Theory of partitioning of disease prevalence and mortality in observational data
In this study, we present a new theory of partitioning of disease prevalence and incidence-based mortality and demonstrate how this theory practically works for analyses of Medicare data. In the theory, the prevalence of a disease and incidence-based mortality are modeled in terms of disease inciden...
Gespeichert in:
Veröffentlicht in: | Theoretical population biology 2017-04, Vol.114, p.117-127 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 127 |
---|---|
container_issue | |
container_start_page | 117 |
container_title | Theoretical population biology |
container_volume | 114 |
creator | Akushevich, I. Yashkin, A.P. Kravchenko, J. Fang, F. Arbeev, K. Sloan, F. Yashin, A.I. |
description | In this study, we present a new theory of partitioning of disease prevalence and incidence-based mortality and demonstrate how this theory practically works for analyses of Medicare data. In the theory, the prevalence of a disease and incidence-based mortality are modeled in terms of disease incidence and survival after diagnosis supplemented by information on disease prevalence at the initial age and year available in a dataset. Partitioning of the trends of prevalence and mortality is calculated with minimal assumptions. The resulting expressions for the components of the trends are given by continuous functions of data. The estimator is consistent and stable. The developed methodology is applied for data on type 2 diabetes using individual records from a nationally representative 5% sample of Medicare beneficiaries age 65+. Numerical estimates show excellent concordance between empirical estimates and theoretical predictions. Evaluated partitioning model showed that both prevalence and mortality increase with time. The primary driving factors of the observed prevalence increase are improved survival and increased prevalence at age 65. The increase in diabetes-related mortality is driven by increased prevalence and unobserved trends in time-periods and age-groups outside of the range of the data used in the study. Finally, the properties of the new estimator, possible statistical and systematical uncertainties, and future practical applications of this methodology in epidemiology, demography, public health and health forecasting are discussed. |
doi_str_mv | 10.1016/j.tpb.2017.01.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5459580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0040580917300072</els_id><sourcerecordid>1862760163</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-7d334f0a9a2cef0193c5942a32df36190b8e38efd53ca583bb7ac834bc18a76f3</originalsourceid><addsrcrecordid>eNp9kU9rGzEQxUVpiR03H6CXsMdcdjta7V8KhWKStGBoD-lZzEqzicx6tZFkg799tDgxzaWnQcx7b8TvMfaFQ8aBV1-3WZi6LAdeZ8AzAPGBLTm0VQoiLz-yJUABadlAu2CX3m8BoOFCXLBFHifwol6yPw9PZN0xsX0yoQsmGDua8XF-a-MJPSWTowMONCpKcNTJzrqAgwnHxIyJ7Ty5A84uHBKNAT-zTz0Onq5e54r9vbt9WP9MN7_vf61_bFJVlDyktRai6AFbzBX1wFuhyrbIUeS6FxVvoWtINNTrUigsG9F1NapGFJ3iDdZVL1bs-yl32nc70orG4HCQkzM7dEdp0cj3m9E8yUd7kGVRtpFJDLh5DXD2eU8-yJ3xioYBR7J7L3lT5XUVMYso5SepctZ7R_35DAc5NyG3MjYh5yYkcBmbiJ7rf_93dryhj4JvJwFFSgdDTnplZsraOFJBamv-E_8CThSbhQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1862760163</pqid></control><display><type>article</type><title>Theory of partitioning of disease prevalence and mortality in observational data</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Akushevich, I. ; Yashkin, A.P. ; Kravchenko, J. ; Fang, F. ; Arbeev, K. ; Sloan, F. ; Yashin, A.I.</creator><creatorcontrib>Akushevich, I. ; Yashkin, A.P. ; Kravchenko, J. ; Fang, F. ; Arbeev, K. ; Sloan, F. ; Yashin, A.I.</creatorcontrib><description>In this study, we present a new theory of partitioning of disease prevalence and incidence-based mortality and demonstrate how this theory practically works for analyses of Medicare data. In the theory, the prevalence of a disease and incidence-based mortality are modeled in terms of disease incidence and survival after diagnosis supplemented by information on disease prevalence at the initial age and year available in a dataset. Partitioning of the trends of prevalence and mortality is calculated with minimal assumptions. The resulting expressions for the components of the trends are given by continuous functions of data. The estimator is consistent and stable. The developed methodology is applied for data on type 2 diabetes using individual records from a nationally representative 5% sample of Medicare beneficiaries age 65+. Numerical estimates show excellent concordance between empirical estimates and theoretical predictions. Evaluated partitioning model showed that both prevalence and mortality increase with time. The primary driving factors of the observed prevalence increase are improved survival and increased prevalence at age 65. The increase in diabetes-related mortality is driven by increased prevalence and unobserved trends in time-periods and age-groups outside of the range of the data used in the study. Finally, the properties of the new estimator, possible statistical and systematical uncertainties, and future practical applications of this methodology in epidemiology, demography, public health and health forecasting are discussed.</description><identifier>ISSN: 0040-5809</identifier><identifier>EISSN: 1096-0325</identifier><identifier>DOI: 10.1016/j.tpb.2017.01.003</identifier><identifier>PMID: 28130147</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Aged ; Aged, 80 and over ; Diabetes ; Diabetes Mellitus, Type 2 - epidemiology ; Diabetes Mellitus, Type 2 - mortality ; Forecasting ; Humans ; Incidence ; Medicare - statistics & numerical data ; Mortality ; Partitioning ; Prevalence ; Survival Analysis ; Time trend ; United States - epidemiology</subject><ispartof>Theoretical population biology, 2017-04, Vol.114, p.117-127</ispartof><rights>2017 Elsevier Inc.</rights><rights>Copyright © 2017 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-7d334f0a9a2cef0193c5942a32df36190b8e38efd53ca583bb7ac834bc18a76f3</citedby><cites>FETCH-LOGICAL-c451t-7d334f0a9a2cef0193c5942a32df36190b8e38efd53ca583bb7ac834bc18a76f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0040580917300072$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28130147$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Akushevich, I.</creatorcontrib><creatorcontrib>Yashkin, A.P.</creatorcontrib><creatorcontrib>Kravchenko, J.</creatorcontrib><creatorcontrib>Fang, F.</creatorcontrib><creatorcontrib>Arbeev, K.</creatorcontrib><creatorcontrib>Sloan, F.</creatorcontrib><creatorcontrib>Yashin, A.I.</creatorcontrib><title>Theory of partitioning of disease prevalence and mortality in observational data</title><title>Theoretical population biology</title><addtitle>Theor Popul Biol</addtitle><description>In this study, we present a new theory of partitioning of disease prevalence and incidence-based mortality and demonstrate how this theory practically works for analyses of Medicare data. In the theory, the prevalence of a disease and incidence-based mortality are modeled in terms of disease incidence and survival after diagnosis supplemented by information on disease prevalence at the initial age and year available in a dataset. Partitioning of the trends of prevalence and mortality is calculated with minimal assumptions. The resulting expressions for the components of the trends are given by continuous functions of data. The estimator is consistent and stable. The developed methodology is applied for data on type 2 diabetes using individual records from a nationally representative 5% sample of Medicare beneficiaries age 65+. Numerical estimates show excellent concordance between empirical estimates and theoretical predictions. Evaluated partitioning model showed that both prevalence and mortality increase with time. The primary driving factors of the observed prevalence increase are improved survival and increased prevalence at age 65. The increase in diabetes-related mortality is driven by increased prevalence and unobserved trends in time-periods and age-groups outside of the range of the data used in the study. Finally, the properties of the new estimator, possible statistical and systematical uncertainties, and future practical applications of this methodology in epidemiology, demography, public health and health forecasting are discussed.</description><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Diabetes</subject><subject>Diabetes Mellitus, Type 2 - epidemiology</subject><subject>Diabetes Mellitus, Type 2 - mortality</subject><subject>Forecasting</subject><subject>Humans</subject><subject>Incidence</subject><subject>Medicare - statistics & numerical data</subject><subject>Mortality</subject><subject>Partitioning</subject><subject>Prevalence</subject><subject>Survival Analysis</subject><subject>Time trend</subject><subject>United States - epidemiology</subject><issn>0040-5809</issn><issn>1096-0325</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU9rGzEQxUVpiR03H6CXsMdcdjta7V8KhWKStGBoD-lZzEqzicx6tZFkg799tDgxzaWnQcx7b8TvMfaFQ8aBV1-3WZi6LAdeZ8AzAPGBLTm0VQoiLz-yJUABadlAu2CX3m8BoOFCXLBFHifwol6yPw9PZN0xsX0yoQsmGDua8XF-a-MJPSWTowMONCpKcNTJzrqAgwnHxIyJ7Ty5A84uHBKNAT-zTz0Onq5e54r9vbt9WP9MN7_vf61_bFJVlDyktRai6AFbzBX1wFuhyrbIUeS6FxVvoWtINNTrUigsG9F1NapGFJ3iDdZVL1bs-yl32nc70orG4HCQkzM7dEdp0cj3m9E8yUd7kGVRtpFJDLh5DXD2eU8-yJ3xioYBR7J7L3lT5XUVMYso5SepctZ7R_35DAc5NyG3MjYh5yYkcBmbiJ7rf_93dryhj4JvJwFFSgdDTnplZsraOFJBamv-E_8CThSbhQ</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Akushevich, I.</creator><creator>Yashkin, A.P.</creator><creator>Kravchenko, J.</creator><creator>Fang, F.</creator><creator>Arbeev, K.</creator><creator>Sloan, F.</creator><creator>Yashin, A.I.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170401</creationdate><title>Theory of partitioning of disease prevalence and mortality in observational data</title><author>Akushevich, I. ; Yashkin, A.P. ; Kravchenko, J. ; Fang, F. ; Arbeev, K. ; Sloan, F. ; Yashin, A.I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-7d334f0a9a2cef0193c5942a32df36190b8e38efd53ca583bb7ac834bc18a76f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Diabetes</topic><topic>Diabetes Mellitus, Type 2 - epidemiology</topic><topic>Diabetes Mellitus, Type 2 - mortality</topic><topic>Forecasting</topic><topic>Humans</topic><topic>Incidence</topic><topic>Medicare - statistics & numerical data</topic><topic>Mortality</topic><topic>Partitioning</topic><topic>Prevalence</topic><topic>Survival Analysis</topic><topic>Time trend</topic><topic>United States - epidemiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akushevich, I.</creatorcontrib><creatorcontrib>Yashkin, A.P.</creatorcontrib><creatorcontrib>Kravchenko, J.</creatorcontrib><creatorcontrib>Fang, F.</creatorcontrib><creatorcontrib>Arbeev, K.</creatorcontrib><creatorcontrib>Sloan, F.</creatorcontrib><creatorcontrib>Yashin, A.I.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Theoretical population biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akushevich, I.</au><au>Yashkin, A.P.</au><au>Kravchenko, J.</au><au>Fang, F.</au><au>Arbeev, K.</au><au>Sloan, F.</au><au>Yashin, A.I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theory of partitioning of disease prevalence and mortality in observational data</atitle><jtitle>Theoretical population biology</jtitle><addtitle>Theor Popul Biol</addtitle><date>2017-04-01</date><risdate>2017</risdate><volume>114</volume><spage>117</spage><epage>127</epage><pages>117-127</pages><issn>0040-5809</issn><eissn>1096-0325</eissn><abstract>In this study, we present a new theory of partitioning of disease prevalence and incidence-based mortality and demonstrate how this theory practically works for analyses of Medicare data. In the theory, the prevalence of a disease and incidence-based mortality are modeled in terms of disease incidence and survival after diagnosis supplemented by information on disease prevalence at the initial age and year available in a dataset. Partitioning of the trends of prevalence and mortality is calculated with minimal assumptions. The resulting expressions for the components of the trends are given by continuous functions of data. The estimator is consistent and stable. The developed methodology is applied for data on type 2 diabetes using individual records from a nationally representative 5% sample of Medicare beneficiaries age 65+. Numerical estimates show excellent concordance between empirical estimates and theoretical predictions. Evaluated partitioning model showed that both prevalence and mortality increase with time. The primary driving factors of the observed prevalence increase are improved survival and increased prevalence at age 65. The increase in diabetes-related mortality is driven by increased prevalence and unobserved trends in time-periods and age-groups outside of the range of the data used in the study. Finally, the properties of the new estimator, possible statistical and systematical uncertainties, and future practical applications of this methodology in epidemiology, demography, public health and health forecasting are discussed.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>28130147</pmid><doi>10.1016/j.tpb.2017.01.003</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-5809 |
ispartof | Theoretical population biology, 2017-04, Vol.114, p.117-127 |
issn | 0040-5809 1096-0325 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5459580 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Aged Aged, 80 and over Diabetes Diabetes Mellitus, Type 2 - epidemiology Diabetes Mellitus, Type 2 - mortality Forecasting Humans Incidence Medicare - statistics & numerical data Mortality Partitioning Prevalence Survival Analysis Time trend United States - epidemiology |
title | Theory of partitioning of disease prevalence and mortality in observational data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T23%3A12%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theory%20of%20partitioning%20of%20disease%20prevalence%20and%20mortality%20in%20observational%20data&rft.jtitle=Theoretical%20population%20biology&rft.au=Akushevich,%20I.&rft.date=2017-04-01&rft.volume=114&rft.spage=117&rft.epage=127&rft.pages=117-127&rft.issn=0040-5809&rft.eissn=1096-0325&rft_id=info:doi/10.1016/j.tpb.2017.01.003&rft_dat=%3Cproquest_pubme%3E1862760163%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1862760163&rft_id=info:pmid/28130147&rft_els_id=S0040580917300072&rfr_iscdi=true |