy8nJ9cjFFJ2I6mRFzwu87JMYq11ooEWhWQgRJEgslQmcRYLBpCliJgDNTHPTZqFLDKd821yPOdO-7wxhTZt57BWU1c16D6UxUr9nrTVi3q2MxULGbgyAA4WAGffeuM71VRem7rG1tjeK0hTSkEA0H9EIROcQTJQ6Twafsp7Z8rljYCqQaAKAtUgUC0EhpX9ny9ZLnwbC4HDeeBr1fYuqPJ_8z4ByempuA</recordid><startdate>20160913</startdate><enddate>20160913</enddate><creator>Coutsias, Evangelos A</creator><creator>Lexa, Katrina W</creator><creator>Wester, Michael J</creator><creator>Pollock, Sara N</creator><creator>Jacobson, Matthew P</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>5PM</scope></search><sort><creationdate>20160913</creationdate><title>Exhaustive Conformational Sampling of Complex Fused Ring Macrocycles Using Inverse Kinematics</title><author>Coutsias, Evangelos A ; Lexa, Katrina W ; Wester, Michael J ; Pollock, Sara N ; Jacobson, Matthew P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a466t-6ca3d35fbff75ccc7c10dd62144d7aa2867595421198aaab10e53be89ccca2cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Computation</topic><topic>Controller area network</topic><topic>Inverse kinematics</topic><topic>Macrocyclic compounds</topic><topic>Processors</topic><topic>Rings (mathematics)</topic><topic>Sampling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coutsias, Evangelos A</creatorcontrib><creatorcontrib>Lexa, Katrina W</creatorcontrib><creatorcontrib>Wester, Michael J</creatorcontrib><creatorcontrib>Pollock, Sara N</creatorcontrib><creatorcontrib>Jacobson, Matthew P</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coutsias, Evangelos A</au><au>Lexa, Katrina W</au><au>Wester, Michael J</au><au>Pollock, Sara N</au><au>Jacobson, Matthew P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exhaustive Conformational Sampling of Complex Fused Ring Macrocycles Using Inverse Kinematics</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2016-09-13</date><risdate>2016</risdate><volume>12</volume><issue>9</issue><spage>4674</spage><epage>4687</epage><pages>4674-4687</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>Natural product and synthetic macrocycles are chemically and topologically diverse. An efficient, accurate, and general method for generating macrocycle conformations would enable structure-based design of macrocycle drugs or host–guest complexes. Computational sampling also provides insight into transiently populated states, complementing crystallographic and NMR data. Here, we report a new algorithm, BRIKARD, that addresses this challenge through computational algebraic geometry and inverse kinematics together with local energy minimization. BRIKARD is demonstrated on 67 diverse macrocycles with structural data, encompassing various ring topologies. We find this approach enumerates diverse structures with macrocyclic RMSD &lt; 1.0 Å to the experimental conformation for 85% of our data set in contrast to success rates of 67–75% with other approaches, while for the subset of 21 more challenging compounds in the data set, these rates are 57% and 10–29%, respectively. Because the algorithm can be efficiently run in parallel on many processors, exhaustive conformational sampling of complex cycles can be obtained in minutes rather than hours: with a 40 processor implementation protocol, BRIKARD samples the conformational diversity of a potential energy landscape in a median of 1.3 minutes of wallclock time, much faster than 3.1–10.3 hours necessary with current programs. By rigorously testing BRIKARD on a broad range of scaffolds with highly complex ring systems, we push the frontiers of macrocycle sampling to encompass multiring compounds, including those with more than 50 ring atoms and up to seven interlaced flexible rings.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>27447193</pmid><doi>10.1021/acs.jctc.6b00250</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1549-9618
ispartof Journal of chemical theory and computation, 2016-09, Vol.12 (9), p.4674-4687
issn 1549-9618
1549-9626
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5465426
source ACS Publications
subjects Algebra
Algorithms
Computation
Controller area network
Inverse kinematics
Macrocyclic compounds
Processors
Rings (mathematics)
Sampling
title Exhaustive Conformational Sampling of Complex Fused Ring Macrocycles Using Inverse Kinematics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T17%3A35%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exhaustive%20Conformational%20Sampling%20of%20Complex%20Fused%20Ring%20Macrocycles%20Using%20Inverse%20Kinematics&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Coutsias,%20Evangelos%20A&rft.date=2016-09-13&rft.volume=12&rft.issue=9&rft.spage=4674&rft.epage=4687&rft.pages=4674-4687&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.6b00250&rft_dat=%3Cproquest_pubme%3E1819432176%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1819432176&rft_id=info:pmid/27447193&rfr_iscdi=true