Surface topology affects wetting behavior of Bacillus subtilis biofilms

The colonization of surfaces by bacterial biofilms constitutes a huge problem in healthcare and industry. When attempting biofilm inactivation or removal, it is crucial to sufficiently wet the biofilm surface with antibacterial agents; however, certain biofilms efficiently resist wetting, and the or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NPJ biofilms and microbiomes 2017-04, Vol.3 (1), p.11-10, Article 11
Hauptverfasser: Werb, Moritz, Falcón García, Carolina, Bach, Nina C., Grumbein, Stefan, Sieber, Stephan A., Opitz, Madeleine, Lieleg, Oliver
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 1
container_start_page 11
container_title NPJ biofilms and microbiomes
container_volume 3
creator Werb, Moritz
Falcón García, Carolina
Bach, Nina C.
Grumbein, Stefan
Sieber, Stephan A.
Opitz, Madeleine
Lieleg, Oliver
description The colonization of surfaces by bacterial biofilms constitutes a huge problem in healthcare and industry. When attempting biofilm inactivation or removal, it is crucial to sufficiently wet the biofilm surface with antibacterial agents; however, certain biofilms efficiently resist wetting, and the origin of this behavior remains to date unclear. Here, we demonstrate that, depending on the growth medium used, the model bacterium Bacillus subtilis can form biofilm colonies with distinct surface properties: we find either hydrophilic or two variants of hydrophobic behavior. We show that those differences in biofilm wetting correlate with distinct surface topologies which, in turn, give rise to different physical wetting regimes known from lotus leaves or rose petals. Forming biofilms with different wetting properties may help bacteria to survive in both arid and humid conditions. Furthermore, converting the surface polarity of a biofilm could facilitate their removal from surfaces by increasing their wettability. Biofilm structure: Surface control of wetting A biofilm’s surface structure affects its susceptibility to wetting, influencing persistence and suggesting strategies for biofilm removal. Effective wetting of biofilm surfaces is essential for combatting them with antibacterial agents. Resistance to the procedures currently available for removing biofilms is a huge problem in healthcare. Researchers in Germany led by Oliver Lieleg at the Technical University of Munich found that Bacillus subtilis bacteria can form colonies with different surface structures that either resist or assist wetting. This structural variability in their biofilms may allow the bacteria to adapt to survive in either arid or humid conditions. The insight that environmental conditions can influence biofilm wettability should spur research to control this natural variation. Learning how to convert biofilms into more readily wetted forms may greatly assist their removal in healthcare situations.
doi_str_mv 10.1038/s41522-017-0018-1
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5460217</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4321993745</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-d21a7d6fa1be6a922b37f9cf08b72fdfd116d06e56050ce527f9bdc3559c926a3</originalsourceid><addsrcrecordid>eNp1kU9LBCEYhyWKiuoDdImBLl2mfHV0nEtQS_8g6FCdxXF0M9xx05mNvn3GbrEFnRR-z_vTlwehQ8CngKk4SxUwQkoMdYkxiBI20C7BjJUMY7G5dt9BBym94gyxqqaCbaMdInjVVEB20c3jGK3SphjCPPgw_SiUtUYPqXg3w-D6adGaF7VwIRbBFpdKO-_HVKSxHZx3qWhdsM7P0j7assonc7A699Dz9dXT5La8f7i5m1zcl5pRPpQdAVV33CpoDVcNIS2tbaMtFm1NbGc7AN5hbhjHDGvDSE7bTlPGGt0QrugeOl_2zsd2Zjpt-iEqL-fRzVT8kEE5-Tvp3YuchoVkFccE6lxwsiqI4W00aZAzl7TxXvUmjElCA1RQUnOW0eM_6GsYY5_XkyAaEJjWgmcKlpSOIaVo7M9nAMsvU3JpSmZT8suUhDxztL7Fz8S3lwyQJZBy1E9NXHv639ZP8x2fNg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1891803786</pqid></control><display><type>article</type><title>Surface topology affects wetting behavior of Bacillus subtilis biofilms</title><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><creator>Werb, Moritz ; Falcón García, Carolina ; Bach, Nina C. ; Grumbein, Stefan ; Sieber, Stephan A. ; Opitz, Madeleine ; Lieleg, Oliver</creator><creatorcontrib>Werb, Moritz ; Falcón García, Carolina ; Bach, Nina C. ; Grumbein, Stefan ; Sieber, Stephan A. ; Opitz, Madeleine ; Lieleg, Oliver</creatorcontrib><description>The colonization of surfaces by bacterial biofilms constitutes a huge problem in healthcare and industry. When attempting biofilm inactivation or removal, it is crucial to sufficiently wet the biofilm surface with antibacterial agents; however, certain biofilms efficiently resist wetting, and the origin of this behavior remains to date unclear. Here, we demonstrate that, depending on the growth medium used, the model bacterium Bacillus subtilis can form biofilm colonies with distinct surface properties: we find either hydrophilic or two variants of hydrophobic behavior. We show that those differences in biofilm wetting correlate with distinct surface topologies which, in turn, give rise to different physical wetting regimes known from lotus leaves or rose petals. Forming biofilms with different wetting properties may help bacteria to survive in both arid and humid conditions. Furthermore, converting the surface polarity of a biofilm could facilitate their removal from surfaces by increasing their wettability. Biofilm structure: Surface control of wetting A biofilm’s surface structure affects its susceptibility to wetting, influencing persistence and suggesting strategies for biofilm removal. Effective wetting of biofilm surfaces is essential for combatting them with antibacterial agents. Resistance to the procedures currently available for removing biofilms is a huge problem in healthcare. Researchers in Germany led by Oliver Lieleg at the Technical University of Munich found that Bacillus subtilis bacteria can form colonies with different surface structures that either resist or assist wetting. This structural variability in their biofilms may allow the bacteria to adapt to survive in either arid or humid conditions. The insight that environmental conditions can influence biofilm wettability should spur research to control this natural variation. Learning how to convert biofilms into more readily wetted forms may greatly assist their removal in healthcare situations.</description><identifier>ISSN: 2055-5008</identifier><identifier>EISSN: 2055-5008</identifier><identifier>DOI: 10.1038/s41522-017-0018-1</identifier><identifier>PMID: 28649412</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/326/252/58 ; 631/326/41 ; 631/326/46 ; 692/700 ; Antibacterial agents ; Bacillus subtilis ; Biofilms ; Biomedical and Life Sciences ; Colonization ; Hydrophobicity ; Life Sciences ; Medical Microbiology ; Microbial Ecology ; Microbial Genetics and Genomics ; Microbiology ; Polarity ; Surface properties</subject><ispartof>NPJ biofilms and microbiomes, 2017-04, Vol.3 (1), p.11-10, Article 11</ispartof><rights>The Author(s) 2017</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-d21a7d6fa1be6a922b37f9cf08b72fdfd116d06e56050ce527f9bdc3559c926a3</citedby><cites>FETCH-LOGICAL-c536t-d21a7d6fa1be6a922b37f9cf08b72fdfd116d06e56050ce527f9bdc3559c926a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5460217/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5460217/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28649412$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Werb, Moritz</creatorcontrib><creatorcontrib>Falcón García, Carolina</creatorcontrib><creatorcontrib>Bach, Nina C.</creatorcontrib><creatorcontrib>Grumbein, Stefan</creatorcontrib><creatorcontrib>Sieber, Stephan A.</creatorcontrib><creatorcontrib>Opitz, Madeleine</creatorcontrib><creatorcontrib>Lieleg, Oliver</creatorcontrib><title>Surface topology affects wetting behavior of Bacillus subtilis biofilms</title><title>NPJ biofilms and microbiomes</title><addtitle>npj Biofilms Microbiomes</addtitle><addtitle>NPJ Biofilms Microbiomes</addtitle><description>The colonization of surfaces by bacterial biofilms constitutes a huge problem in healthcare and industry. When attempting biofilm inactivation or removal, it is crucial to sufficiently wet the biofilm surface with antibacterial agents; however, certain biofilms efficiently resist wetting, and the origin of this behavior remains to date unclear. Here, we demonstrate that, depending on the growth medium used, the model bacterium Bacillus subtilis can form biofilm colonies with distinct surface properties: we find either hydrophilic or two variants of hydrophobic behavior. We show that those differences in biofilm wetting correlate with distinct surface topologies which, in turn, give rise to different physical wetting regimes known from lotus leaves or rose petals. Forming biofilms with different wetting properties may help bacteria to survive in both arid and humid conditions. Furthermore, converting the surface polarity of a biofilm could facilitate their removal from surfaces by increasing their wettability. Biofilm structure: Surface control of wetting A biofilm’s surface structure affects its susceptibility to wetting, influencing persistence and suggesting strategies for biofilm removal. Effective wetting of biofilm surfaces is essential for combatting them with antibacterial agents. Resistance to the procedures currently available for removing biofilms is a huge problem in healthcare. Researchers in Germany led by Oliver Lieleg at the Technical University of Munich found that Bacillus subtilis bacteria can form colonies with different surface structures that either resist or assist wetting. This structural variability in their biofilms may allow the bacteria to adapt to survive in either arid or humid conditions. The insight that environmental conditions can influence biofilm wettability should spur research to control this natural variation. Learning how to convert biofilms into more readily wetted forms may greatly assist their removal in healthcare situations.</description><subject>631/326/252/58</subject><subject>631/326/41</subject><subject>631/326/46</subject><subject>692/700</subject><subject>Antibacterial agents</subject><subject>Bacillus subtilis</subject><subject>Biofilms</subject><subject>Biomedical and Life Sciences</subject><subject>Colonization</subject><subject>Hydrophobicity</subject><subject>Life Sciences</subject><subject>Medical Microbiology</subject><subject>Microbial Ecology</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Polarity</subject><subject>Surface properties</subject><issn>2055-5008</issn><issn>2055-5008</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kU9LBCEYhyWKiuoDdImBLl2mfHV0nEtQS_8g6FCdxXF0M9xx05mNvn3GbrEFnRR-z_vTlwehQ8CngKk4SxUwQkoMdYkxiBI20C7BjJUMY7G5dt9BBym94gyxqqaCbaMdInjVVEB20c3jGK3SphjCPPgw_SiUtUYPqXg3w-D6adGaF7VwIRbBFpdKO-_HVKSxHZx3qWhdsM7P0j7assonc7A699Dz9dXT5La8f7i5m1zcl5pRPpQdAVV33CpoDVcNIS2tbaMtFm1NbGc7AN5hbhjHDGvDSE7bTlPGGt0QrugeOl_2zsd2Zjpt-iEqL-fRzVT8kEE5-Tvp3YuchoVkFccE6lxwsiqI4W00aZAzl7TxXvUmjElCA1RQUnOW0eM_6GsYY5_XkyAaEJjWgmcKlpSOIaVo7M9nAMsvU3JpSmZT8suUhDxztL7Fz8S3lwyQJZBy1E9NXHv639ZP8x2fNg</recordid><startdate>20170425</startdate><enddate>20170425</enddate><creator>Werb, Moritz</creator><creator>Falcón García, Carolina</creator><creator>Bach, Nina C.</creator><creator>Grumbein, Stefan</creator><creator>Sieber, Stephan A.</creator><creator>Opitz, Madeleine</creator><creator>Lieleg, Oliver</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170425</creationdate><title>Surface topology affects wetting behavior of Bacillus subtilis biofilms</title><author>Werb, Moritz ; Falcón García, Carolina ; Bach, Nina C. ; Grumbein, Stefan ; Sieber, Stephan A. ; Opitz, Madeleine ; Lieleg, Oliver</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-d21a7d6fa1be6a922b37f9cf08b72fdfd116d06e56050ce527f9bdc3559c926a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>631/326/252/58</topic><topic>631/326/41</topic><topic>631/326/46</topic><topic>692/700</topic><topic>Antibacterial agents</topic><topic>Bacillus subtilis</topic><topic>Biofilms</topic><topic>Biomedical and Life Sciences</topic><topic>Colonization</topic><topic>Hydrophobicity</topic><topic>Life Sciences</topic><topic>Medical Microbiology</topic><topic>Microbial Ecology</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Polarity</topic><topic>Surface properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Werb, Moritz</creatorcontrib><creatorcontrib>Falcón García, Carolina</creatorcontrib><creatorcontrib>Bach, Nina C.</creatorcontrib><creatorcontrib>Grumbein, Stefan</creatorcontrib><creatorcontrib>Sieber, Stephan A.</creatorcontrib><creatorcontrib>Opitz, Madeleine</creatorcontrib><creatorcontrib>Lieleg, Oliver</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>NPJ biofilms and microbiomes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Werb, Moritz</au><au>Falcón García, Carolina</au><au>Bach, Nina C.</au><au>Grumbein, Stefan</au><au>Sieber, Stephan A.</au><au>Opitz, Madeleine</au><au>Lieleg, Oliver</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface topology affects wetting behavior of Bacillus subtilis biofilms</atitle><jtitle>NPJ biofilms and microbiomes</jtitle><stitle>npj Biofilms Microbiomes</stitle><addtitle>NPJ Biofilms Microbiomes</addtitle><date>2017-04-25</date><risdate>2017</risdate><volume>3</volume><issue>1</issue><spage>11</spage><epage>10</epage><pages>11-10</pages><artnum>11</artnum><issn>2055-5008</issn><eissn>2055-5008</eissn><abstract>The colonization of surfaces by bacterial biofilms constitutes a huge problem in healthcare and industry. When attempting biofilm inactivation or removal, it is crucial to sufficiently wet the biofilm surface with antibacterial agents; however, certain biofilms efficiently resist wetting, and the origin of this behavior remains to date unclear. Here, we demonstrate that, depending on the growth medium used, the model bacterium Bacillus subtilis can form biofilm colonies with distinct surface properties: we find either hydrophilic or two variants of hydrophobic behavior. We show that those differences in biofilm wetting correlate with distinct surface topologies which, in turn, give rise to different physical wetting regimes known from lotus leaves or rose petals. Forming biofilms with different wetting properties may help bacteria to survive in both arid and humid conditions. Furthermore, converting the surface polarity of a biofilm could facilitate their removal from surfaces by increasing their wettability. Biofilm structure: Surface control of wetting A biofilm’s surface structure affects its susceptibility to wetting, influencing persistence and suggesting strategies for biofilm removal. Effective wetting of biofilm surfaces is essential for combatting them with antibacterial agents. Resistance to the procedures currently available for removing biofilms is a huge problem in healthcare. Researchers in Germany led by Oliver Lieleg at the Technical University of Munich found that Bacillus subtilis bacteria can form colonies with different surface structures that either resist or assist wetting. This structural variability in their biofilms may allow the bacteria to adapt to survive in either arid or humid conditions. The insight that environmental conditions can influence biofilm wettability should spur research to control this natural variation. Learning how to convert biofilms into more readily wetted forms may greatly assist their removal in healthcare situations.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28649412</pmid><doi>10.1038/s41522-017-0018-1</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2055-5008
ispartof NPJ biofilms and microbiomes, 2017-04, Vol.3 (1), p.11-10, Article 11
issn 2055-5008
2055-5008
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5460217
source Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access; Springer Nature OA Free Journals
subjects 631/326/252/58
631/326/41
631/326/46
692/700
Antibacterial agents
Bacillus subtilis
Biofilms
Biomedical and Life Sciences
Colonization
Hydrophobicity
Life Sciences
Medical Microbiology
Microbial Ecology
Microbial Genetics and Genomics
Microbiology
Polarity
Surface properties
title Surface topology affects wetting behavior of Bacillus subtilis biofilms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T08%3A56%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20topology%20affects%20wetting%20behavior%20of%20Bacillus%20subtilis%20biofilms&rft.jtitle=NPJ%20biofilms%20and%20microbiomes&rft.au=Werb,%20Moritz&rft.date=2017-04-25&rft.volume=3&rft.issue=1&rft.spage=11&rft.epage=10&rft.pages=11-10&rft.artnum=11&rft.issn=2055-5008&rft.eissn=2055-5008&rft_id=info:doi/10.1038/s41522-017-0018-1&rft_dat=%3Cproquest_pubme%3E4321993745%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1891803786&rft_id=info:pmid/28649412&rfr_iscdi=true