Physical and electrical characterization of TexasPEG: An electrically conductive neuronal scaffold
Background: Graphene and its derivatives have been shown to be biocompatible and electrically active materials upon which neurons readily grow. The fusogen poly(ethylene glycol) (PEG) has been shown to improve outcomes after cervical and dorsal spinal cord transection. The long and narrow PEGylated...
Gespeichert in:
Veröffentlicht in: | Surgical neurology international 2017-01, Vol.8 (1), p.84-84 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 84 |
---|---|
container_issue | 1 |
container_start_page | 84 |
container_title | Surgical neurology international |
container_volume | 8 |
creator | Sikkema, William Metzger, Andrew Wang, Tuo Tour, James |
description | Background: Graphene and its derivatives have been shown to be biocompatible and electrically active materials upon which neurons readily grow. The fusogen poly(ethylene glycol) (PEG) has been shown to improve outcomes after cervical and dorsal spinal cord transection. The long and narrow PEGylated graphene nanoribbon stacks (PEG-GNRs) with their 5 μm × 200 nm × 10 nm dimensions can provide a scaffold upon which neurons can grow and fuse. We disclose here the extensive characterization data for the PEG-GNRs.
Methods: PEG-GNRs were chemically synthesized and chemically and electrically characterized.
Results: The average aspect ratio of the PEG-GNRs was determined to be ~85, which corresponds to a critical percolation value (the point where insulating material becomes conductive by addition of conductive particles) of 1%. However, there was not a sharp increase in AC conductivity at frequencies relevant to action potentials.
Conclusion: A robust characterization of PEG-GNRs is discussed, though the precise origin of efficacy in improving outcomes following spinal cord transection is not known. |
doi_str_mv | 10.4103/sni.sni_361_16 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5461561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1936190565</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356l-f6c1ce4076b28553d6320cda3fb87fec60547180d635af6c6cfdb74445aeaf103</originalsourceid><addsrcrecordid>eNp1kc1PwjAYxhujEYNcPZolnsF2XbvhQWMIogmJHPDcdF0rg9Jiu4H411vkQzzYpOnX733aPg8AVwh2EgTxrTdlJ3SGKWKInoCLGJG4nWaQnh7NG6Dl_RSGhjFCsHsOGnFGYZqh7ALko8nal4LriJsiklqKyv0sxYQ7Lirpyi9eldZEVkVj-cn9qD-4ix7NEavXkbCmqEVVLmVkZO2sCQpecKWsLi7BmeLay9ZubIK3p_6499wevg5eeo_DtsCE6raiAgmZwJTmcUYILiiOoSg4VnmWKikoJEmKMhj2CQ8wFarI0yRJCJdcBTua4H6ru6jzuSyENJXjmi1cOeduzSwv2d8TU07Yu10yklBEKAoCNzsBZz9q6Ss2tbULX_EMdYPHXUgoCVRnSwlnvXdSHW5AkG1iYZtIfmMJBdfH7zrg-xAC8LAFVlYHw_1M1yvpWGBnxq7-kWVZwvbZ4W8tPaNC</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1936190565</pqid></control><display><type>article</type><title>Physical and electrical characterization of TexasPEG: An electrically conductive neuronal scaffold</title><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Sikkema, William ; Metzger, Andrew ; Wang, Tuo ; Tour, James</creator><creatorcontrib>Sikkema, William ; Metzger, Andrew ; Wang, Tuo ; Tour, James</creatorcontrib><description>Background: Graphene and its derivatives have been shown to be biocompatible and electrically active materials upon which neurons readily grow. The fusogen poly(ethylene glycol) (PEG) has been shown to improve outcomes after cervical and dorsal spinal cord transection. The long and narrow PEGylated graphene nanoribbon stacks (PEG-GNRs) with their 5 μm × 200 nm × 10 nm dimensions can provide a scaffold upon which neurons can grow and fuse. We disclose here the extensive characterization data for the PEG-GNRs.
Methods: PEG-GNRs were chemically synthesized and chemically and electrically characterized.
Results: The average aspect ratio of the PEG-GNRs was determined to be ~85, which corresponds to a critical percolation value (the point where insulating material becomes conductive by addition of conductive particles) of 1%. However, there was not a sharp increase in AC conductivity at frequencies relevant to action potentials.
Conclusion: A robust characterization of PEG-GNRs is discussed, though the precise origin of efficacy in improving outcomes following spinal cord transection is not known.</description><identifier>ISSN: 2152-7806</identifier><identifier>ISSN: 2229-5097</identifier><identifier>EISSN: 2152-7806</identifier><identifier>DOI: 10.4103/sni.sni_361_16</identifier><identifier>PMID: 28607818</identifier><language>eng</language><publisher>United States: Wolters Kluwer India Pvt. Ltd</publisher><subject>Carbon ; Head and Spinal Cord Transplantation: Original ; Molecular weight ; Neurons ; Polyethylene glycol ; Silicon wafers ; Spinal cord injuries ; Stem cells ; Temperature ; Traumatic brain injury</subject><ispartof>Surgical neurology international, 2017-01, Vol.8 (1), p.84-84</ispartof><rights>Copyright Medknow Publications & Media Pvt. Ltd. 2017</rights><rights>Copyright: © 2017 Surgical Neurology International 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356l-f6c1ce4076b28553d6320cda3fb87fec60547180d635af6c6cfdb74445aeaf103</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5461561/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5461561/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28607818$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sikkema, William</creatorcontrib><creatorcontrib>Metzger, Andrew</creatorcontrib><creatorcontrib>Wang, Tuo</creatorcontrib><creatorcontrib>Tour, James</creatorcontrib><title>Physical and electrical characterization of TexasPEG: An electrically conductive neuronal scaffold</title><title>Surgical neurology international</title><addtitle>Surg Neurol Int</addtitle><description>Background: Graphene and its derivatives have been shown to be biocompatible and electrically active materials upon which neurons readily grow. The fusogen poly(ethylene glycol) (PEG) has been shown to improve outcomes after cervical and dorsal spinal cord transection. The long and narrow PEGylated graphene nanoribbon stacks (PEG-GNRs) with their 5 μm × 200 nm × 10 nm dimensions can provide a scaffold upon which neurons can grow and fuse. We disclose here the extensive characterization data for the PEG-GNRs.
Methods: PEG-GNRs were chemically synthesized and chemically and electrically characterized.
Results: The average aspect ratio of the PEG-GNRs was determined to be ~85, which corresponds to a critical percolation value (the point where insulating material becomes conductive by addition of conductive particles) of 1%. However, there was not a sharp increase in AC conductivity at frequencies relevant to action potentials.
Conclusion: A robust characterization of PEG-GNRs is discussed, though the precise origin of efficacy in improving outcomes following spinal cord transection is not known.</description><subject>Carbon</subject><subject>Head and Spinal Cord Transplantation: Original</subject><subject>Molecular weight</subject><subject>Neurons</subject><subject>Polyethylene glycol</subject><subject>Silicon wafers</subject><subject>Spinal cord injuries</subject><subject>Stem cells</subject><subject>Temperature</subject><subject>Traumatic brain injury</subject><issn>2152-7806</issn><issn>2229-5097</issn><issn>2152-7806</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kc1PwjAYxhujEYNcPZolnsF2XbvhQWMIogmJHPDcdF0rg9Jiu4H411vkQzzYpOnX733aPg8AVwh2EgTxrTdlJ3SGKWKInoCLGJG4nWaQnh7NG6Dl_RSGhjFCsHsOGnFGYZqh7ALko8nal4LriJsiklqKyv0sxYQ7Lirpyi9eldZEVkVj-cn9qD-4ix7NEavXkbCmqEVVLmVkZO2sCQpecKWsLi7BmeLay9ZubIK3p_6499wevg5eeo_DtsCE6raiAgmZwJTmcUYILiiOoSg4VnmWKikoJEmKMhj2CQ8wFarI0yRJCJdcBTua4H6ru6jzuSyENJXjmi1cOeduzSwv2d8TU07Yu10yklBEKAoCNzsBZz9q6Ss2tbULX_EMdYPHXUgoCVRnSwlnvXdSHW5AkG1iYZtIfmMJBdfH7zrg-xAC8LAFVlYHw_1M1yvpWGBnxq7-kWVZwvbZ4W8tPaNC</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Sikkema, William</creator><creator>Metzger, Andrew</creator><creator>Wang, Tuo</creator><creator>Tour, James</creator><general>Wolters Kluwer India Pvt. Ltd</general><general>Scientific Scholar</general><general>Medknow Publications & Media Pvt Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>5PM</scope></search><sort><creationdate>20170101</creationdate><title>Physical and electrical characterization of TexasPEG: An electrically conductive neuronal scaffold</title><author>Sikkema, William ; Metzger, Andrew ; Wang, Tuo ; Tour, James</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356l-f6c1ce4076b28553d6320cda3fb87fec60547180d635af6c6cfdb74445aeaf103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Carbon</topic><topic>Head and Spinal Cord Transplantation: Original</topic><topic>Molecular weight</topic><topic>Neurons</topic><topic>Polyethylene glycol</topic><topic>Silicon wafers</topic><topic>Spinal cord injuries</topic><topic>Stem cells</topic><topic>Temperature</topic><topic>Traumatic brain injury</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sikkema, William</creatorcontrib><creatorcontrib>Metzger, Andrew</creatorcontrib><creatorcontrib>Wang, Tuo</creatorcontrib><creatorcontrib>Tour, James</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Surgical neurology international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sikkema, William</au><au>Metzger, Andrew</au><au>Wang, Tuo</au><au>Tour, James</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physical and electrical characterization of TexasPEG: An electrically conductive neuronal scaffold</atitle><jtitle>Surgical neurology international</jtitle><addtitle>Surg Neurol Int</addtitle><date>2017-01-01</date><risdate>2017</risdate><volume>8</volume><issue>1</issue><spage>84</spage><epage>84</epage><pages>84-84</pages><issn>2152-7806</issn><issn>2229-5097</issn><eissn>2152-7806</eissn><abstract>Background: Graphene and its derivatives have been shown to be biocompatible and electrically active materials upon which neurons readily grow. The fusogen poly(ethylene glycol) (PEG) has been shown to improve outcomes after cervical and dorsal spinal cord transection. The long and narrow PEGylated graphene nanoribbon stacks (PEG-GNRs) with their 5 μm × 200 nm × 10 nm dimensions can provide a scaffold upon which neurons can grow and fuse. We disclose here the extensive characterization data for the PEG-GNRs.
Methods: PEG-GNRs were chemically synthesized and chemically and electrically characterized.
Results: The average aspect ratio of the PEG-GNRs was determined to be ~85, which corresponds to a critical percolation value (the point where insulating material becomes conductive by addition of conductive particles) of 1%. However, there was not a sharp increase in AC conductivity at frequencies relevant to action potentials.
Conclusion: A robust characterization of PEG-GNRs is discussed, though the precise origin of efficacy in improving outcomes following spinal cord transection is not known.</abstract><cop>United States</cop><pub>Wolters Kluwer India Pvt. Ltd</pub><pmid>28607818</pmid><doi>10.4103/sni.sni_361_16</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2152-7806 |
ispartof | Surgical neurology international, 2017-01, Vol.8 (1), p.84-84 |
issn | 2152-7806 2229-5097 2152-7806 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5461561 |
source | PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Carbon Head and Spinal Cord Transplantation: Original Molecular weight Neurons Polyethylene glycol Silicon wafers Spinal cord injuries Stem cells Temperature Traumatic brain injury |
title | Physical and electrical characterization of TexasPEG: An electrically conductive neuronal scaffold |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A17%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physical%20and%20electrical%20characterization%20of%20TexasPEG:%20An%20electrically%20conductive%20neuronal%20scaffold&rft.jtitle=Surgical%20neurology%20international&rft.au=Sikkema,%20William&rft.date=2017-01-01&rft.volume=8&rft.issue=1&rft.spage=84&rft.epage=84&rft.pages=84-84&rft.issn=2152-7806&rft.eissn=2152-7806&rft_id=info:doi/10.4103/sni.sni_361_16&rft_dat=%3Cproquest_pubme%3E1936190565%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1936190565&rft_id=info:pmid/28607818&rfr_iscdi=true |