Exhaustive Conformational Sampling of Complex Fused Ring Macrocycles Using Inverse Kinematics
Natural product and synthetic macrocycles are chemically and topologically diverse. An efficient, accurate, and general method for generating macrocycle conformations would enable structure-based design of macrocycle drugs or host–guest complexes. Computational sampling also provides insight into tr...
Gespeichert in:
Veröffentlicht in: | Journal of chemical theory and computation 2016-09, Vol.12 (9), p.4674-4687 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4687 |
---|---|
container_issue | 9 |
container_start_page | 4674 |
container_title | Journal of chemical theory and computation |
container_volume | 12 |
creator | Coutsias, Evangelos A Lexa, Katrina W Wester, Michael J Pollock, Sara N Jacobson, Matthew P |
description | Natural product and synthetic macrocycles are chemically and topologically diverse. An efficient, accurate, and general method for generating macrocycle conformations would enable structure-based design of macrocycle drugs or host–guest complexes. Computational sampling also provides insight into transiently populated states, complementing crystallographic and NMR data. Here, we report a new algorithm, BRIKARD, that addresses this challenge through computational algebraic geometry and inverse kinematics together with local energy minimization. BRIKARD is demonstrated on 67 diverse macrocycles with structural data, encompassing various ring topologies. We find this approach enumerates diverse structures with macrocyclic RMSD < 1.0 Å to the experimental conformation for 85% of our data set in contrast to success rates of 67–75% with other approaches, while for the subset of 21 more challenging compounds in the data set, these rates are 57% and 10–29%, respectively. Because the algorithm can be efficiently run in parallel on many processors, exhaustive conformational sampling of complex cycles can be obtained in minutes rather than hours: with a 40 processor implementation protocol, BRIKARD samples the conformational diversity of a potential energy landscape in a median of 1.3 minutes of wallclock time, much faster than 3.1–10.3 hours necessary with current programs. By rigorously testing BRIKARD on a broad range of scaffolds with highly complex ring systems, we push the frontiers of macrocycle sampling to encompass multiring compounds, including those with more than 50 ring atoms and up to seven interlaced flexible rings. |
doi_str_mv | 10.1021/acs.jctc.6b00250 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5465426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1819432176</sourcerecordid><originalsourceid>FETCH-LOGICAL-a466t-6ca3d35fbff75ccc7c10dd62144d7aa2867595421198aaab10e53be89ccca2cb3</originalsourceid><addsrcrecordid>eNqNkctLxDAQh4Movu-epEcP7ppJ0rS9CLL4QkXwcZQwTVOttM2atIv-96buuuhB8JRh5jcfST5C9oCOgTI4Qu3Hr7rTY5lTymK6QjYhFtkok0yuLmtIN8iW96-Uci4YXycbLBEigYxvkqfT9xfsfVfNTDSxbWldg11lW6yje2ymddU-R7YMo1Cb9-is96aI7obuDWpn9YeujY8e_dC5bGfGeRNdVa0ZKNrvkLUSa292F-c2eTw7fZhcjK5vzy8nJ9cjFFJ2I6mRFzwu87JMYq11ooEWhWQgRJEgslQmcRYLBpCliJgDNTHPTZqFLDKd821yPOdO-7wxhTZt57BWU1c16D6UxUr9nrTVi3q2MxULGbgyAA4WAGffeuM71VRem7rG1tjeK0hTSkEA0H9EIROcQTJQ6Twafsp7Z8rljYCqQaAKAtUgUC0EhpX9ny9ZLnwbC4HDeeBr1fYuqPJ_8z4ByempuA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1819432176</pqid></control><display><type>article</type><title>Exhaustive Conformational Sampling of Complex Fused Ring Macrocycles Using Inverse Kinematics</title><source>ACS Publications</source><creator>Coutsias, Evangelos A ; Lexa, Katrina W ; Wester, Michael J ; Pollock, Sara N ; Jacobson, Matthew P</creator><creatorcontrib>Coutsias, Evangelos A ; Lexa, Katrina W ; Wester, Michael J ; Pollock, Sara N ; Jacobson, Matthew P</creatorcontrib><description>Natural product and synthetic macrocycles are chemically and topologically diverse. An efficient, accurate, and general method for generating macrocycle conformations would enable structure-based design of macrocycle drugs or host–guest complexes. Computational sampling also provides insight into transiently populated states, complementing crystallographic and NMR data. Here, we report a new algorithm, BRIKARD, that addresses this challenge through computational algebraic geometry and inverse kinematics together with local energy minimization. BRIKARD is demonstrated on 67 diverse macrocycles with structural data, encompassing various ring topologies. We find this approach enumerates diverse structures with macrocyclic RMSD < 1.0 Å to the experimental conformation for 85% of our data set in contrast to success rates of 67–75% with other approaches, while for the subset of 21 more challenging compounds in the data set, these rates are 57% and 10–29%, respectively. Because the algorithm can be efficiently run in parallel on many processors, exhaustive conformational sampling of complex cycles can be obtained in minutes rather than hours: with a 40 processor implementation protocol, BRIKARD samples the conformational diversity of a potential energy landscape in a median of 1.3 minutes of wallclock time, much faster than 3.1–10.3 hours necessary with current programs. By rigorously testing BRIKARD on a broad range of scaffolds with highly complex ring systems, we push the frontiers of macrocycle sampling to encompass multiring compounds, including those with more than 50 ring atoms and up to seven interlaced flexible rings.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.6b00250</identifier><identifier>PMID: 27447193</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Algebra ; Algorithms ; Computation ; Controller area network ; Inverse kinematics ; Macrocyclic compounds ; Processors ; Rings (mathematics) ; Sampling</subject><ispartof>Journal of chemical theory and computation, 2016-09, Vol.12 (9), p.4674-4687</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a466t-6ca3d35fbff75ccc7c10dd62144d7aa2867595421198aaab10e53be89ccca2cb3</citedby><cites>FETCH-LOGICAL-a466t-6ca3d35fbff75ccc7c10dd62144d7aa2867595421198aaab10e53be89ccca2cb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jctc.6b00250$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jctc.6b00250$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,778,782,883,2754,27063,27911,27912,56725,56775</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27447193$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Coutsias, Evangelos A</creatorcontrib><creatorcontrib>Lexa, Katrina W</creatorcontrib><creatorcontrib>Wester, Michael J</creatorcontrib><creatorcontrib>Pollock, Sara N</creatorcontrib><creatorcontrib>Jacobson, Matthew P</creatorcontrib><title>Exhaustive Conformational Sampling of Complex Fused Ring Macrocycles Using Inverse Kinematics</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>Natural product and synthetic macrocycles are chemically and topologically diverse. An efficient, accurate, and general method for generating macrocycle conformations would enable structure-based design of macrocycle drugs or host–guest complexes. Computational sampling also provides insight into transiently populated states, complementing crystallographic and NMR data. Here, we report a new algorithm, BRIKARD, that addresses this challenge through computational algebraic geometry and inverse kinematics together with local energy minimization. BRIKARD is demonstrated on 67 diverse macrocycles with structural data, encompassing various ring topologies. We find this approach enumerates diverse structures with macrocyclic RMSD < 1.0 Å to the experimental conformation for 85% of our data set in contrast to success rates of 67–75% with other approaches, while for the subset of 21 more challenging compounds in the data set, these rates are 57% and 10–29%, respectively. Because the algorithm can be efficiently run in parallel on many processors, exhaustive conformational sampling of complex cycles can be obtained in minutes rather than hours: with a 40 processor implementation protocol, BRIKARD samples the conformational diversity of a potential energy landscape in a median of 1.3 minutes of wallclock time, much faster than 3.1–10.3 hours necessary with current programs. By rigorously testing BRIKARD on a broad range of scaffolds with highly complex ring systems, we push the frontiers of macrocycle sampling to encompass multiring compounds, including those with more than 50 ring atoms and up to seven interlaced flexible rings.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Computation</subject><subject>Controller area network</subject><subject>Inverse kinematics</subject><subject>Macrocyclic compounds</subject><subject>Processors</subject><subject>Rings (mathematics)</subject><subject>Sampling</subject><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkctLxDAQh4Movu-epEcP7ppJ0rS9CLL4QkXwcZQwTVOttM2atIv-96buuuhB8JRh5jcfST5C9oCOgTI4Qu3Hr7rTY5lTymK6QjYhFtkok0yuLmtIN8iW96-Uci4YXycbLBEigYxvkqfT9xfsfVfNTDSxbWldg11lW6yje2ymddU-R7YMo1Cb9-is96aI7obuDWpn9YeujY8e_dC5bGfGeRNdVa0ZKNrvkLUSa292F-c2eTw7fZhcjK5vzy8nJ9cjFFJ2I6mRFzwu87JMYq11ooEWhWQgRJEgslQmcRYLBpCliJgDNTHPTZqFLDKd821yPOdO-7wxhTZt57BWU1c16D6UxUr9nrTVi3q2MxULGbgyAA4WAGffeuM71VRem7rG1tjeK0hTSkEA0H9EIROcQTJQ6Twafsp7Z8rljYCqQaAKAtUgUC0EhpX9ny9ZLnwbC4HDeeBr1fYuqPJ_8z4ByempuA</recordid><startdate>20160913</startdate><enddate>20160913</enddate><creator>Coutsias, Evangelos A</creator><creator>Lexa, Katrina W</creator><creator>Wester, Michael J</creator><creator>Pollock, Sara N</creator><creator>Jacobson, Matthew P</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>5PM</scope></search><sort><creationdate>20160913</creationdate><title>Exhaustive Conformational Sampling of Complex Fused Ring Macrocycles Using Inverse Kinematics</title><author>Coutsias, Evangelos A ; Lexa, Katrina W ; Wester, Michael J ; Pollock, Sara N ; Jacobson, Matthew P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a466t-6ca3d35fbff75ccc7c10dd62144d7aa2867595421198aaab10e53be89ccca2cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Computation</topic><topic>Controller area network</topic><topic>Inverse kinematics</topic><topic>Macrocyclic compounds</topic><topic>Processors</topic><topic>Rings (mathematics)</topic><topic>Sampling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coutsias, Evangelos A</creatorcontrib><creatorcontrib>Lexa, Katrina W</creatorcontrib><creatorcontrib>Wester, Michael J</creatorcontrib><creatorcontrib>Pollock, Sara N</creatorcontrib><creatorcontrib>Jacobson, Matthew P</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coutsias, Evangelos A</au><au>Lexa, Katrina W</au><au>Wester, Michael J</au><au>Pollock, Sara N</au><au>Jacobson, Matthew P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exhaustive Conformational Sampling of Complex Fused Ring Macrocycles Using Inverse Kinematics</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2016-09-13</date><risdate>2016</risdate><volume>12</volume><issue>9</issue><spage>4674</spage><epage>4687</epage><pages>4674-4687</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>Natural product and synthetic macrocycles are chemically and topologically diverse. An efficient, accurate, and general method for generating macrocycle conformations would enable structure-based design of macrocycle drugs or host–guest complexes. Computational sampling also provides insight into transiently populated states, complementing crystallographic and NMR data. Here, we report a new algorithm, BRIKARD, that addresses this challenge through computational algebraic geometry and inverse kinematics together with local energy minimization. BRIKARD is demonstrated on 67 diverse macrocycles with structural data, encompassing various ring topologies. We find this approach enumerates diverse structures with macrocyclic RMSD < 1.0 Å to the experimental conformation for 85% of our data set in contrast to success rates of 67–75% with other approaches, while for the subset of 21 more challenging compounds in the data set, these rates are 57% and 10–29%, respectively. Because the algorithm can be efficiently run in parallel on many processors, exhaustive conformational sampling of complex cycles can be obtained in minutes rather than hours: with a 40 processor implementation protocol, BRIKARD samples the conformational diversity of a potential energy landscape in a median of 1.3 minutes of wallclock time, much faster than 3.1–10.3 hours necessary with current programs. By rigorously testing BRIKARD on a broad range of scaffolds with highly complex ring systems, we push the frontiers of macrocycle sampling to encompass multiring compounds, including those with more than 50 ring atoms and up to seven interlaced flexible rings.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>27447193</pmid><doi>10.1021/acs.jctc.6b00250</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9618 |
ispartof | Journal of chemical theory and computation, 2016-09, Vol.12 (9), p.4674-4687 |
issn | 1549-9618 1549-9626 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5465426 |
source | ACS Publications |
subjects | Algebra Algorithms Computation Controller area network Inverse kinematics Macrocyclic compounds Processors Rings (mathematics) Sampling |
title | Exhaustive Conformational Sampling of Complex Fused Ring Macrocycles Using Inverse Kinematics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T17%3A35%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exhaustive%20Conformational%20Sampling%20of%20Complex%20Fused%20Ring%20Macrocycles%20Using%20Inverse%20Kinematics&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Coutsias,%20Evangelos%20A&rft.date=2016-09-13&rft.volume=12&rft.issue=9&rft.spage=4674&rft.epage=4687&rft.pages=4674-4687&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.6b00250&rft_dat=%3Cproquest_pubme%3E1819432176%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1819432176&rft_id=info:pmid/27447193&rfr_iscdi=true |