Use of the Kalman Filter for Aortic Pressure Waveform Noise Reduction

Clinical applications that require extraction and interpretation of physiological signals or waveforms are susceptible to corruption by noise or artifacts. Real-time hemodynamic monitoring systems are important for clinicians to assess the hemodynamic stability of surgical or intensive care patients...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational and mathematical methods in medicine 2017-01, Vol.2017 (2017), p.1-7
Hauptverfasser: Aliyazicioglu, Zekeriya, Wu, Chung-Che, Lu, Hsiang-Wei, Lam, Frank, Kang, James S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7
container_issue 2017
container_start_page 1
container_title Computational and mathematical methods in medicine
container_volume 2017
creator Aliyazicioglu, Zekeriya
Wu, Chung-Che
Lu, Hsiang-Wei
Lam, Frank
Kang, James S.
description Clinical applications that require extraction and interpretation of physiological signals or waveforms are susceptible to corruption by noise or artifacts. Real-time hemodynamic monitoring systems are important for clinicians to assess the hemodynamic stability of surgical or intensive care patients by interpreting hemodynamic parameters generated by an analysis of aortic blood pressure (ABP) waveform measurements. Since hemodynamic parameter estimation algorithms often detect events and features from measured ABP waveforms to generate hemodynamic parameters, noise and artifacts integrated into ABP waveforms can severely distort the interpretation of hemodynamic parameters by hemodynamic algorithms. In this article, we propose the use of the Kalman filter and the 4-element Windkessel model with static parameters, arterial compliance C, peripheral resistance R, aortic impedance r, and the inertia of blood L, to represent aortic circulation for generating accurate estimations of ABP waveforms through noise and artifact reduction. Results show the Kalman filter could very effectively eliminate noise and generate a good estimation from the noisy ABP waveform based on the past state history. The power spectrum of the measured ABP waveform and the synthesized ABP waveform shows two similar harmonic frequencies.
doi_str_mv 10.1155/2017/6975085
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5458431</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1909742643</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-e184257ffe6ed7b2fa5c255d58ee871584f318179c1229886c37a60e98c758d73</originalsourceid><addsrcrecordid>eNqNkE1LxDAQhoMoft88S46CrmbSpkkvgohfKCqi6C3EdOJG2kaTVvHfW9l11ZunDJlnnhleQjaA7QIIsccZyL2ilIIpMUeWQeZqVEhQ87OaPSyRlZSeGRMgBSySJa4KACXYMjm6S0iDo90Y6bmpG9PSY193GKkLkR6E2HlLryOm1Eek9-YNh_-GXgY_zN1g1dvOh3aNLDhTJ1yfvqvk7vjo9vB0dHF1cnZ4cDGyOWPdCEHlXEjnsMBKPnJnhOVCVEIhKglC5S4DBbK0wHmpVGEzaQqGpbJSqEpmq2R_4n3pHxusLLZdNLV-ib4x8UMH4_XfTuvH-im8aZEP8gwGwdZUEMNrj6nTjU8W69q0GPqkoWSlzHmRZwO6M0FtDClFdLM1wPRX8voreT1NfsA3f582g7-jHoDtCTD2bWXe_T91ODDozA8NOeeFyj4BINGUtw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1909742643</pqid></control><display><type>article</type><title>Use of the Kalman Filter for Aortic Pressure Waveform Noise Reduction</title><source>MEDLINE</source><source>PubMed Central Open Access</source><source>Wiley-Blackwell Open Access Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Aliyazicioglu, Zekeriya ; Wu, Chung-Che ; Lu, Hsiang-Wei ; Lam, Frank ; Kang, James S.</creator><contributor>Ferrigno, Giancarlo</contributor><creatorcontrib>Aliyazicioglu, Zekeriya ; Wu, Chung-Che ; Lu, Hsiang-Wei ; Lam, Frank ; Kang, James S. ; Ferrigno, Giancarlo</creatorcontrib><description>Clinical applications that require extraction and interpretation of physiological signals or waveforms are susceptible to corruption by noise or artifacts. Real-time hemodynamic monitoring systems are important for clinicians to assess the hemodynamic stability of surgical or intensive care patients by interpreting hemodynamic parameters generated by an analysis of aortic blood pressure (ABP) waveform measurements. Since hemodynamic parameter estimation algorithms often detect events and features from measured ABP waveforms to generate hemodynamic parameters, noise and artifacts integrated into ABP waveforms can severely distort the interpretation of hemodynamic parameters by hemodynamic algorithms. In this article, we propose the use of the Kalman filter and the 4-element Windkessel model with static parameters, arterial compliance C, peripheral resistance R, aortic impedance r, and the inertia of blood L, to represent aortic circulation for generating accurate estimations of ABP waveforms through noise and artifact reduction. Results show the Kalman filter could very effectively eliminate noise and generate a good estimation from the noisy ABP waveform based on the past state history. The power spectrum of the measured ABP waveform and the synthesized ABP waveform shows two similar harmonic frequencies.</description><identifier>ISSN: 1748-670X</identifier><identifier>EISSN: 1748-6718</identifier><identifier>DOI: 10.1155/2017/6975085</identifier><identifier>PMID: 28611850</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Arterial Pressure ; Hemodynamic Monitoring - instrumentation ; Humans</subject><ispartof>Computational and mathematical methods in medicine, 2017-01, Vol.2017 (2017), p.1-7</ispartof><rights>Copyright © 2017 Frank Lam et al.</rights><rights>Copyright © 2017 Frank Lam et al. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c400t-e184257ffe6ed7b2fa5c255d58ee871584f318179c1229886c37a60e98c758d73</cites><orcidid>0000-0001-5843-7684</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5458431/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5458431/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28611850$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Ferrigno, Giancarlo</contributor><creatorcontrib>Aliyazicioglu, Zekeriya</creatorcontrib><creatorcontrib>Wu, Chung-Che</creatorcontrib><creatorcontrib>Lu, Hsiang-Wei</creatorcontrib><creatorcontrib>Lam, Frank</creatorcontrib><creatorcontrib>Kang, James S.</creatorcontrib><title>Use of the Kalman Filter for Aortic Pressure Waveform Noise Reduction</title><title>Computational and mathematical methods in medicine</title><addtitle>Comput Math Methods Med</addtitle><description>Clinical applications that require extraction and interpretation of physiological signals or waveforms are susceptible to corruption by noise or artifacts. Real-time hemodynamic monitoring systems are important for clinicians to assess the hemodynamic stability of surgical or intensive care patients by interpreting hemodynamic parameters generated by an analysis of aortic blood pressure (ABP) waveform measurements. Since hemodynamic parameter estimation algorithms often detect events and features from measured ABP waveforms to generate hemodynamic parameters, noise and artifacts integrated into ABP waveforms can severely distort the interpretation of hemodynamic parameters by hemodynamic algorithms. In this article, we propose the use of the Kalman filter and the 4-element Windkessel model with static parameters, arterial compliance C, peripheral resistance R, aortic impedance r, and the inertia of blood L, to represent aortic circulation for generating accurate estimations of ABP waveforms through noise and artifact reduction. Results show the Kalman filter could very effectively eliminate noise and generate a good estimation from the noisy ABP waveform based on the past state history. The power spectrum of the measured ABP waveform and the synthesized ABP waveform shows two similar harmonic frequencies.</description><subject>Algorithms</subject><subject>Arterial Pressure</subject><subject>Hemodynamic Monitoring - instrumentation</subject><subject>Humans</subject><issn>1748-670X</issn><issn>1748-6718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><recordid>eNqNkE1LxDAQhoMoft88S46CrmbSpkkvgohfKCqi6C3EdOJG2kaTVvHfW9l11ZunDJlnnhleQjaA7QIIsccZyL2ilIIpMUeWQeZqVEhQ87OaPSyRlZSeGRMgBSySJa4KACXYMjm6S0iDo90Y6bmpG9PSY193GKkLkR6E2HlLryOm1Eek9-YNh_-GXgY_zN1g1dvOh3aNLDhTJ1yfvqvk7vjo9vB0dHF1cnZ4cDGyOWPdCEHlXEjnsMBKPnJnhOVCVEIhKglC5S4DBbK0wHmpVGEzaQqGpbJSqEpmq2R_4n3pHxusLLZdNLV-ib4x8UMH4_XfTuvH-im8aZEP8gwGwdZUEMNrj6nTjU8W69q0GPqkoWSlzHmRZwO6M0FtDClFdLM1wPRX8voreT1NfsA3f582g7-jHoDtCTD2bWXe_T91ODDozA8NOeeFyj4BINGUtw</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Aliyazicioglu, Zekeriya</creator><creator>Wu, Chung-Che</creator><creator>Lu, Hsiang-Wei</creator><creator>Lam, Frank</creator><creator>Kang, James S.</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5843-7684</orcidid></search><sort><creationdate>20170101</creationdate><title>Use of the Kalman Filter for Aortic Pressure Waveform Noise Reduction</title><author>Aliyazicioglu, Zekeriya ; Wu, Chung-Che ; Lu, Hsiang-Wei ; Lam, Frank ; Kang, James S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-e184257ffe6ed7b2fa5c255d58ee871584f318179c1229886c37a60e98c758d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Arterial Pressure</topic><topic>Hemodynamic Monitoring - instrumentation</topic><topic>Humans</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aliyazicioglu, Zekeriya</creatorcontrib><creatorcontrib>Wu, Chung-Che</creatorcontrib><creatorcontrib>Lu, Hsiang-Wei</creatorcontrib><creatorcontrib>Lam, Frank</creatorcontrib><creatorcontrib>Kang, James S.</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational and mathematical methods in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aliyazicioglu, Zekeriya</au><au>Wu, Chung-Che</au><au>Lu, Hsiang-Wei</au><au>Lam, Frank</au><au>Kang, James S.</au><au>Ferrigno, Giancarlo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Use of the Kalman Filter for Aortic Pressure Waveform Noise Reduction</atitle><jtitle>Computational and mathematical methods in medicine</jtitle><addtitle>Comput Math Methods Med</addtitle><date>2017-01-01</date><risdate>2017</risdate><volume>2017</volume><issue>2017</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>1748-670X</issn><eissn>1748-6718</eissn><abstract>Clinical applications that require extraction and interpretation of physiological signals or waveforms are susceptible to corruption by noise or artifacts. Real-time hemodynamic monitoring systems are important for clinicians to assess the hemodynamic stability of surgical or intensive care patients by interpreting hemodynamic parameters generated by an analysis of aortic blood pressure (ABP) waveform measurements. Since hemodynamic parameter estimation algorithms often detect events and features from measured ABP waveforms to generate hemodynamic parameters, noise and artifacts integrated into ABP waveforms can severely distort the interpretation of hemodynamic parameters by hemodynamic algorithms. In this article, we propose the use of the Kalman filter and the 4-element Windkessel model with static parameters, arterial compliance C, peripheral resistance R, aortic impedance r, and the inertia of blood L, to represent aortic circulation for generating accurate estimations of ABP waveforms through noise and artifact reduction. Results show the Kalman filter could very effectively eliminate noise and generate a good estimation from the noisy ABP waveform based on the past state history. The power spectrum of the measured ABP waveform and the synthesized ABP waveform shows two similar harmonic frequencies.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>28611850</pmid><doi>10.1155/2017/6975085</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5843-7684</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1748-670X
ispartof Computational and mathematical methods in medicine, 2017-01, Vol.2017 (2017), p.1-7
issn 1748-670X
1748-6718
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5458431
source MEDLINE; PubMed Central Open Access; Wiley-Blackwell Open Access Titles; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Algorithms
Arterial Pressure
Hemodynamic Monitoring - instrumentation
Humans
title Use of the Kalman Filter for Aortic Pressure Waveform Noise Reduction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A02%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20the%20Kalman%20Filter%20for%20Aortic%20Pressure%20Waveform%20Noise%20Reduction&rft.jtitle=Computational%20and%20mathematical%20methods%20in%20medicine&rft.au=Aliyazicioglu,%20Zekeriya&rft.date=2017-01-01&rft.volume=2017&rft.issue=2017&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=1748-670X&rft.eissn=1748-6718&rft_id=info:doi/10.1155/2017/6975085&rft_dat=%3Cproquest_pubme%3E1909742643%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1909742643&rft_id=info:pmid/28611850&rfr_iscdi=true