MicroRNA-9 regulates mammalian axon regeneration in peripheral nerve injury

Effective axon regeneration is achieved mainly by precise regulation of gene expression after peripheral nerve injury. MicroRNAs play an important role in controlling axon regeneration owe to its key epigenetic function in regulating gene expression. Here, we reveal that microRNA-9 (miR-9) may be a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular pain 2017, Vol.13, p.1744806917711612-1744806917711612
Hauptverfasser: Jiang, Jingjing, Hu, Yiwen, Zhang, Boyin, Shi, Yao, Zhang, Jin, Wu, Xiuying, Yao, Peng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1744806917711612
container_issue
container_start_page 1744806917711612
container_title Molecular pain
container_volume 13
creator Jiang, Jingjing
Hu, Yiwen
Zhang, Boyin
Shi, Yao
Zhang, Jin
Wu, Xiuying
Yao, Peng
description Effective axon regeneration is achieved mainly by precise regulation of gene expression after peripheral nerve injury. MicroRNAs play an important role in controlling axon regeneration owe to its key epigenetic function in regulating gene expression. Here, we reveal that microRNA-9 (miR-9) may be a new suppressor of axon regeneration and FoxP1 is the functional target of miR-9. High level of endogenous miR-9 in sensory neurons inhibited axon regeneration in vitro and in vivo. In addition, the regulatory effect of miR-9 was mediated by changes in FoxP1 levels. Full rescuing effect of axon regeneration was achieved by FoxP1 up-regulation. Most importantly, we showed that miR-9-FoxP1 might be a new signaling pathway to regulate mammalian axon regrowth. Moreover, we provided the first evidence that maintaining a higher level of FoxP1 in sensory neurons by the microRNA is necessary for efficient axon regeneration.
doi_str_mv 10.1177/1744806917711612
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5464514</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1744806917711612</sage_id><sourcerecordid>2444298894</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3772-23ff9712ea11b68075a4f301991b269112491bf587811d44925d6e22c5c583073</originalsourceid><addsrcrecordid>eNp1UU1LAzEQDaLYWr17kgUvXlYz2exmcxFK8Qurgug5pNtsm7IfNekW---dpbVWwVNe3rx5eZMh5BToJYAQVyA4T2kiEQMkwPZIt6XCltvfwR1y5P2M0kjQBA5Jh6XYJmTSJY9PNnP163M_lIEzk6bQC-ODUpelLqyuAv1ZV23BVMbphcWLrYK5cXY-RaIIkF4a5GaNWx2Tg1wX3pxszh55v715G9yHw5e7h0F_GGaRECxkUZ5LAcxogFGCOWLN84iClDBiOAswjiiPU5ECjDmXLB4nhrEszuI0oiLqkeu177wZlWacmWqBUdTc2VK7laq1Vb8rlZ2qSb1UMU94DBwNLjYGrv5ojF-o0vrMFIWuTN14BalMOGCgGKXnf6SzunEVjqcY55zJNJWtIV2r8C-9dybfhgGq2k2pv5vClrPdIbYN36tBQbgWeD0xP6_-a_gFPFKZgQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2444298894</pqid></control><display><type>article</type><title>MicroRNA-9 regulates mammalian axon regeneration in peripheral nerve injury</title><source>MEDLINE</source><source>Sage Journals GOLD Open Access 2024</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Jiang, Jingjing ; Hu, Yiwen ; Zhang, Boyin ; Shi, Yao ; Zhang, Jin ; Wu, Xiuying ; Yao, Peng</creator><creatorcontrib>Jiang, Jingjing ; Hu, Yiwen ; Zhang, Boyin ; Shi, Yao ; Zhang, Jin ; Wu, Xiuying ; Yao, Peng</creatorcontrib><description>Effective axon regeneration is achieved mainly by precise regulation of gene expression after peripheral nerve injury. MicroRNAs play an important role in controlling axon regeneration owe to its key epigenetic function in regulating gene expression. Here, we reveal that microRNA-9 (miR-9) may be a new suppressor of axon regeneration and FoxP1 is the functional target of miR-9. High level of endogenous miR-9 in sensory neurons inhibited axon regeneration in vitro and in vivo. In addition, the regulatory effect of miR-9 was mediated by changes in FoxP1 levels. Full rescuing effect of axon regeneration was achieved by FoxP1 up-regulation. Most importantly, we showed that miR-9-FoxP1 might be a new signaling pathway to regulate mammalian axon regrowth. Moreover, we provided the first evidence that maintaining a higher level of FoxP1 in sensory neurons by the microRNA is necessary for efficient axon regeneration.</description><identifier>ISSN: 1744-8069</identifier><identifier>EISSN: 1744-8069</identifier><identifier>DOI: 10.1177/1744806917711612</identifier><identifier>PMID: 28480796</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><subject>Animals ; Axons - metabolism ; Epigenetics ; Forkhead Transcription Factors - metabolism ; Foxp1 protein ; Gene expression ; Mice ; MicroRNAs ; MicroRNAs - genetics ; MicroRNAs - metabolism ; miRNA ; Peripheral Nerve Injuries - genetics ; Peripheral Nerve Injuries - metabolism ; Peripheral nerves ; Regeneration ; Regeneration - genetics ; Repressor Proteins - metabolism ; Sensory neurons ; Sensory Receptor Cells - metabolism ; Signal transduction ; Signal Transduction - genetics</subject><ispartof>Molecular pain, 2017, Vol.13, p.1744806917711612-1744806917711612</ispartof><rights>The Author(s) 2017</rights><rights>The Author(s) 2017. This work is licensed under the Creative Commons Attribution – Non-Commercial License http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2017 2017 SAGE Publications Inc., unless otherwise noted. Manuscript content on this site is licensed under Creative Commons Licenses</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3772-23ff9712ea11b68075a4f301991b269112491bf587811d44925d6e22c5c583073</citedby><cites>FETCH-LOGICAL-c3772-23ff9712ea11b68075a4f301991b269112491bf587811d44925d6e22c5c583073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5464514/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5464514/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,883,4012,21953,27840,27910,27911,27912,44932,45320,53778,53780</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28480796$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, Jingjing</creatorcontrib><creatorcontrib>Hu, Yiwen</creatorcontrib><creatorcontrib>Zhang, Boyin</creatorcontrib><creatorcontrib>Shi, Yao</creatorcontrib><creatorcontrib>Zhang, Jin</creatorcontrib><creatorcontrib>Wu, Xiuying</creatorcontrib><creatorcontrib>Yao, Peng</creatorcontrib><title>MicroRNA-9 regulates mammalian axon regeneration in peripheral nerve injury</title><title>Molecular pain</title><addtitle>Mol Pain</addtitle><description>Effective axon regeneration is achieved mainly by precise regulation of gene expression after peripheral nerve injury. MicroRNAs play an important role in controlling axon regeneration owe to its key epigenetic function in regulating gene expression. Here, we reveal that microRNA-9 (miR-9) may be a new suppressor of axon regeneration and FoxP1 is the functional target of miR-9. High level of endogenous miR-9 in sensory neurons inhibited axon regeneration in vitro and in vivo. In addition, the regulatory effect of miR-9 was mediated by changes in FoxP1 levels. Full rescuing effect of axon regeneration was achieved by FoxP1 up-regulation. Most importantly, we showed that miR-9-FoxP1 might be a new signaling pathway to regulate mammalian axon regrowth. Moreover, we provided the first evidence that maintaining a higher level of FoxP1 in sensory neurons by the microRNA is necessary for efficient axon regeneration.</description><subject>Animals</subject><subject>Axons - metabolism</subject><subject>Epigenetics</subject><subject>Forkhead Transcription Factors - metabolism</subject><subject>Foxp1 protein</subject><subject>Gene expression</subject><subject>Mice</subject><subject>MicroRNAs</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - metabolism</subject><subject>miRNA</subject><subject>Peripheral Nerve Injuries - genetics</subject><subject>Peripheral Nerve Injuries - metabolism</subject><subject>Peripheral nerves</subject><subject>Regeneration</subject><subject>Regeneration - genetics</subject><subject>Repressor Proteins - metabolism</subject><subject>Sensory neurons</subject><subject>Sensory Receptor Cells - metabolism</subject><subject>Signal transduction</subject><subject>Signal Transduction - genetics</subject><issn>1744-8069</issn><issn>1744-8069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>AFRWT</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1UU1LAzEQDaLYWr17kgUvXlYz2exmcxFK8Qurgug5pNtsm7IfNekW---dpbVWwVNe3rx5eZMh5BToJYAQVyA4T2kiEQMkwPZIt6XCltvfwR1y5P2M0kjQBA5Jh6XYJmTSJY9PNnP163M_lIEzk6bQC-ODUpelLqyuAv1ZV23BVMbphcWLrYK5cXY-RaIIkF4a5GaNWx2Tg1wX3pxszh55v715G9yHw5e7h0F_GGaRECxkUZ5LAcxogFGCOWLN84iClDBiOAswjiiPU5ECjDmXLB4nhrEszuI0oiLqkeu177wZlWacmWqBUdTc2VK7laq1Vb8rlZ2qSb1UMU94DBwNLjYGrv5ojF-o0vrMFIWuTN14BalMOGCgGKXnf6SzunEVjqcY55zJNJWtIV2r8C-9dybfhgGq2k2pv5vClrPdIbYN36tBQbgWeD0xP6_-a_gFPFKZgQ</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Jiang, Jingjing</creator><creator>Hu, Yiwen</creator><creator>Zhang, Boyin</creator><creator>Shi, Yao</creator><creator>Zhang, Jin</creator><creator>Wu, Xiuying</creator><creator>Yao, Peng</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>AFRWT</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>2017</creationdate><title>MicroRNA-9 regulates mammalian axon regeneration in peripheral nerve injury</title><author>Jiang, Jingjing ; Hu, Yiwen ; Zhang, Boyin ; Shi, Yao ; Zhang, Jin ; Wu, Xiuying ; Yao, Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3772-23ff9712ea11b68075a4f301991b269112491bf587811d44925d6e22c5c583073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Axons - metabolism</topic><topic>Epigenetics</topic><topic>Forkhead Transcription Factors - metabolism</topic><topic>Foxp1 protein</topic><topic>Gene expression</topic><topic>Mice</topic><topic>MicroRNAs</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - metabolism</topic><topic>miRNA</topic><topic>Peripheral Nerve Injuries - genetics</topic><topic>Peripheral Nerve Injuries - metabolism</topic><topic>Peripheral nerves</topic><topic>Regeneration</topic><topic>Regeneration - genetics</topic><topic>Repressor Proteins - metabolism</topic><topic>Sensory neurons</topic><topic>Sensory Receptor Cells - metabolism</topic><topic>Signal transduction</topic><topic>Signal Transduction - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Jingjing</creatorcontrib><creatorcontrib>Hu, Yiwen</creatorcontrib><creatorcontrib>Zhang, Boyin</creatorcontrib><creatorcontrib>Shi, Yao</creatorcontrib><creatorcontrib>Zhang, Jin</creatorcontrib><creatorcontrib>Wu, Xiuying</creatorcontrib><creatorcontrib>Yao, Peng</creatorcontrib><collection>Sage Journals GOLD Open Access 2024</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular pain</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Jingjing</au><au>Hu, Yiwen</au><au>Zhang, Boyin</au><au>Shi, Yao</au><au>Zhang, Jin</au><au>Wu, Xiuying</au><au>Yao, Peng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MicroRNA-9 regulates mammalian axon regeneration in peripheral nerve injury</atitle><jtitle>Molecular pain</jtitle><addtitle>Mol Pain</addtitle><date>2017</date><risdate>2017</risdate><volume>13</volume><spage>1744806917711612</spage><epage>1744806917711612</epage><pages>1744806917711612-1744806917711612</pages><issn>1744-8069</issn><eissn>1744-8069</eissn><abstract>Effective axon regeneration is achieved mainly by precise regulation of gene expression after peripheral nerve injury. MicroRNAs play an important role in controlling axon regeneration owe to its key epigenetic function in regulating gene expression. Here, we reveal that microRNA-9 (miR-9) may be a new suppressor of axon regeneration and FoxP1 is the functional target of miR-9. High level of endogenous miR-9 in sensory neurons inhibited axon regeneration in vitro and in vivo. In addition, the regulatory effect of miR-9 was mediated by changes in FoxP1 levels. Full rescuing effect of axon regeneration was achieved by FoxP1 up-regulation. Most importantly, we showed that miR-9-FoxP1 might be a new signaling pathway to regulate mammalian axon regrowth. Moreover, we provided the first evidence that maintaining a higher level of FoxP1 in sensory neurons by the microRNA is necessary for efficient axon regeneration.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><pmid>28480796</pmid><doi>10.1177/1744806917711612</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1744-8069
ispartof Molecular pain, 2017, Vol.13, p.1744806917711612-1744806917711612
issn 1744-8069
1744-8069
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5464514
source MEDLINE; Sage Journals GOLD Open Access 2024; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Animals
Axons - metabolism
Epigenetics
Forkhead Transcription Factors - metabolism
Foxp1 protein
Gene expression
Mice
MicroRNAs
MicroRNAs - genetics
MicroRNAs - metabolism
miRNA
Peripheral Nerve Injuries - genetics
Peripheral Nerve Injuries - metabolism
Peripheral nerves
Regeneration
Regeneration - genetics
Repressor Proteins - metabolism
Sensory neurons
Sensory Receptor Cells - metabolism
Signal transduction
Signal Transduction - genetics
title MicroRNA-9 regulates mammalian axon regeneration in peripheral nerve injury
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T21%3A35%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MicroRNA-9%20regulates%20mammalian%20axon%20regeneration%20in%20peripheral%20nerve%20injury&rft.jtitle=Molecular%20pain&rft.au=Jiang,%20Jingjing&rft.date=2017&rft.volume=13&rft.spage=1744806917711612&rft.epage=1744806917711612&rft.pages=1744806917711612-1744806917711612&rft.issn=1744-8069&rft.eissn=1744-8069&rft_id=info:doi/10.1177/1744806917711612&rft_dat=%3Cproquest_pubme%3E2444298894%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2444298894&rft_id=info:pmid/28480796&rft_sage_id=10.1177_1744806917711612&rfr_iscdi=true