Acceleration of Image Segmentation Algorithm for (Breast) Mammogram Images Using High-Performance Reconfigurable Dataflow Computers

Image segmentation is one of the most common procedures in medical imaging applications. It is also a very important task in breast cancer detection. Breast cancer detection procedure based on mammography can be divided into several stages. The first stage is the extraction of the region of interest...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational and mathematical methods in medicine 2017-01, Vol.2017 (2017), p.1-11
Hauptverfasser: Peulic, A., Filipovic, Nenad, Mijailovic, N., Milankovic, I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue 2017
container_start_page 1
container_title Computational and mathematical methods in medicine
container_volume 2017
creator Peulic, A.
Filipovic, Nenad
Mijailovic, N.
Milankovic, I.
description Image segmentation is one of the most common procedures in medical imaging applications. It is also a very important task in breast cancer detection. Breast cancer detection procedure based on mammography can be divided into several stages. The first stage is the extraction of the region of interest from a breast image, followed by the identification of suspicious mass regions, their classification, and comparison with the existing image database. It is often the case that already existing image databases have large sets of data whose processing requires a lot of time, and thus the acceleration of each of the processing stages in breast cancer detection is a very important issue. In this paper, the implementation of the already existing algorithm for region-of-interest based image segmentation for mammogram images on High-Performance Reconfigurable Dataflow Computers (HPRDCs) is proposed. As a dataflow engine (DFE) of such HPRDC, Maxeler’s acceleration card is used. The experiments for examining the acceleration of that algorithm on the Reconfigurable Dataflow Computers (RDCs) are performed with two types of mammogram images with different resolutions. There were, also, several DFE configurations and each of them gave a different acceleration value of algorithm execution. Those acceleration values are presented and experimental results showed good acceleration.
doi_str_mv 10.1155/2017/7909282
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5458435</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1909743878</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-edb041386088c62864773c6d64c89ed4196dd270360686ff4305685912faea833</originalsourceid><addsrcrecordid>eNqNkc1vFCEYhydGY2v15tlwrNGxMHzOpcm6frRJjUZt4o2wzMssZhhWmLHx7D8uzayr3uQCgYffy8tTVY8JfkEI52cNJvJMtrhtVHOnOiaSqVpIou4e1vjLUfUg568YcyI5uV8dNUoQojg5rn6urIUBkpl8HFF06DKYHtAn6AOM07K7GvqY_LQNyMWETl8mMHl6it6ZEGKfTFjuZHSd_dijC99v6w-QChvMaAF9BBtH5_s5mc0A6JWZjBviDVrHsJsnSPlhdc-ZIcOj_XxSXb95_Xl9UV-9f3u5Xl3VljE61dBtMCNUCayUFaUFJiW1ohPMqhY6RlrRdY3EVGChhHOMYi4Ub0njDBhF6Ul1vuTu5k2AzpYGkxn0Lvlg0g8djdf_nox-q_v4XXPGFaO8BJzuA1L8NkOedPC5fN9gRohz1qRYkIwqqQr6fEFtijkncIcyBOtbb_rWm957K_iTv592gH-LKsCzBdj6sTM3_j_joDDgzB-asIaW8QuKJauN</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1909743878</pqid></control><display><type>article</type><title>Acceleration of Image Segmentation Algorithm for (Breast) Mammogram Images Using High-Performance Reconfigurable Dataflow Computers</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>PubMed Central Open Access</source><creator>Peulic, A. ; Filipovic, Nenad ; Mijailovic, N. ; Milankovic, I.</creator><contributor>Zhao, Yuhai</contributor><creatorcontrib>Peulic, A. ; Filipovic, Nenad ; Mijailovic, N. ; Milankovic, I. ; Zhao, Yuhai</creatorcontrib><description>Image segmentation is one of the most common procedures in medical imaging applications. It is also a very important task in breast cancer detection. Breast cancer detection procedure based on mammography can be divided into several stages. The first stage is the extraction of the region of interest from a breast image, followed by the identification of suspicious mass regions, their classification, and comparison with the existing image database. It is often the case that already existing image databases have large sets of data whose processing requires a lot of time, and thus the acceleration of each of the processing stages in breast cancer detection is a very important issue. In this paper, the implementation of the already existing algorithm for region-of-interest based image segmentation for mammogram images on High-Performance Reconfigurable Dataflow Computers (HPRDCs) is proposed. As a dataflow engine (DFE) of such HPRDC, Maxeler’s acceleration card is used. The experiments for examining the acceleration of that algorithm on the Reconfigurable Dataflow Computers (RDCs) are performed with two types of mammogram images with different resolutions. There were, also, several DFE configurations and each of them gave a different acceleration value of algorithm execution. Those acceleration values are presented and experimental results showed good acceleration.</description><identifier>ISSN: 1748-670X</identifier><identifier>EISSN: 1748-6718</identifier><identifier>DOI: 10.1155/2017/7909282</identifier><identifier>PMID: 28611851</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Breast - diagnostic imaging ; Breast Neoplasms - diagnostic imaging ; Computers ; Female ; Humans ; Mammography - instrumentation ; Mammography - methods</subject><ispartof>Computational and mathematical methods in medicine, 2017-01, Vol.2017 (2017), p.1-11</ispartof><rights>Copyright © 2017 Ivan L. Milankovic et al.</rights><rights>Copyright © 2017 Ivan L. Milankovic et al. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-edb041386088c62864773c6d64c89ed4196dd270360686ff4305685912faea833</citedby><cites>FETCH-LOGICAL-c443t-edb041386088c62864773c6d64c89ed4196dd270360686ff4305685912faea833</cites><orcidid>0000-0003-0416-4056 ; 0000-0002-2665-9933 ; 0000-0001-8728-8171</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5458435/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5458435/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28611851$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Zhao, Yuhai</contributor><creatorcontrib>Peulic, A.</creatorcontrib><creatorcontrib>Filipovic, Nenad</creatorcontrib><creatorcontrib>Mijailovic, N.</creatorcontrib><creatorcontrib>Milankovic, I.</creatorcontrib><title>Acceleration of Image Segmentation Algorithm for (Breast) Mammogram Images Using High-Performance Reconfigurable Dataflow Computers</title><title>Computational and mathematical methods in medicine</title><addtitle>Comput Math Methods Med</addtitle><description>Image segmentation is one of the most common procedures in medical imaging applications. It is also a very important task in breast cancer detection. Breast cancer detection procedure based on mammography can be divided into several stages. The first stage is the extraction of the region of interest from a breast image, followed by the identification of suspicious mass regions, their classification, and comparison with the existing image database. It is often the case that already existing image databases have large sets of data whose processing requires a lot of time, and thus the acceleration of each of the processing stages in breast cancer detection is a very important issue. In this paper, the implementation of the already existing algorithm for region-of-interest based image segmentation for mammogram images on High-Performance Reconfigurable Dataflow Computers (HPRDCs) is proposed. As a dataflow engine (DFE) of such HPRDC, Maxeler’s acceleration card is used. The experiments for examining the acceleration of that algorithm on the Reconfigurable Dataflow Computers (RDCs) are performed with two types of mammogram images with different resolutions. There were, also, several DFE configurations and each of them gave a different acceleration value of algorithm execution. Those acceleration values are presented and experimental results showed good acceleration.</description><subject>Algorithms</subject><subject>Breast - diagnostic imaging</subject><subject>Breast Neoplasms - diagnostic imaging</subject><subject>Computers</subject><subject>Female</subject><subject>Humans</subject><subject>Mammography - instrumentation</subject><subject>Mammography - methods</subject><issn>1748-670X</issn><issn>1748-6718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><recordid>eNqNkc1vFCEYhydGY2v15tlwrNGxMHzOpcm6frRJjUZt4o2wzMssZhhWmLHx7D8uzayr3uQCgYffy8tTVY8JfkEI52cNJvJMtrhtVHOnOiaSqVpIou4e1vjLUfUg568YcyI5uV8dNUoQojg5rn6urIUBkpl8HFF06DKYHtAn6AOM07K7GvqY_LQNyMWETl8mMHl6it6ZEGKfTFjuZHSd_dijC99v6w-QChvMaAF9BBtH5_s5mc0A6JWZjBviDVrHsJsnSPlhdc-ZIcOj_XxSXb95_Xl9UV-9f3u5Xl3VljE61dBtMCNUCayUFaUFJiW1ohPMqhY6RlrRdY3EVGChhHOMYi4Ub0njDBhF6Ul1vuTu5k2AzpYGkxn0Lvlg0g8djdf_nox-q_v4XXPGFaO8BJzuA1L8NkOedPC5fN9gRohz1qRYkIwqqQr6fEFtijkncIcyBOtbb_rWm957K_iTv592gH-LKsCzBdj6sTM3_j_joDDgzB-asIaW8QuKJauN</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Peulic, A.</creator><creator>Filipovic, Nenad</creator><creator>Mijailovic, N.</creator><creator>Milankovic, I.</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0416-4056</orcidid><orcidid>https://orcid.org/0000-0002-2665-9933</orcidid><orcidid>https://orcid.org/0000-0001-8728-8171</orcidid></search><sort><creationdate>20170101</creationdate><title>Acceleration of Image Segmentation Algorithm for (Breast) Mammogram Images Using High-Performance Reconfigurable Dataflow Computers</title><author>Peulic, A. ; Filipovic, Nenad ; Mijailovic, N. ; Milankovic, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-edb041386088c62864773c6d64c89ed4196dd270360686ff4305685912faea833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Breast - diagnostic imaging</topic><topic>Breast Neoplasms - diagnostic imaging</topic><topic>Computers</topic><topic>Female</topic><topic>Humans</topic><topic>Mammography - instrumentation</topic><topic>Mammography - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peulic, A.</creatorcontrib><creatorcontrib>Filipovic, Nenad</creatorcontrib><creatorcontrib>Mijailovic, N.</creatorcontrib><creatorcontrib>Milankovic, I.</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational and mathematical methods in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peulic, A.</au><au>Filipovic, Nenad</au><au>Mijailovic, N.</au><au>Milankovic, I.</au><au>Zhao, Yuhai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acceleration of Image Segmentation Algorithm for (Breast) Mammogram Images Using High-Performance Reconfigurable Dataflow Computers</atitle><jtitle>Computational and mathematical methods in medicine</jtitle><addtitle>Comput Math Methods Med</addtitle><date>2017-01-01</date><risdate>2017</risdate><volume>2017</volume><issue>2017</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>1748-670X</issn><eissn>1748-6718</eissn><abstract>Image segmentation is one of the most common procedures in medical imaging applications. It is also a very important task in breast cancer detection. Breast cancer detection procedure based on mammography can be divided into several stages. The first stage is the extraction of the region of interest from a breast image, followed by the identification of suspicious mass regions, their classification, and comparison with the existing image database. It is often the case that already existing image databases have large sets of data whose processing requires a lot of time, and thus the acceleration of each of the processing stages in breast cancer detection is a very important issue. In this paper, the implementation of the already existing algorithm for region-of-interest based image segmentation for mammogram images on High-Performance Reconfigurable Dataflow Computers (HPRDCs) is proposed. As a dataflow engine (DFE) of such HPRDC, Maxeler’s acceleration card is used. The experiments for examining the acceleration of that algorithm on the Reconfigurable Dataflow Computers (RDCs) are performed with two types of mammogram images with different resolutions. There were, also, several DFE configurations and each of them gave a different acceleration value of algorithm execution. Those acceleration values are presented and experimental results showed good acceleration.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>28611851</pmid><doi>10.1155/2017/7909282</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0416-4056</orcidid><orcidid>https://orcid.org/0000-0002-2665-9933</orcidid><orcidid>https://orcid.org/0000-0001-8728-8171</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1748-670X
ispartof Computational and mathematical methods in medicine, 2017-01, Vol.2017 (2017), p.1-11
issn 1748-670X
1748-6718
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5458435
source MEDLINE; Wiley Online Library Open Access; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; PubMed Central Open Access
subjects Algorithms
Breast - diagnostic imaging
Breast Neoplasms - diagnostic imaging
Computers
Female
Humans
Mammography - instrumentation
Mammography - methods
title Acceleration of Image Segmentation Algorithm for (Breast) Mammogram Images Using High-Performance Reconfigurable Dataflow Computers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T06%3A33%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acceleration%20of%20Image%20Segmentation%20Algorithm%20for%20(Breast)%20Mammogram%20Images%20Using%20High-Performance%20Reconfigurable%20Dataflow%20Computers&rft.jtitle=Computational%20and%20mathematical%20methods%20in%20medicine&rft.au=Peulic,%20A.&rft.date=2017-01-01&rft.volume=2017&rft.issue=2017&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=1748-670X&rft.eissn=1748-6718&rft_id=info:doi/10.1155/2017/7909282&rft_dat=%3Cproquest_pubme%3E1909743878%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1909743878&rft_id=info:pmid/28611851&rfr_iscdi=true