MicroRNA-9 regulates mammalian axon regeneration in peripheral nerve injury
Effective axon regeneration is achieved mainly by precise regulation of gene expression after peripheral nerve injury. MicroRNAs play an important role in controlling axon regeneration owe to its key epigenetic function in regulating gene expression. Here, we reveal that microRNA-9 (miR-9) may be a...
Gespeichert in:
Veröffentlicht in: | Molecular pain 2017, Vol.13, p.1744806917711612-1744806917711612 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1744806917711612 |
---|---|
container_issue | |
container_start_page | 1744806917711612 |
container_title | Molecular pain |
container_volume | 13 |
creator | Jiang, Jingjing Hu, Yiwen Zhang, Boyin Shi, Yao Zhang, Jin Wu, Xiuying Yao, Peng |
description | Effective axon regeneration is achieved mainly by precise regulation of gene expression after peripheral nerve injury. MicroRNAs play an important role in controlling axon regeneration owe to its key epigenetic function in regulating gene expression. Here, we reveal that microRNA-9 (miR-9) may be a new suppressor of axon regeneration and FoxP1 is the functional target of miR-9. High level of endogenous miR-9 in sensory neurons inhibited axon regeneration in vitro and in vivo. In addition, the regulatory effect of miR-9 was mediated by changes in FoxP1 levels. Full rescuing effect of axon regeneration was achieved by FoxP1 up-regulation. Most importantly, we showed that miR-9-FoxP1 might be a new signaling pathway to regulate mammalian axon regrowth. Moreover, we provided the first evidence that maintaining a higher level of FoxP1 in sensory neurons by the microRNA is necessary for efficient axon regeneration. |
doi_str_mv | 10.1177/1744806917711612 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5464514</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1744806917711612</sage_id><sourcerecordid>2444298894</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3772-23ff9712ea11b68075a4f301991b269112491bf587811d44925d6e22c5c583073</originalsourceid><addsrcrecordid>eNp1UU1LAzEQDaLYWr17kgUvXlYz2exmcxFK8Qurgug5pNtsm7IfNekW---dpbVWwVNe3rx5eZMh5BToJYAQVyA4T2kiEQMkwPZIt6XCltvfwR1y5P2M0kjQBA5Jh6XYJmTSJY9PNnP163M_lIEzk6bQC-ODUpelLqyuAv1ZV23BVMbphcWLrYK5cXY-RaIIkF4a5GaNWx2Tg1wX3pxszh55v715G9yHw5e7h0F_GGaRECxkUZ5LAcxogFGCOWLN84iClDBiOAswjiiPU5ECjDmXLB4nhrEszuI0oiLqkeu177wZlWacmWqBUdTc2VK7laq1Vb8rlZ2qSb1UMU94DBwNLjYGrv5ojF-o0vrMFIWuTN14BalMOGCgGKXnf6SzunEVjqcY55zJNJWtIV2r8C-9dybfhgGq2k2pv5vClrPdIbYN36tBQbgWeD0xP6_-a_gFPFKZgQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2444298894</pqid></control><display><type>article</type><title>MicroRNA-9 regulates mammalian axon regeneration in peripheral nerve injury</title><source>MEDLINE</source><source>Sage Journals GOLD Open Access 2024</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Jiang, Jingjing ; Hu, Yiwen ; Zhang, Boyin ; Shi, Yao ; Zhang, Jin ; Wu, Xiuying ; Yao, Peng</creator><creatorcontrib>Jiang, Jingjing ; Hu, Yiwen ; Zhang, Boyin ; Shi, Yao ; Zhang, Jin ; Wu, Xiuying ; Yao, Peng</creatorcontrib><description>Effective axon regeneration is achieved mainly by precise regulation of gene expression after peripheral nerve injury. MicroRNAs play an important role in controlling axon regeneration owe to its key epigenetic function in regulating gene expression. Here, we reveal that microRNA-9 (miR-9) may be a new suppressor of axon regeneration and FoxP1 is the functional target of miR-9. High level of endogenous miR-9 in sensory neurons inhibited axon regeneration in vitro and in vivo. In addition, the regulatory effect of miR-9 was mediated by changes in FoxP1 levels. Full rescuing effect of axon regeneration was achieved by FoxP1 up-regulation. Most importantly, we showed that miR-9-FoxP1 might be a new signaling pathway to regulate mammalian axon regrowth. Moreover, we provided the first evidence that maintaining a higher level of FoxP1 in sensory neurons by the microRNA is necessary for efficient axon regeneration.</description><identifier>ISSN: 1744-8069</identifier><identifier>EISSN: 1744-8069</identifier><identifier>DOI: 10.1177/1744806917711612</identifier><identifier>PMID: 28480796</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><subject>Animals ; Axons - metabolism ; Epigenetics ; Forkhead Transcription Factors - metabolism ; Foxp1 protein ; Gene expression ; Mice ; MicroRNAs ; MicroRNAs - genetics ; MicroRNAs - metabolism ; miRNA ; Peripheral Nerve Injuries - genetics ; Peripheral Nerve Injuries - metabolism ; Peripheral nerves ; Regeneration ; Regeneration - genetics ; Repressor Proteins - metabolism ; Sensory neurons ; Sensory Receptor Cells - metabolism ; Signal transduction ; Signal Transduction - genetics</subject><ispartof>Molecular pain, 2017, Vol.13, p.1744806917711612-1744806917711612</ispartof><rights>The Author(s) 2017</rights><rights>The Author(s) 2017. This work is licensed under the Creative Commons Attribution – Non-Commercial License http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2017 2017 SAGE Publications Inc., unless otherwise noted. Manuscript content on this site is licensed under Creative Commons Licenses</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3772-23ff9712ea11b68075a4f301991b269112491bf587811d44925d6e22c5c583073</citedby><cites>FETCH-LOGICAL-c3772-23ff9712ea11b68075a4f301991b269112491bf587811d44925d6e22c5c583073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5464514/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5464514/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,883,4012,21953,27840,27910,27911,27912,44932,45320,53778,53780</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28480796$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, Jingjing</creatorcontrib><creatorcontrib>Hu, Yiwen</creatorcontrib><creatorcontrib>Zhang, Boyin</creatorcontrib><creatorcontrib>Shi, Yao</creatorcontrib><creatorcontrib>Zhang, Jin</creatorcontrib><creatorcontrib>Wu, Xiuying</creatorcontrib><creatorcontrib>Yao, Peng</creatorcontrib><title>MicroRNA-9 regulates mammalian axon regeneration in peripheral nerve injury</title><title>Molecular pain</title><addtitle>Mol Pain</addtitle><description>Effective axon regeneration is achieved mainly by precise regulation of gene expression after peripheral nerve injury. MicroRNAs play an important role in controlling axon regeneration owe to its key epigenetic function in regulating gene expression. Here, we reveal that microRNA-9 (miR-9) may be a new suppressor of axon regeneration and FoxP1 is the functional target of miR-9. High level of endogenous miR-9 in sensory neurons inhibited axon regeneration in vitro and in vivo. In addition, the regulatory effect of miR-9 was mediated by changes in FoxP1 levels. Full rescuing effect of axon regeneration was achieved by FoxP1 up-regulation. Most importantly, we showed that miR-9-FoxP1 might be a new signaling pathway to regulate mammalian axon regrowth. Moreover, we provided the first evidence that maintaining a higher level of FoxP1 in sensory neurons by the microRNA is necessary for efficient axon regeneration.</description><subject>Animals</subject><subject>Axons - metabolism</subject><subject>Epigenetics</subject><subject>Forkhead Transcription Factors - metabolism</subject><subject>Foxp1 protein</subject><subject>Gene expression</subject><subject>Mice</subject><subject>MicroRNAs</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - metabolism</subject><subject>miRNA</subject><subject>Peripheral Nerve Injuries - genetics</subject><subject>Peripheral Nerve Injuries - metabolism</subject><subject>Peripheral nerves</subject><subject>Regeneration</subject><subject>Regeneration - genetics</subject><subject>Repressor Proteins - metabolism</subject><subject>Sensory neurons</subject><subject>Sensory Receptor Cells - metabolism</subject><subject>Signal transduction</subject><subject>Signal Transduction - genetics</subject><issn>1744-8069</issn><issn>1744-8069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>AFRWT</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1UU1LAzEQDaLYWr17kgUvXlYz2exmcxFK8Qurgug5pNtsm7IfNekW---dpbVWwVNe3rx5eZMh5BToJYAQVyA4T2kiEQMkwPZIt6XCltvfwR1y5P2M0kjQBA5Jh6XYJmTSJY9PNnP163M_lIEzk6bQC-ODUpelLqyuAv1ZV23BVMbphcWLrYK5cXY-RaIIkF4a5GaNWx2Tg1wX3pxszh55v715G9yHw5e7h0F_GGaRECxkUZ5LAcxogFGCOWLN84iClDBiOAswjiiPU5ECjDmXLB4nhrEszuI0oiLqkeu177wZlWacmWqBUdTc2VK7laq1Vb8rlZ2qSb1UMU94DBwNLjYGrv5ojF-o0vrMFIWuTN14BalMOGCgGKXnf6SzunEVjqcY55zJNJWtIV2r8C-9dybfhgGq2k2pv5vClrPdIbYN36tBQbgWeD0xP6_-a_gFPFKZgQ</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Jiang, Jingjing</creator><creator>Hu, Yiwen</creator><creator>Zhang, Boyin</creator><creator>Shi, Yao</creator><creator>Zhang, Jin</creator><creator>Wu, Xiuying</creator><creator>Yao, Peng</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>AFRWT</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>2017</creationdate><title>MicroRNA-9 regulates mammalian axon regeneration in peripheral nerve injury</title><author>Jiang, Jingjing ; Hu, Yiwen ; Zhang, Boyin ; Shi, Yao ; Zhang, Jin ; Wu, Xiuying ; Yao, Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3772-23ff9712ea11b68075a4f301991b269112491bf587811d44925d6e22c5c583073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Axons - metabolism</topic><topic>Epigenetics</topic><topic>Forkhead Transcription Factors - metabolism</topic><topic>Foxp1 protein</topic><topic>Gene expression</topic><topic>Mice</topic><topic>MicroRNAs</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - metabolism</topic><topic>miRNA</topic><topic>Peripheral Nerve Injuries - genetics</topic><topic>Peripheral Nerve Injuries - metabolism</topic><topic>Peripheral nerves</topic><topic>Regeneration</topic><topic>Regeneration - genetics</topic><topic>Repressor Proteins - metabolism</topic><topic>Sensory neurons</topic><topic>Sensory Receptor Cells - metabolism</topic><topic>Signal transduction</topic><topic>Signal Transduction - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Jingjing</creatorcontrib><creatorcontrib>Hu, Yiwen</creatorcontrib><creatorcontrib>Zhang, Boyin</creatorcontrib><creatorcontrib>Shi, Yao</creatorcontrib><creatorcontrib>Zhang, Jin</creatorcontrib><creatorcontrib>Wu, Xiuying</creatorcontrib><creatorcontrib>Yao, Peng</creatorcontrib><collection>Sage Journals GOLD Open Access 2024</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular pain</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Jingjing</au><au>Hu, Yiwen</au><au>Zhang, Boyin</au><au>Shi, Yao</au><au>Zhang, Jin</au><au>Wu, Xiuying</au><au>Yao, Peng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MicroRNA-9 regulates mammalian axon regeneration in peripheral nerve injury</atitle><jtitle>Molecular pain</jtitle><addtitle>Mol Pain</addtitle><date>2017</date><risdate>2017</risdate><volume>13</volume><spage>1744806917711612</spage><epage>1744806917711612</epage><pages>1744806917711612-1744806917711612</pages><issn>1744-8069</issn><eissn>1744-8069</eissn><abstract>Effective axon regeneration is achieved mainly by precise regulation of gene expression after peripheral nerve injury. MicroRNAs play an important role in controlling axon regeneration owe to its key epigenetic function in regulating gene expression. Here, we reveal that microRNA-9 (miR-9) may be a new suppressor of axon regeneration and FoxP1 is the functional target of miR-9. High level of endogenous miR-9 in sensory neurons inhibited axon regeneration in vitro and in vivo. In addition, the regulatory effect of miR-9 was mediated by changes in FoxP1 levels. Full rescuing effect of axon regeneration was achieved by FoxP1 up-regulation. Most importantly, we showed that miR-9-FoxP1 might be a new signaling pathway to regulate mammalian axon regrowth. Moreover, we provided the first evidence that maintaining a higher level of FoxP1 in sensory neurons by the microRNA is necessary for efficient axon regeneration.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><pmid>28480796</pmid><doi>10.1177/1744806917711612</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1744-8069 |
ispartof | Molecular pain, 2017, Vol.13, p.1744806917711612-1744806917711612 |
issn | 1744-8069 1744-8069 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5464514 |
source | MEDLINE; Sage Journals GOLD Open Access 2024; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Animals Axons - metabolism Epigenetics Forkhead Transcription Factors - metabolism Foxp1 protein Gene expression Mice MicroRNAs MicroRNAs - genetics MicroRNAs - metabolism miRNA Peripheral Nerve Injuries - genetics Peripheral Nerve Injuries - metabolism Peripheral nerves Regeneration Regeneration - genetics Repressor Proteins - metabolism Sensory neurons Sensory Receptor Cells - metabolism Signal transduction Signal Transduction - genetics |
title | MicroRNA-9 regulates mammalian axon regeneration in peripheral nerve injury |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T21%3A35%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MicroRNA-9%20regulates%20mammalian%20axon%20regeneration%20in%20peripheral%20nerve%20injury&rft.jtitle=Molecular%20pain&rft.au=Jiang,%20Jingjing&rft.date=2017&rft.volume=13&rft.spage=1744806917711612&rft.epage=1744806917711612&rft.pages=1744806917711612-1744806917711612&rft.issn=1744-8069&rft.eissn=1744-8069&rft_id=info:doi/10.1177/1744806917711612&rft_dat=%3Cproquest_pubme%3E2444298894%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2444298894&rft_id=info:pmid/28480796&rft_sage_id=10.1177_1744806917711612&rfr_iscdi=true |