Theory of partitioning of disease prevalence and mortality in observational data

In this study, we present a new theory of partitioning of disease prevalence and incidence-based mortality and demonstrate how this theory practically works for analyses of Medicare data. In the theory, the prevalence of a disease and incidence-based mortality are modeled in terms of disease inciden...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical population biology 2017-04, Vol.114, p.117-127
Hauptverfasser: Akushevich, I., Yashkin, A.P., Kravchenko, J., Fang, F., Arbeev, K., Sloan, F., Yashin, A.I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 127
container_issue
container_start_page 117
container_title Theoretical population biology
container_volume 114
creator Akushevich, I.
Yashkin, A.P.
Kravchenko, J.
Fang, F.
Arbeev, K.
Sloan, F.
Yashin, A.I.
description In this study, we present a new theory of partitioning of disease prevalence and incidence-based mortality and demonstrate how this theory practically works for analyses of Medicare data. In the theory, the prevalence of a disease and incidence-based mortality are modeled in terms of disease incidence and survival after diagnosis supplemented by information on disease prevalence at the initial age and year available in a dataset. Partitioning of the trends of prevalence and mortality is calculated with minimal assumptions. The resulting expressions for the components of the trends are given by continuous functions of data. The estimator is consistent and stable. The developed methodology is applied for data on type 2 diabetes using individual records from a nationally representative 5% sample of Medicare beneficiaries age 65+. Numerical estimates show excellent concordance between empirical estimates and theoretical predictions. Evaluated partitioning model showed that both prevalence and mortality increase with time. The primary driving factors of the observed prevalence increase are improved survival and increased prevalence at age 65. The increase in diabetes-related mortality is driven by increased prevalence and unobserved trends in time-periods and age-groups outside of the range of the data used in the study. Finally, the properties of the new estimator, possible statistical and systematical uncertainties, and future practical applications of this methodology in epidemiology, demography, public health and health forecasting are discussed.
doi_str_mv 10.1016/j.tpb.2017.01.003
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5459580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0040580917300072</els_id><sourcerecordid>1862760163</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-7d334f0a9a2cef0193c5942a32df36190b8e38efd53ca583bb7ac834bc18a76f3</originalsourceid><addsrcrecordid>eNp9kU9rGzEQxUVpiR03H6CXsMdcdjta7V8KhWKStGBoD-lZzEqzicx6tZFkg799tDgxzaWnQcx7b8TvMfaFQ8aBV1-3WZi6LAdeZ8AzAPGBLTm0VQoiLz-yJUABadlAu2CX3m8BoOFCXLBFHifwol6yPw9PZN0xsX0yoQsmGDua8XF-a-MJPSWTowMONCpKcNTJzrqAgwnHxIyJ7Ty5A84uHBKNAT-zTz0Onq5e54r9vbt9WP9MN7_vf61_bFJVlDyktRai6AFbzBX1wFuhyrbIUeS6FxVvoWtINNTrUigsG9F1NapGFJ3iDdZVL1bs-yl32nc70orG4HCQkzM7dEdp0cj3m9E8yUd7kGVRtpFJDLh5DXD2eU8-yJ3xioYBR7J7L3lT5XUVMYso5SepctZ7R_35DAc5NyG3MjYh5yYkcBmbiJ7rf_93dryhj4JvJwFFSgdDTnplZsraOFJBamv-E_8CThSbhQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1862760163</pqid></control><display><type>article</type><title>Theory of partitioning of disease prevalence and mortality in observational data</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Akushevich, I. ; Yashkin, A.P. ; Kravchenko, J. ; Fang, F. ; Arbeev, K. ; Sloan, F. ; Yashin, A.I.</creator><creatorcontrib>Akushevich, I. ; Yashkin, A.P. ; Kravchenko, J. ; Fang, F. ; Arbeev, K. ; Sloan, F. ; Yashin, A.I.</creatorcontrib><description>In this study, we present a new theory of partitioning of disease prevalence and incidence-based mortality and demonstrate how this theory practically works for analyses of Medicare data. In the theory, the prevalence of a disease and incidence-based mortality are modeled in terms of disease incidence and survival after diagnosis supplemented by information on disease prevalence at the initial age and year available in a dataset. Partitioning of the trends of prevalence and mortality is calculated with minimal assumptions. The resulting expressions for the components of the trends are given by continuous functions of data. The estimator is consistent and stable. The developed methodology is applied for data on type 2 diabetes using individual records from a nationally representative 5% sample of Medicare beneficiaries age 65+. Numerical estimates show excellent concordance between empirical estimates and theoretical predictions. Evaluated partitioning model showed that both prevalence and mortality increase with time. The primary driving factors of the observed prevalence increase are improved survival and increased prevalence at age 65. The increase in diabetes-related mortality is driven by increased prevalence and unobserved trends in time-periods and age-groups outside of the range of the data used in the study. Finally, the properties of the new estimator, possible statistical and systematical uncertainties, and future practical applications of this methodology in epidemiology, demography, public health and health forecasting are discussed.</description><identifier>ISSN: 0040-5809</identifier><identifier>EISSN: 1096-0325</identifier><identifier>DOI: 10.1016/j.tpb.2017.01.003</identifier><identifier>PMID: 28130147</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Aged ; Aged, 80 and over ; Diabetes ; Diabetes Mellitus, Type 2 - epidemiology ; Diabetes Mellitus, Type 2 - mortality ; Forecasting ; Humans ; Incidence ; Medicare - statistics &amp; numerical data ; Mortality ; Partitioning ; Prevalence ; Survival Analysis ; Time trend ; United States - epidemiology</subject><ispartof>Theoretical population biology, 2017-04, Vol.114, p.117-127</ispartof><rights>2017 Elsevier Inc.</rights><rights>Copyright © 2017 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-7d334f0a9a2cef0193c5942a32df36190b8e38efd53ca583bb7ac834bc18a76f3</citedby><cites>FETCH-LOGICAL-c451t-7d334f0a9a2cef0193c5942a32df36190b8e38efd53ca583bb7ac834bc18a76f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0040580917300072$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28130147$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Akushevich, I.</creatorcontrib><creatorcontrib>Yashkin, A.P.</creatorcontrib><creatorcontrib>Kravchenko, J.</creatorcontrib><creatorcontrib>Fang, F.</creatorcontrib><creatorcontrib>Arbeev, K.</creatorcontrib><creatorcontrib>Sloan, F.</creatorcontrib><creatorcontrib>Yashin, A.I.</creatorcontrib><title>Theory of partitioning of disease prevalence and mortality in observational data</title><title>Theoretical population biology</title><addtitle>Theor Popul Biol</addtitle><description>In this study, we present a new theory of partitioning of disease prevalence and incidence-based mortality and demonstrate how this theory practically works for analyses of Medicare data. In the theory, the prevalence of a disease and incidence-based mortality are modeled in terms of disease incidence and survival after diagnosis supplemented by information on disease prevalence at the initial age and year available in a dataset. Partitioning of the trends of prevalence and mortality is calculated with minimal assumptions. The resulting expressions for the components of the trends are given by continuous functions of data. The estimator is consistent and stable. The developed methodology is applied for data on type 2 diabetes using individual records from a nationally representative 5% sample of Medicare beneficiaries age 65+. Numerical estimates show excellent concordance between empirical estimates and theoretical predictions. Evaluated partitioning model showed that both prevalence and mortality increase with time. The primary driving factors of the observed prevalence increase are improved survival and increased prevalence at age 65. The increase in diabetes-related mortality is driven by increased prevalence and unobserved trends in time-periods and age-groups outside of the range of the data used in the study. Finally, the properties of the new estimator, possible statistical and systematical uncertainties, and future practical applications of this methodology in epidemiology, demography, public health and health forecasting are discussed.</description><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Diabetes</subject><subject>Diabetes Mellitus, Type 2 - epidemiology</subject><subject>Diabetes Mellitus, Type 2 - mortality</subject><subject>Forecasting</subject><subject>Humans</subject><subject>Incidence</subject><subject>Medicare - statistics &amp; numerical data</subject><subject>Mortality</subject><subject>Partitioning</subject><subject>Prevalence</subject><subject>Survival Analysis</subject><subject>Time trend</subject><subject>United States - epidemiology</subject><issn>0040-5809</issn><issn>1096-0325</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU9rGzEQxUVpiR03H6CXsMdcdjta7V8KhWKStGBoD-lZzEqzicx6tZFkg799tDgxzaWnQcx7b8TvMfaFQ8aBV1-3WZi6LAdeZ8AzAPGBLTm0VQoiLz-yJUABadlAu2CX3m8BoOFCXLBFHifwol6yPw9PZN0xsX0yoQsmGDua8XF-a-MJPSWTowMONCpKcNTJzrqAgwnHxIyJ7Ty5A84uHBKNAT-zTz0Onq5e54r9vbt9WP9MN7_vf61_bFJVlDyktRai6AFbzBX1wFuhyrbIUeS6FxVvoWtINNTrUigsG9F1NapGFJ3iDdZVL1bs-yl32nc70orG4HCQkzM7dEdp0cj3m9E8yUd7kGVRtpFJDLh5DXD2eU8-yJ3xioYBR7J7L3lT5XUVMYso5SepctZ7R_35DAc5NyG3MjYh5yYkcBmbiJ7rf_93dryhj4JvJwFFSgdDTnplZsraOFJBamv-E_8CThSbhQ</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Akushevich, I.</creator><creator>Yashkin, A.P.</creator><creator>Kravchenko, J.</creator><creator>Fang, F.</creator><creator>Arbeev, K.</creator><creator>Sloan, F.</creator><creator>Yashin, A.I.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170401</creationdate><title>Theory of partitioning of disease prevalence and mortality in observational data</title><author>Akushevich, I. ; Yashkin, A.P. ; Kravchenko, J. ; Fang, F. ; Arbeev, K. ; Sloan, F. ; Yashin, A.I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-7d334f0a9a2cef0193c5942a32df36190b8e38efd53ca583bb7ac834bc18a76f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Diabetes</topic><topic>Diabetes Mellitus, Type 2 - epidemiology</topic><topic>Diabetes Mellitus, Type 2 - mortality</topic><topic>Forecasting</topic><topic>Humans</topic><topic>Incidence</topic><topic>Medicare - statistics &amp; numerical data</topic><topic>Mortality</topic><topic>Partitioning</topic><topic>Prevalence</topic><topic>Survival Analysis</topic><topic>Time trend</topic><topic>United States - epidemiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akushevich, I.</creatorcontrib><creatorcontrib>Yashkin, A.P.</creatorcontrib><creatorcontrib>Kravchenko, J.</creatorcontrib><creatorcontrib>Fang, F.</creatorcontrib><creatorcontrib>Arbeev, K.</creatorcontrib><creatorcontrib>Sloan, F.</creatorcontrib><creatorcontrib>Yashin, A.I.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Theoretical population biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akushevich, I.</au><au>Yashkin, A.P.</au><au>Kravchenko, J.</au><au>Fang, F.</au><au>Arbeev, K.</au><au>Sloan, F.</au><au>Yashin, A.I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theory of partitioning of disease prevalence and mortality in observational data</atitle><jtitle>Theoretical population biology</jtitle><addtitle>Theor Popul Biol</addtitle><date>2017-04-01</date><risdate>2017</risdate><volume>114</volume><spage>117</spage><epage>127</epage><pages>117-127</pages><issn>0040-5809</issn><eissn>1096-0325</eissn><abstract>In this study, we present a new theory of partitioning of disease prevalence and incidence-based mortality and demonstrate how this theory practically works for analyses of Medicare data. In the theory, the prevalence of a disease and incidence-based mortality are modeled in terms of disease incidence and survival after diagnosis supplemented by information on disease prevalence at the initial age and year available in a dataset. Partitioning of the trends of prevalence and mortality is calculated with minimal assumptions. The resulting expressions for the components of the trends are given by continuous functions of data. The estimator is consistent and stable. The developed methodology is applied for data on type 2 diabetes using individual records from a nationally representative 5% sample of Medicare beneficiaries age 65+. Numerical estimates show excellent concordance between empirical estimates and theoretical predictions. Evaluated partitioning model showed that both prevalence and mortality increase with time. The primary driving factors of the observed prevalence increase are improved survival and increased prevalence at age 65. The increase in diabetes-related mortality is driven by increased prevalence and unobserved trends in time-periods and age-groups outside of the range of the data used in the study. Finally, the properties of the new estimator, possible statistical and systematical uncertainties, and future practical applications of this methodology in epidemiology, demography, public health and health forecasting are discussed.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>28130147</pmid><doi>10.1016/j.tpb.2017.01.003</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0040-5809
ispartof Theoretical population biology, 2017-04, Vol.114, p.117-127
issn 0040-5809
1096-0325
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5459580
source MEDLINE; Elsevier ScienceDirect Journals
subjects Aged
Aged, 80 and over
Diabetes
Diabetes Mellitus, Type 2 - epidemiology
Diabetes Mellitus, Type 2 - mortality
Forecasting
Humans
Incidence
Medicare - statistics & numerical data
Mortality
Partitioning
Prevalence
Survival Analysis
Time trend
United States - epidemiology
title Theory of partitioning of disease prevalence and mortality in observational data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T23%3A12%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theory%20of%20partitioning%20of%20disease%20prevalence%20and%20mortality%20in%20observational%20data&rft.jtitle=Theoretical%20population%20biology&rft.au=Akushevich,%20I.&rft.date=2017-04-01&rft.volume=114&rft.spage=117&rft.epage=127&rft.pages=117-127&rft.issn=0040-5809&rft.eissn=1096-0325&rft_id=info:doi/10.1016/j.tpb.2017.01.003&rft_dat=%3Cproquest_pubme%3E1862760163%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1862760163&rft_id=info:pmid/28130147&rft_els_id=S0040580917300072&rfr_iscdi=true