Anodization Mechanism on SiC Nanoparticle Reinforced Al Matrix Composites Produced by Power Metallurgy
Specimens of aluminum-based composites reinforced by silicon carbide nanoparticles (Al/SiC ) produced by powder metallurgy (PM) were anodized under voltage control in tartaric-sulfuric acid (TSA). In this work, the influence of the amount of SiC on the film growth during anodizing was investigated....
Gespeichert in:
Veröffentlicht in: | Materials 2014-12, Vol.7 (12), p.8151-8167 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8167 |
---|---|
container_issue | 12 |
container_start_page | 8151 |
container_title | Materials |
container_volume | 7 |
creator | Ferreira, Sonia C Conde, Ana Arenas, María A Rocha, Luis A Velhinho, Alexandre |
description | Specimens of aluminum-based composites reinforced by silicon carbide nanoparticles (Al/SiC
) produced by powder metallurgy (PM) were anodized under voltage control in tartaric-sulfuric acid (TSA). In this work, the influence of the amount of SiC
on the film growth during anodizing was investigated. The current density
time response and the morphology of the porous alumina film formed at the composite surface are compared to those concerning a commercial aluminum alloy (AA1050) anodized under the same conditions. The processing method of the aluminum alloys influences the efficiency of the anodizing process, leading to a lower thicknesses for the unreinforced Al-PM alloy regarding the AA1050. The current density
time response is strongly dependent on the amount of SiC
. The current peaks and the steady-state current density recorded at each voltage step increases with the SiC
volume fraction due to the oxidation of the SiC
. The formation mechanism of the anodic film on Al/SiC
composites is different from that occurring in AA1050, partly due the heterogeneous distribution of the reinforcement particles in the metallic matrix, but also to the entrapment of SiC
in the anodic film. |
doi_str_mv | 10.3390/ma7128151 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5456428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1927602262</sourcerecordid><originalsourceid>FETCH-LOGICAL-c535t-6bc649ca57292dc0572ac26bf6941912aad78944042dde634d51ca1352cc4fd33</originalsourceid><addsrcrecordid>eNqFkk1PHDEMhqOKChDlwB-oIvUCh23zPZML0mpFaSVoUT_OkTfJQNBMsiQzlO2vb1bQFe0FX2zLj17Z1ovQESXvOdfkwwANZS2V9BXap1qrGdVC7Dyr99BhKbekBue0ZXoX7bG2aWsl91E3j8mF3zCGFPGltzcQQxlwbb6HBf4CMa0gj8H2Hn_zIXYpW-_wvMeXMObwgBdpWKUSRl_wVU5u2kyXa3yVfvlc9Ubo-ylfr9-g1x30xR8-5QP08-PZj8Wn2cXX88-L-cXMSi7HmVpaJbQF2TDNnCU1g2Vq2SktqKYMwDVtPYkI5pxXXDhJLVAumbWic5wfoNNH3dW0HLyzPo4ZerPKYYC8NgmC-XcSw425TvdGCqkEa6vA8ZNATneTL6MZQrG-7yH6NBVDNWsUYUyxl9Gm4S1ThKuXUaUIEZLqzQLv_kNv05RjfVoVJKquSJmo1MkjZXMqJftueyIlZmMLs7VFZd8-_8mW_GsC_gf2k7HZ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1706283124</pqid></control><display><type>article</type><title>Anodization Mechanism on SiC Nanoparticle Reinforced Al Matrix Composites Produced by Power Metallurgy</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Ferreira, Sonia C ; Conde, Ana ; Arenas, María A ; Rocha, Luis A ; Velhinho, Alexandre</creator><creatorcontrib>Ferreira, Sonia C ; Conde, Ana ; Arenas, María A ; Rocha, Luis A ; Velhinho, Alexandre</creatorcontrib><description>Specimens of aluminum-based composites reinforced by silicon carbide nanoparticles (Al/SiC
) produced by powder metallurgy (PM) were anodized under voltage control in tartaric-sulfuric acid (TSA). In this work, the influence of the amount of SiC
on the film growth during anodizing was investigated. The current density
time response and the morphology of the porous alumina film formed at the composite surface are compared to those concerning a commercial aluminum alloy (AA1050) anodized under the same conditions. The processing method of the aluminum alloys influences the efficiency of the anodizing process, leading to a lower thicknesses for the unreinforced Al-PM alloy regarding the AA1050. The current density
time response is strongly dependent on the amount of SiC
. The current peaks and the steady-state current density recorded at each voltage step increases with the SiC
volume fraction due to the oxidation of the SiC
. The formation mechanism of the anodic film on Al/SiC
composites is different from that occurring in AA1050, partly due the heterogeneous distribution of the reinforcement particles in the metallic matrix, but also to the entrapment of SiC
in the anodic film.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma7128151</identifier><identifier>PMID: 28788295</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Alloys ; Aluminum ; Aluminum alloys ; Aluminum base alloys ; Anodizing ; Corrosion resistance ; Current density ; Electric potential ; Influence ; Mechanical properties ; Morphology ; Nanoparticles ; Particle size ; Powder metallurgy ; Silicon carbide ; Sulfuric acid ; Time response ; Voltage</subject><ispartof>Materials, 2014-12, Vol.7 (12), p.8151-8167</ispartof><rights>Copyright MDPI AG 2014</rights><rights>2014 by the authors; 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c535t-6bc649ca57292dc0572ac26bf6941912aad78944042dde634d51ca1352cc4fd33</citedby><cites>FETCH-LOGICAL-c535t-6bc649ca57292dc0572ac26bf6941912aad78944042dde634d51ca1352cc4fd33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5456428/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5456428/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28788295$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ferreira, Sonia C</creatorcontrib><creatorcontrib>Conde, Ana</creatorcontrib><creatorcontrib>Arenas, María A</creatorcontrib><creatorcontrib>Rocha, Luis A</creatorcontrib><creatorcontrib>Velhinho, Alexandre</creatorcontrib><title>Anodization Mechanism on SiC Nanoparticle Reinforced Al Matrix Composites Produced by Power Metallurgy</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>Specimens of aluminum-based composites reinforced by silicon carbide nanoparticles (Al/SiC
) produced by powder metallurgy (PM) were anodized under voltage control in tartaric-sulfuric acid (TSA). In this work, the influence of the amount of SiC
on the film growth during anodizing was investigated. The current density
time response and the morphology of the porous alumina film formed at the composite surface are compared to those concerning a commercial aluminum alloy (AA1050) anodized under the same conditions. The processing method of the aluminum alloys influences the efficiency of the anodizing process, leading to a lower thicknesses for the unreinforced Al-PM alloy regarding the AA1050. The current density
time response is strongly dependent on the amount of SiC
. The current peaks and the steady-state current density recorded at each voltage step increases with the SiC
volume fraction due to the oxidation of the SiC
. The formation mechanism of the anodic film on Al/SiC
composites is different from that occurring in AA1050, partly due the heterogeneous distribution of the reinforcement particles in the metallic matrix, but also to the entrapment of SiC
in the anodic film.</description><subject>Alloys</subject><subject>Aluminum</subject><subject>Aluminum alloys</subject><subject>Aluminum base alloys</subject><subject>Anodizing</subject><subject>Corrosion resistance</subject><subject>Current density</subject><subject>Electric potential</subject><subject>Influence</subject><subject>Mechanical properties</subject><subject>Morphology</subject><subject>Nanoparticles</subject><subject>Particle size</subject><subject>Powder metallurgy</subject><subject>Silicon carbide</subject><subject>Sulfuric acid</subject><subject>Time response</subject><subject>Voltage</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqFkk1PHDEMhqOKChDlwB-oIvUCh23zPZML0mpFaSVoUT_OkTfJQNBMsiQzlO2vb1bQFe0FX2zLj17Z1ovQESXvOdfkwwANZS2V9BXap1qrGdVC7Dyr99BhKbekBue0ZXoX7bG2aWsl91E3j8mF3zCGFPGltzcQQxlwbb6HBf4CMa0gj8H2Hn_zIXYpW-_wvMeXMObwgBdpWKUSRl_wVU5u2kyXa3yVfvlc9Ubo-ylfr9-g1x30xR8-5QP08-PZj8Wn2cXX88-L-cXMSi7HmVpaJbQF2TDNnCU1g2Vq2SktqKYMwDVtPYkI5pxXXDhJLVAumbWic5wfoNNH3dW0HLyzPo4ZerPKYYC8NgmC-XcSw425TvdGCqkEa6vA8ZNATneTL6MZQrG-7yH6NBVDNWsUYUyxl9Gm4S1ThKuXUaUIEZLqzQLv_kNv05RjfVoVJKquSJmo1MkjZXMqJftueyIlZmMLs7VFZd8-_8mW_GsC_gf2k7HZ</recordid><startdate>20141219</startdate><enddate>20141219</enddate><creator>Ferreira, Sonia C</creator><creator>Conde, Ana</creator><creator>Arenas, María A</creator><creator>Rocha, Luis A</creator><creator>Velhinho, Alexandre</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7QF</scope><scope>7U5</scope><scope>8BQ</scope><scope>L7M</scope><scope>7U7</scope><scope>C1K</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20141219</creationdate><title>Anodization Mechanism on SiC Nanoparticle Reinforced Al Matrix Composites Produced by Power Metallurgy</title><author>Ferreira, Sonia C ; Conde, Ana ; Arenas, María A ; Rocha, Luis A ; Velhinho, Alexandre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c535t-6bc649ca57292dc0572ac26bf6941912aad78944042dde634d51ca1352cc4fd33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Alloys</topic><topic>Aluminum</topic><topic>Aluminum alloys</topic><topic>Aluminum base alloys</topic><topic>Anodizing</topic><topic>Corrosion resistance</topic><topic>Current density</topic><topic>Electric potential</topic><topic>Influence</topic><topic>Mechanical properties</topic><topic>Morphology</topic><topic>Nanoparticles</topic><topic>Particle size</topic><topic>Powder metallurgy</topic><topic>Silicon carbide</topic><topic>Sulfuric acid</topic><topic>Time response</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferreira, Sonia C</creatorcontrib><creatorcontrib>Conde, Ana</creatorcontrib><creatorcontrib>Arenas, María A</creatorcontrib><creatorcontrib>Rocha, Luis A</creatorcontrib><creatorcontrib>Velhinho, Alexandre</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Aluminium Industry Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferreira, Sonia C</au><au>Conde, Ana</au><au>Arenas, María A</au><au>Rocha, Luis A</au><au>Velhinho, Alexandre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anodization Mechanism on SiC Nanoparticle Reinforced Al Matrix Composites Produced by Power Metallurgy</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2014-12-19</date><risdate>2014</risdate><volume>7</volume><issue>12</issue><spage>8151</spage><epage>8167</epage><pages>8151-8167</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Specimens of aluminum-based composites reinforced by silicon carbide nanoparticles (Al/SiC
) produced by powder metallurgy (PM) were anodized under voltage control in tartaric-sulfuric acid (TSA). In this work, the influence of the amount of SiC
on the film growth during anodizing was investigated. The current density
time response and the morphology of the porous alumina film formed at the composite surface are compared to those concerning a commercial aluminum alloy (AA1050) anodized under the same conditions. The processing method of the aluminum alloys influences the efficiency of the anodizing process, leading to a lower thicknesses for the unreinforced Al-PM alloy regarding the AA1050. The current density
time response is strongly dependent on the amount of SiC
. The current peaks and the steady-state current density recorded at each voltage step increases with the SiC
volume fraction due to the oxidation of the SiC
. The formation mechanism of the anodic film on Al/SiC
composites is different from that occurring in AA1050, partly due the heterogeneous distribution of the reinforcement particles in the metallic matrix, but also to the entrapment of SiC
in the anodic film.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>28788295</pmid><doi>10.3390/ma7128151</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2014-12, Vol.7 (12), p.8151-8167 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5456428 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access |
subjects | Alloys Aluminum Aluminum alloys Aluminum base alloys Anodizing Corrosion resistance Current density Electric potential Influence Mechanical properties Morphology Nanoparticles Particle size Powder metallurgy Silicon carbide Sulfuric acid Time response Voltage |
title | Anodization Mechanism on SiC Nanoparticle Reinforced Al Matrix Composites Produced by Power Metallurgy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T20%3A18%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anodization%20Mechanism%20on%20SiC%20Nanoparticle%20Reinforced%20Al%20Matrix%20Composites%20Produced%20by%20Power%20Metallurgy&rft.jtitle=Materials&rft.au=Ferreira,%20Sonia%20C&rft.date=2014-12-19&rft.volume=7&rft.issue=12&rft.spage=8151&rft.epage=8167&rft.pages=8151-8167&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma7128151&rft_dat=%3Cproquest_pubme%3E1927602262%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1706283124&rft_id=info:pmid/28788295&rfr_iscdi=true |