High Thermal Dissipation of Al Heat Sink When Inserting Ceramic Powders by Ultrasonic Mechanical Coating and Armoring

Aluminum alloys, which serve as heat sink in light-emitting diode (LED) lighting, are often inherent with a high thermal conductivity, but poor thermal total emissivity. Thus, high emissive coatings on the Al substrate can enhance the thermal dissipation efficiency of radiation. In this study, the u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2017-04, Vol.10 (5), p.454
Hauptverfasser: Tsai, Wei-Yu, Huang, Guan-Rong, Wang, Kuang-Kuo, Chen, Chin-Fu, Huang, J C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 454
container_title Materials
container_volume 10
creator Tsai, Wei-Yu
Huang, Guan-Rong
Wang, Kuang-Kuo
Chen, Chin-Fu
Huang, J C
description Aluminum alloys, which serve as heat sink in light-emitting diode (LED) lighting, are often inherent with a high thermal conductivity, but poor thermal total emissivity. Thus, high emissive coatings on the Al substrate can enhance the thermal dissipation efficiency of radiation. In this study, the ultrasonic mechanical coating and armoring (UMCA) technique was used to insert various ceramic combinations, such as Al₂O₃, SiO₂, or graphite, to enhance thermal dissipation. Analytic models have been established to couple the thermal radiation and convection on the sample surface through heat flow equations. A promising match has been reached between the theoretical predictions and experimental measurements. With the adequate insertion of ceramic powders, the temperature of the Al heat sinks can be lowered by 5-11 °C, which is highly favorable for applications requiring cooling components.
doi_str_mv 10.3390/ma10050454
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5458992</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1926682652</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-1c888bfd60d392140ba1b5523a0bb316e5e9c5f33b4c6053e4497a91eedeeef3</originalsourceid><addsrcrecordid>eNpdkV1LHDEUhkNRqqg3_QEl0BspbM3nbHJTWLbWFSwK3dLLkMmc2YmdSdZkxuK_N9aP2ubmnJw85-UNL0LvKPnEuSYng6WESCKkeIP2qdbVjGohdl71e-go52tSDudUMf0W7TE1nzNFxT6aVn7T4XUHabA9_uJz9ls7-hhwbPGixyuwI_7uwy_8s4OAz0OGNPqwwUtIdvAOX8XfDaSM6zv8ox-TzTGU6TdwnS1N0VxG-2fBhgYv0hBTuRyi3db2GY6e6gFafz1dL1ezi8uz8-XiYuYEqcYZdUqpum0q0nDNqCC1pbWUjFtS15xWIEE72XJeC1cRyUEIPbeaAjQA0PID9PlRdjvVAzQOQjHYm23yg013Jlpv_n0JvjObeGukkEprVgSOnwRSvJkgj2bw2UHf2wBxyoZqVlWKVfIB_fAfeh2nFMrvCkWJ1HPJVKE-PlIuxZwTtC9mKDEPeZq_eRb4_Wv7L-hzevwewr6bsg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1910597528</pqid></control><display><type>article</type><title>High Thermal Dissipation of Al Heat Sink When Inserting Ceramic Powders by Ultrasonic Mechanical Coating and Armoring</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Tsai, Wei-Yu ; Huang, Guan-Rong ; Wang, Kuang-Kuo ; Chen, Chin-Fu ; Huang, J C</creator><creatorcontrib>Tsai, Wei-Yu ; Huang, Guan-Rong ; Wang, Kuang-Kuo ; Chen, Chin-Fu ; Huang, J C</creatorcontrib><description>Aluminum alloys, which serve as heat sink in light-emitting diode (LED) lighting, are often inherent with a high thermal conductivity, but poor thermal total emissivity. Thus, high emissive coatings on the Al substrate can enhance the thermal dissipation efficiency of radiation. In this study, the ultrasonic mechanical coating and armoring (UMCA) technique was used to insert various ceramic combinations, such as Al₂O₃, SiO₂, or graphite, to enhance thermal dissipation. Analytic models have been established to couple the thermal radiation and convection on the sample surface through heat flow equations. A promising match has been reached between the theoretical predictions and experimental measurements. With the adequate insertion of ceramic powders, the temperature of the Al heat sinks can be lowered by 5-11 °C, which is highly favorable for applications requiring cooling components.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma10050454</identifier><identifier>PMID: 28772814</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Aluminum ; Aluminum base alloys ; Aluminum oxide ; Atmospheric pressure ; Ceramic coatings ; Ceramic powders ; Ceramics ; Chemical vapor deposition ; Efficiency ; Experiments ; Flow equations ; Heat sinks ; Heat transfer ; Heat transmission ; Light emitting diodes ; Oxidation ; Protective coatings ; Radiation ; Silicon dioxide ; Substrates ; Thermal conductivity ; Thermal radiation</subject><ispartof>Materials, 2017-04, Vol.10 (5), p.454</ispartof><rights>Copyright MDPI AG 2017</rights><rights>2017 by the authors. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-1c888bfd60d392140ba1b5523a0bb316e5e9c5f33b4c6053e4497a91eedeeef3</citedby><cites>FETCH-LOGICAL-c406t-1c888bfd60d392140ba1b5523a0bb316e5e9c5f33b4c6053e4497a91eedeeef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5458992/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5458992/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28772814$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tsai, Wei-Yu</creatorcontrib><creatorcontrib>Huang, Guan-Rong</creatorcontrib><creatorcontrib>Wang, Kuang-Kuo</creatorcontrib><creatorcontrib>Chen, Chin-Fu</creatorcontrib><creatorcontrib>Huang, J C</creatorcontrib><title>High Thermal Dissipation of Al Heat Sink When Inserting Ceramic Powders by Ultrasonic Mechanical Coating and Armoring</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>Aluminum alloys, which serve as heat sink in light-emitting diode (LED) lighting, are often inherent with a high thermal conductivity, but poor thermal total emissivity. Thus, high emissive coatings on the Al substrate can enhance the thermal dissipation efficiency of radiation. In this study, the ultrasonic mechanical coating and armoring (UMCA) technique was used to insert various ceramic combinations, such as Al₂O₃, SiO₂, or graphite, to enhance thermal dissipation. Analytic models have been established to couple the thermal radiation and convection on the sample surface through heat flow equations. A promising match has been reached between the theoretical predictions and experimental measurements. With the adequate insertion of ceramic powders, the temperature of the Al heat sinks can be lowered by 5-11 °C, which is highly favorable for applications requiring cooling components.</description><subject>Aluminum</subject><subject>Aluminum base alloys</subject><subject>Aluminum oxide</subject><subject>Atmospheric pressure</subject><subject>Ceramic coatings</subject><subject>Ceramic powders</subject><subject>Ceramics</subject><subject>Chemical vapor deposition</subject><subject>Efficiency</subject><subject>Experiments</subject><subject>Flow equations</subject><subject>Heat sinks</subject><subject>Heat transfer</subject><subject>Heat transmission</subject><subject>Light emitting diodes</subject><subject>Oxidation</subject><subject>Protective coatings</subject><subject>Radiation</subject><subject>Silicon dioxide</subject><subject>Substrates</subject><subject>Thermal conductivity</subject><subject>Thermal radiation</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkV1LHDEUhkNRqqg3_QEl0BspbM3nbHJTWLbWFSwK3dLLkMmc2YmdSdZkxuK_N9aP2ubmnJw85-UNL0LvKPnEuSYng6WESCKkeIP2qdbVjGohdl71e-go52tSDudUMf0W7TE1nzNFxT6aVn7T4XUHabA9_uJz9ls7-hhwbPGixyuwI_7uwy_8s4OAz0OGNPqwwUtIdvAOX8XfDaSM6zv8ox-TzTGU6TdwnS1N0VxG-2fBhgYv0hBTuRyi3db2GY6e6gFafz1dL1ezi8uz8-XiYuYEqcYZdUqpum0q0nDNqCC1pbWUjFtS15xWIEE72XJeC1cRyUEIPbeaAjQA0PID9PlRdjvVAzQOQjHYm23yg013Jlpv_n0JvjObeGukkEprVgSOnwRSvJkgj2bw2UHf2wBxyoZqVlWKVfIB_fAfeh2nFMrvCkWJ1HPJVKE-PlIuxZwTtC9mKDEPeZq_eRb4_Wv7L-hzevwewr6bsg</recordid><startdate>20170426</startdate><enddate>20170426</enddate><creator>Tsai, Wei-Yu</creator><creator>Huang, Guan-Rong</creator><creator>Wang, Kuang-Kuo</creator><creator>Chen, Chin-Fu</creator><creator>Huang, J C</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170426</creationdate><title>High Thermal Dissipation of Al Heat Sink When Inserting Ceramic Powders by Ultrasonic Mechanical Coating and Armoring</title><author>Tsai, Wei-Yu ; Huang, Guan-Rong ; Wang, Kuang-Kuo ; Chen, Chin-Fu ; Huang, J C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-1c888bfd60d392140ba1b5523a0bb316e5e9c5f33b4c6053e4497a91eedeeef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aluminum</topic><topic>Aluminum base alloys</topic><topic>Aluminum oxide</topic><topic>Atmospheric pressure</topic><topic>Ceramic coatings</topic><topic>Ceramic powders</topic><topic>Ceramics</topic><topic>Chemical vapor deposition</topic><topic>Efficiency</topic><topic>Experiments</topic><topic>Flow equations</topic><topic>Heat sinks</topic><topic>Heat transfer</topic><topic>Heat transmission</topic><topic>Light emitting diodes</topic><topic>Oxidation</topic><topic>Protective coatings</topic><topic>Radiation</topic><topic>Silicon dioxide</topic><topic>Substrates</topic><topic>Thermal conductivity</topic><topic>Thermal radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsai, Wei-Yu</creatorcontrib><creatorcontrib>Huang, Guan-Rong</creatorcontrib><creatorcontrib>Wang, Kuang-Kuo</creatorcontrib><creatorcontrib>Chen, Chin-Fu</creatorcontrib><creatorcontrib>Huang, J C</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsai, Wei-Yu</au><au>Huang, Guan-Rong</au><au>Wang, Kuang-Kuo</au><au>Chen, Chin-Fu</au><au>Huang, J C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High Thermal Dissipation of Al Heat Sink When Inserting Ceramic Powders by Ultrasonic Mechanical Coating and Armoring</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2017-04-26</date><risdate>2017</risdate><volume>10</volume><issue>5</issue><spage>454</spage><pages>454-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Aluminum alloys, which serve as heat sink in light-emitting diode (LED) lighting, are often inherent with a high thermal conductivity, but poor thermal total emissivity. Thus, high emissive coatings on the Al substrate can enhance the thermal dissipation efficiency of radiation. In this study, the ultrasonic mechanical coating and armoring (UMCA) technique was used to insert various ceramic combinations, such as Al₂O₃, SiO₂, or graphite, to enhance thermal dissipation. Analytic models have been established to couple the thermal radiation and convection on the sample surface through heat flow equations. A promising match has been reached between the theoretical predictions and experimental measurements. With the adequate insertion of ceramic powders, the temperature of the Al heat sinks can be lowered by 5-11 °C, which is highly favorable for applications requiring cooling components.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>28772814</pmid><doi>10.3390/ma10050454</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2017-04, Vol.10 (5), p.454
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5458992
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access
subjects Aluminum
Aluminum base alloys
Aluminum oxide
Atmospheric pressure
Ceramic coatings
Ceramic powders
Ceramics
Chemical vapor deposition
Efficiency
Experiments
Flow equations
Heat sinks
Heat transfer
Heat transmission
Light emitting diodes
Oxidation
Protective coatings
Radiation
Silicon dioxide
Substrates
Thermal conductivity
Thermal radiation
title High Thermal Dissipation of Al Heat Sink When Inserting Ceramic Powders by Ultrasonic Mechanical Coating and Armoring
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T06%3A35%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20Thermal%20Dissipation%20of%20Al%20Heat%20Sink%20When%20Inserting%20Ceramic%20Powders%20by%20Ultrasonic%20Mechanical%20Coating%20and%20Armoring&rft.jtitle=Materials&rft.au=Tsai,%20Wei-Yu&rft.date=2017-04-26&rft.volume=10&rft.issue=5&rft.spage=454&rft.pages=454-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma10050454&rft_dat=%3Cproquest_pubme%3E1926682652%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1910597528&rft_id=info:pmid/28772814&rfr_iscdi=true